偏最小二乘方法
- 格式:ppt
- 大小:421.50 KB
- 文档页数:48
两种偏最小二乘特征提取方法的比较偏最小二乘(Partial Least Squares, PLS)是一种常用的多元统计分析方法,在特征提取方面有两种常见的应用方法,分别是偏最小二乘回归(PLS Regression)和偏最小二乘判别分析(PLS-DA)。
本文将从这两种方法的原理、应用领域以及优缺点等方面进行比较,以便读者更好地理解它们的特点和适用场景。
一、偏最小二乘回归(PLS Regression)1.原理偏最小二乘回归是一种利用预测变量与被预测变量之间的关系来建立模型的方法。
它通过线性变换将原始变量转化为一组新的变量,即潜在变量,使得预测变量与被预测变量之间的相关性最大化。
PLS Regression既可以用于降维,提取主要特征,又可以用于建立预测模型。
2.应用领域PLS Regression广泛应用于化学、生物、食品等领域。
在化学领域,可以利用PLS Regression来建立光谱与化学成分之间的定量关系模型;在生物领域,可以利用PLS Regression来处理生物数据,如基因表达数据、蛋白质数据等。
3.优缺点优点:PLS Regression可以处理多重共线性和小样本问题,能够提取变量间的共同信息,对噪声和异常值具有较强的鲁棒性。
缺点:PLS Regression对参数的解释性较差,提取的潜在变量不易解释其物理或化学意义。
二、偏最小二乘判别分析(PLS-DA)偏最小二乘判别分析是一种将多变量数据进行降维和分类的方法。
它和偏最小二乘回归类似,也是通过线性变换将原始变量转化为一组潜在变量,但它的目的不是建立预测模型,而是根据已有类别信息对样本进行分类。
PLS-DA广泛应用于生物、医学、食品等领域。
在生物领域,可以利用PLS-DA对基因表达数据进行分类,发现与疾病相关的基因表达模式;在医学领域,可以利用PLS-DA对影像数据进行分析,帮助医生做出诊断和治疗决策。
缺点:PLS-DA的分类结果不易解释其物理或化学意义,对于大样本问题的分类效果可能不如其他分类方法。
偏最小二乘法 ( PLS)是光谱多元定量校正最常用的一种方法 , 已被广泛应用 于近红外 、 红外 、拉曼 、核磁和质谱等波谱定量模型的建立 , 几乎成为光谱分析中建立线性定量校正模型的通用方法 〔1, 2〕 。
近年来 , 随着 PLS 方法在光谱分析尤其是分子光谱如近红外 、 红外和拉曼中应用 的深入开展 , PLS 方法还被用来解决模式识别 、定量校正模型适用性判断以及异常样本检测等定性分析问题 。
由于 PLS 方法同时从光谱阵和浓度阵中提取载荷和得分 , 克服主成分分析 ( PCA)方法没有利用浓度阵的缺点 , 可有效降维 , 并消除光谱间可能存在的复共线关系 , 因此取得令人非常满意的定性分析结果 〔3 ~ 5〕 。
本文主要介绍PLS 方法在光谱定性分析方面的原理及应用 实例 。
偏最小二乘方法(PLS-Partial Least Squares))是近年来发展起来的一种新的多元统计分析法, 现已成功地应用于分析化学, 如紫外光谱、气相色谱和电分析化学等等。
该种方法,在化合物结构-活性/性质相关性研究中是一种非常有用的手段。
如美国Tripos 公司用于化合物三维构效关系研究的CoMFA (Comparative Molecular Field Analysis)方法, 其中,数据统计处理部分主要是PLS 。
在PLS 方法中用的是替潜变量,其数学基础是主成分分析。
替潜变量的个数一般少于原自变量的个数,所以PLS 特别适用于自变量的个数多于试样个数的情况。
在此种情况下,亦可运用主成分回归方法,但不能够运用一般的多元回归分析,因为一般多元回归分析要求试样的个数必须多于自变量的个数。
§§ 6.3.1 基本原理6.3 偏最小二乘(PLS )为了叙述上的方便,我们首先引进“因子”的概念。
一个因子为原来变量的线性组合,所以矩阵的某一主成分即为一因子,而某矩阵的诸主成分是彼此相互正交的,但因子不一定,因为一因子可由某一成分经坐标旋转而得。
偏最小二乘回归方法偏最小二乘回归(PLSR)方法是一种用于建立两个或多个变量之间的线性关系模型的统计技术。
这种方法是回归分析的变种,特别适用于处理高维数据集或变量之间具有高度相关性的情况。
PLSR方法的目标是找到一个最佳的投影空间,以将自变量和因变量之间的关系最大化。
PLSR方法首先将自变量和因变量进行线性组合,然后通过最小二乘法来拟合这些组合和实际观测值之间的关系。
通过迭代过程,PLSR方法会削减每个变量的权重,并选择最相关的变量组合来构建模型。
PLSR方法使用最小二乘回归来估计模型参数,并通过交叉验证来确定模型的最佳复杂度。
一般而言,PLSR方法需要满足以下几个步骤:1.数据预处理:包括数据中心化和标准化操作。
中心化是指将数据的平均值平移到原点,标准化是指将数据缩放到相同的尺度,以便比较它们的重要性。
2.建立模型:PLSR方法通过迭代过程来选择最相关的变量组合。
在每次迭代中,PLSR方法计算每个变量对自变量和因变量之间关系的贡献程度。
然后,根据这些贡献程度重新计算变量的权重,并选择最重要的变量组合。
3.确定复杂度:PLSR方法通常通过交叉验证来确定模型的最佳复杂度。
交叉验证可以将数据集划分为训练集和测试集,在训练集上建立模型,并在测试集上评估模型的性能。
根据测试集上的性能表现,选择最佳的复杂度参数。
PLSR方法的优点在于可以处理高维数据集,并能够处理变量之间的高度相关性。
它可以找到自变量与因变量之间的最佳组合,从而提高建模的准确性。
此外,PLSR方法还可以用于特征选择,帮助研究人员找到对结果变量具有重要影响的变量。
然而,PLSR方法也存在一些限制。
首先,PLSR方法假设自变量和因变量之间的关系是线性的,因此无法处理非线性模型。
其次,PLSR方法对异常值非常敏感,可能会导致模型的失真。
此外,PLSR方法也对样本大小敏感,需要足够的样本数量才能获得可靠的结果。
总的来说,偏最小二乘回归方法是一种用于建立变量之间线性关系模型的统计技术。
偏最小二乘法
偏最小二乘法(Partial Least Squares, PLS)是一种多元统计分析方法,通常用于处理具有多个自变量(特征)和一个或多个因变量(响应变量)的数据集。
PLS的主要目标是通过线性组合自变量来建立与因变量之间的关系,同时减少自变量之间的多重共线性。
PLS的核心思想是将自变量和因变量进行分解,然后找到它们之间的最大协方差方向。
这种方法可以降低数据维度,同时保留与因变量相关性最高的信息。
PLS可以应用于回归问题和分类问题。
PLS的应用领域包括化学分析、生物信息学、工程、金融和其他领域,特别是在处理高维数据和样本较少的情况下,PLS可以帮助提高模型性能和降低过拟合的风险。
PLS方法通常包括以下步骤:
1. 数据准备:收集自变量和因变量的数据。
2. 标准化:对数据进行标准化处理,以确保不同变量的尺度一致。
3. 模型拟合:建立PLS模型,找到自变量和因变量之间的最大协方差方向。
4. 模型评估:评估模型的性能,通常使用交叉验证等方法。
5. 预测:使用训练好的PLS模型进行新数据的预测。
PLS有不同的变种,包括PLS回归(用于连续因变量),PLS-DA(用于分类问题),以及其他扩展。
这种方法在实际数据分析和建模中具有广泛的应用,可以帮助解决多变量数据分析中的问题。
偏最小二乘回归方法1 偏最小二乘回归方法(PLS)背景介绍在经济管理、教育学、农业、社会科学、工程技术、医学和生物学中,多元线性回归分析是一种普遍应用的统计分析与预测技术。
多元线性回归中,一般采用最小二乘方法(Ordinary Least Squares :OLS)估计回归系数,以使残差平方和达到最小,但当自变量之间存在多重相关性时,最小二乘估计方法往往失效。
而这种变量之间多重相关性问题在多元线性回归分析中危害非常严重,但又普遍存在。
为消除这种影响,常采用主成分分析(principal Components Analysis :PCA)的方法,但采用主成分分析提取的主成分,虽然能较好地概括自变量系统中的信息,却带进了许多无用的噪声,从而对因变量缺乏解释能力。
最小偏二乘回归方法(Partial Least Squares Regression:PLS)就是应这种实际需要而产生和发展的一种有广泛适用性的多元统计分析方法。
它于1983年由S.Wold和C.Albano等人首次提出并成功地应用在化学领域。
近十年来,偏最小二乘回归方法在理论、方法和应用方面都得到了迅速的发展,己经广泛地应用在许多领域,如生物信息学、机器学习和文本分类等领域。
偏最小二乘回归方法主要的研究焦点是多因变量对多自变量的回归建模,它与普通多元回归方法在思路上的主要区别是它在回归建模过程中采用了信息综合与筛选技术。
它不再是直接考虑因变量集合与自变量集合的回归建模,而是在变量系统中提取若干对系统具有最佳解释能力的新综合变量(又称成分),然后对它们进行回归建模。
偏最小二乘回归可以将建模类型的预测分析方法与非模型式的数据内涵分析方法有机地结合起来,可以同时实现回归建模、数据结构简化(主成分分析)以及两组变量间的相关性分析(典型性关分析),即集多元线性回归分析、典型相关分析和主成分分析的基本功能为一体。
下面将简单地叙述偏最小二乘回归的基本原理。
偏最小二乘法1.1基本原理偏最小二乘法(PLS)是基于因子分析的多变量校正方法,其数学基础为主成分分析。
但它相对于主成分回归(PCR)更进了一步,两者的区别在于PLS法将浓度矩阵Y和相应的量测响应矩阵X同时进行主成分分解:X二 TP+EY=UQ+F式中T和U分别为X和Y的得分矩阵,而P和Q分别为X和Y的载荷矩阵,E和F分别为运用偏最小二乘法去拟合矩阵X和Y时所引进的误差。
偏最小二乘法和主成分回归很相似,其差别在于用于描述变量Y中因子的同时也用于描述变量X。
为了实现这一点,数学中是以矩阵Y的列去计算矩阵X的因子。
同时,矩阵Y的因子则由矩阵X 的列去预测。
分解得到的T和U矩阵分别是除去了人部分测量误差的响应和浓度的信息。
偏最小二乘法就是利用各列向量相互正交的特征响应矩阵T和特征浓度矩阵U进行回归:U=TB得到回归系数矩阵,又称矢联矩阵E:B=(TT )F U因此,偏最小二乘法的校正步骤包括对矩阵Y和矩阵X的主成分分解以及对矢联矩阵B的计算。
12主成分分析主成分分析的中心目的是将数据降维,以排除众多化学信息共存中相互重叠的信息。
他是将原变量进行转换,即把原变量的线性组合成几个新变量。
同时这些新变量要尽可能多的表征原变量的数据结构特征而不丢失信息。
新变量是一组正交的,即互不相矢的变量。
这种新变量又称为主成分。
如何寻找主成分,在数学上讲,求数据矩阵的主成分就是求解该矩阵的特征值和特征矢量问题。
卞面以多组分混合物的量测光谱来加以说明。
假设有n个样本包含p个组分,在m个波长下测定其光谱数据,根据比尔定律和加和定理有:如果混合物只有一种组分,则该光谱矢量与纯光谱矢量应该是方向一致,而人小不同。
换句话说,光谱A表示在由p个波长构成的p维变量空间的一组点(n个),而这一组点一定在一条通过坐标原点的直线上。
这条直线其实就是纯光谱b。
因此由ni个波长描述的原始数据可以用一条直线,即一个新坐标或新变量来表示。
如果一个混合物由2个组分组成,各组分的纯光谱用bl,b2 表示,则有:<=c i{b: + Ci2bl有上式看出,不管混合物如何变化,其光谱总可以用两个新坐标轴bl,b2来表示。
偏最小二乘法路径一、概述偏最小二乘法(Partial Least Squares, PLS)是一种常用的多元统计分析方法,它可以在面对高维数据和多重共线性时,有效地降低数据维度并提取主要特征。
PLS方法在许多领域都有广泛的应用,如化学、生物信息学、金融和工程等。
二、原理PLS方法通过寻找两个方向,即X和Y的潜在方向,使得它们之间的协方差最大。
具体而言,PLS首先对X和Y进行标准化处理,然后通过最小二乘法求解X和Y之间的回归系数。
随后,PLS基于回归系数的大小进行特征选择,选择其中最重要的特征。
这样,就得到了X和Y的主成分,也就是PLS路径。
三、应用1. 数据建模PLS方法在数据建模中具有重要的应用价值。
在建立预测模型时,PLS可以有效地处理高维数据和多重共线性问题。
通过提取主要特征,PLS可以减少模型的复杂度,提高模型的预测准确性。
2. 特征选择在特征选择中,PLS可以帮助我们从大量特征中选择出最相关的特征。
通过计算回归系数的大小,PLS可以确定哪些特征对目标变量具有最大的影响,从而进行特征选择。
3. 数据降维在面对高维数据时,PLS可以将数据降维到较低的维度。
通过提取主要特征,PLS可以减少数据的冗余信息,从而提高数据处理的效率。
4. 数据探索PLS方法还可以用于数据的探索性分析。
通过分析PLS路径,我们可以了解各个变量之间的关系,从而深入理解数据的内在结构。
5. 预测分析由于PLS方法能够有效处理高维数据和多重共线性问题,因此在预测分析中也有广泛的应用。
通过建立PLS模型,我们可以对未知数据进行预测,从而为决策提供参考。
四、总结偏最小二乘法路径是一种重要的多元统计分析方法,它可以在面对高维数据和多重共线性时,提取主要特征并降低数据维度。
通过特征选择、数据降维和预测分析等应用,PLS方法为数据分析和建模提供了有效的工具和方法。
希望通过本文的介绍,读者能对偏最小二乘法路径有更加深入的理解,并将其运用到实际问题中。
两种偏最小二乘特征提取方法的比较偏最小二乘(Partial least squares,PLS)是一种常用的多元线性回归方法,能够处理高维数据,并提取数据中最相关的特征。
PLS可分为两种类型:标准PLS和偏重PLS。
标准PLS将全部变量视为平等,通过一系列变换找到与因变量最相关的变量。
而偏重PLS则将某些变量赋予较高的权重,使得这些变量更容易被挖掘出来。
本文比较了两种偏PLS的特征提取方法,即分别考虑数据分布和损失函数的类别权重偏PLS(class weighted PLS,CWPLS)和考虑数据间关系的数据结构偏PLS(Data-Structure weighted PLS,DSWPLS)。
1. CWPLSCWPLS方法基于数据分布进行偏重,将类别权重引入PLS中。
CWPLS在求解时先对数据矩阵X按列分类,然后根据类别计算不同列的权重。
对于y的预测,用带权重的回归系数乘以新样本的x,即可得到预测结果。
CWPLS的核心在于如何定义权重。
常见的权重计算方式有均值、最大值、中位数等,而具体哪种方法最优则需要根据实际数据进行决策。
DSWPLS方法则基于数据间关系进行偏重,通过计算数据关系度量矩阵R来引入权重。
关系度量可以是相似度、距离、关联度等。
通过R,DSWPLS可以得到每个变量与其他变量的权重值,进而计算新样本的预测结果。
DSWPLS的优势在于它可以更好地捕捉数据中的关系,降低不同变量之间的冗余度。
但DSWPLS也存在一定的局限性,如对数据矩阵必须具有明显的结构等限制。
3. 两种方法的比较CWPLS和DSWPLS两种方法的差异在于它们引入权重的方式不同。
CWPLS更注重变量的类别,通过考虑类别的分布来进行权重计算,适用于数据中存在较为明显的类别标志的情况。
而DSWPLS更注重变量间的关系,可以更好地挖掘数据中的本质特征,适用于数据中各变量之间具有一定的相互关系的情况。
实际应用中,选择哪种方法取决于数据本身的特点。