余热回收吸收式热泵的应用前景共53页
- 格式:ppt
- 大小:7.72 MB
- 文档页数:53
吸收式热泵回收循环水余热供热在苇湖梁电厂的应用胡龙吴志豪李新刚高媛华电新疆发电有限公司苇湖梁电厂【摘要】吸收式热泵在工业余热回收领域具有广泛的应用,但近两年方才开始应用于热电厂循环水余热回收。
本文介绍了利用溴化锂吸收式热泵回收循环水余热集中供热在苇湖梁电厂的应用,为同类型热电厂进行循环水余热回收提供技术参考。
【关键词】吸收式热泵热电厂余热回收1 前言热电联产集中供热是目前我国主要的供热形式,因其相对燃煤锅炉具有节能、环保等方面的优势,长期以来得到国家政策的支持。
但随着我国城市化进程的加速发展,不断扩大的用热规模与现有热源有限的供热能力、城市管网有限的供热能力之间的矛盾日益突出。
而热电厂(抽凝式)汽轮机低压缸因必须保证一定的乏汽冷却,因此即使在冬季供热工况下仍然有大量的乏汽余热通过循环水排入大气,循环水余热回收也是火电厂节能领域的重点和难点。
先进的吸收式热泵技术为此类问题提供了一个重要的解决思路。
2溴化锂吸收式热泵介绍2.1热泵热泵是从低温热源吸热送往高温热源的循环设备。
热泵按驱动力来分,主要是由两种类型,即压缩式热泵和吸收式热泵。
压缩式热泵消耗机械能(电能)使热量从低温热源转移到高温热源,吸收式热泵一般以蒸气、热水为驱动热源。
吸收式热泵又可分为第一类热泵和第二类热泵。
第一类吸收式热泵输入高温热源,进而从低温热源回收热能,提供其品位,以中温形式提供给用户的热泵。
第二类热泵是靠输入的中温热能驱动热泵运行,将输入热能的一部分提高温度供用户使用,而将另一部分能量排放到温度更低的环境中。
吸收式热泵的驱动力来源于不同热源的热势差。
2.2第一类溴化锂吸收式热泵该类溴化锂吸收式热泵包括蒸发器、吸收器、冷凝器、发生器、热交换器、屏蔽泵和其他附件等。
它以水为制冷剂,溴化锂溶液为吸收剂。
水在常压下100℃沸腾、蒸发,在5mmHg真空状态下4℃时蒸发,吸收式热泵的蒸发器利用的就是这个原理。
另一方面,溴化锂溶液是一种极易吸收水(蒸汽)、化学性质稳定的物质,在温度越低、浓度越高的时候吸收能力越强。
余热回收式热泵在燃气蒸汽联合循环中经济性分析发布时间:2021-08-02T02:58:38.287Z 来源:《电力设备》2021年第4期作者:张海东[导读] 在2018年技改后增加5台吸收式热泵,用于回收循环水的余热从而提高电厂余热回收的经济性。
(北京太阳宫燃气热电有限公司北京 100028)摘要:与普通燃气-蒸汽联合循环机组相比,热泵的投入使得在余热利用方面更具优势。
通过现有的循环水系统、热网循环水系统以及热网抽汽系统进行改造,利用新增5×47.214MW等级吸收式热泵机组回收循环水的低品质热量用于对外供热。
从而提高机组整体的供热能力以及热经济性。
以某GE 9F燃气-蒸汽联合循环机组,抽汽式汽轮机额定负荷275MW为例,主要分析了吸收式热泵在热电联产燃气电厂的应用情况以及热力学研究,从而对其产生的经济性进行分析。
关键词:燃气-蒸汽联合循环;吸收式热泵;余热利用;热网前言:能源的日益短缺越来越严重,如何有效利用整个热力循环的不同品质的能量,是提升热效率的关键。
但是对于火电机组来说大部分能量的损耗还是在冷源损失,无法被有效利用,吸收式热泵可以有效利用这部分能量,从而进一步降低冷源损失,提升机组的整体热效率。
某燃气--蒸汽联合循环发电机组为一套780 MW级“2拖1”燃气--蒸汽联合循环供热机组。
全厂配置为:2套燃气轮机和1套蒸汽轮机。
在2018年技改后增加5台吸收式热泵,用于回收循环水的余热从而提高电厂余热回收的经济性。
1 吸收式热泵的供热方式以该厂冬季大负荷供热为例,热网水回水入口温度为48℃左右,热网回水从热泵出来温度56℃左右。
热网供水温度100-110℃左右。
2 吸收式热泵的工作原理溴化锂水溶液极难挥发,被加热蒸发后所产生的蒸汽可近似看成纯水。
当溴化锂稀溶液被汽轮机中压缸7级抽汽加热后,水分被蒸发进入冷凝器,而剩余浓溶液进入吸收器。
热网水从冷凝器进行一次吸热,水蒸气被冷却,冷凝下来进入蒸发器后急速膨胀而汽化,吸收循环水余热,降低循环水温度。
2024年余热回收利用市场规模分析引言余热回收利用是一种重要的能源节约和环境保护技术,通过有效地利用工业生产过程中产生的余热,可以减少能源的消耗并减少污染物的排放。
在全球范围内,余热回收利用市场正快速发展,并且在许多行业中得到广泛应用。
本文将对余热回收利用市场规模进行分析,以便更好地了解该市场的发展趋势和潜力。
1. 余热回收利用市场概述余热回收利用市场包括了各种技术和设备,用于收集和利用工业生产中产生的余热。
这些技术和设备包括余热锅炉、余热蒸汽发生器、余热换热器等。
余热回收利用市场可以分为几个主要的行业,包括化工、钢铁、电力、制药等行业。
目前,全球余热回收利用市场规模庞大,并且在不断增长。
2. 2024年余热回收利用市场规模分析根据市场调研公司的数据,全球余热回收利用市场规模从2016年的XX亿美元增长到2020年的XX亿美元,年均复合增长率为XX%。
预计到2025年,全球余热回收利用市场规模将达到XX亿美元。
在各个行业中,化工行业是余热回收利用市场的主要消费者。
化工行业中的许多生产过程都产生大量的余热,通过回收和利用这些余热,可以显著降低能源消耗和运营成本。
因此,化工行业对余热回收利用技术的需求相对较高,对市场规模的增长有着巨大贡献。
此外,钢铁、电力和制药等行业也是余热回收利用市场的重要消费者。
随着这些行业的快速发展,对能源的需求不断增加,因此对余热回收利用技术的需求也在增长。
特别是在一些新兴市场和发展中国家,这些行业的发展更加迅速,为全球余热回收利用市场的增长提供了新的机遇。
3. 余热回收利用市场的挑战和机遇尽管余热回收利用市场具有巨大的发展潜力,但仍然面临一些挑战。
首先,技术和设备的成本较高,对于一些中小型企业来说可能难以承受。
其次,在一些行业中,对余热回收利用技术的认识和接受程度有限,需要加大宣传和推广力度。
此外,在一些地区,政府的政策支持和法规法规制度尚未完善,给市场的发展带来一定的不确定性。
吸收式热泵引言:随着人们对节能环保技术的追求不断增强,吸收式热泵作为一种高效能源利用技术,正在逐渐获得人们的关注与青睐。
吸收式热泵以其具有的环保、高效、可持续等特性,在空调、供暖等领域显示出巨大潜力。
本文将详细介绍吸收式热泵的原理、工作过程及应用领域,以及其在能源领域的前景。
一、吸收式热泵的原理吸收式热泵是一种利用气体吸收热量来提供制冷或供暖的热泵系统。
其基本原理是利用可逆化学反应来实现对热能的转换。
吸收式热泵主要由蒸发器、吸收器、发生器、冷凝器以及泵等主要组成。
在吸收器中,制冷剂与吸收剂混合,在吸热条件下发生吸收反应,从而将制冷剂与吸收剂分离。
吸收剂吸收制冷剂释放的热能,而制冷剂则通过泵被输送至发生器。
在发生器中,制冷剂经过加热使其汽化,产生高温高压气体。
然后,高温高压气体通过冷凝器冷却并凝结为液体,释放出的热量被利用。
随后,制冷剂通过泵回到吸收器,从而实现制冷或供暖的功能。
二、吸收式热泵的工作过程1. 蒸发器:在低压下,制冷剂吸热蒸发,从而实现制冷效果。
2. 吸收器:制冷剂与吸收剂在吸收器中发生反应,将制冷剂与吸收剂分离。
3. 发生器:制冷剂在高温下加热,从液体态变为气体态,产生高温高压气体。
4. 冷凝器:高温高压气体通过冷凝器冷却,转变为液体态,释放热能。
5. 泵:将制冷剂从冷凝器输送至吸收器,使循环过程继续进行。
三、吸收式热泵的应用领域1. 制冷与空调领域:吸收式热泵在制冷与空调领域的应用最为广泛。
其高效节能的特性使其成为替代传统制冷空调系统的理想选择。
吸收式热泵通过吸收热能实现制冷,相对于传统压缩式制冷系统,具有低能耗、低噪音、无氟利昂等优点。
2. 供暖领域:吸收式热泵在供暖领域也有较为广泛的应用。
利用吸收式热泵的制冷过程,可以通过逆向工作原理将低温热源提升至供暖所需的高温状态,因此能够在供暖季节提供稳定舒适的温度。
3. 工业领域:吸收式热泵在工业领域被广泛应用于蒸馏、脱水、浓缩、干燥等过程中的余热回收。
2024年工业热泵市场前景分析简介工业热泵是一种能够将低温的工业废热转换为高温热能的系统。
随着能源资源的日益减少和环境污染问题的日益突出,工业热泵作为一种有效的能源利用方式被广泛关注。
本文将对工业热泵市场前景进行分析。
市场潜力工业热泵市场具有巨大的潜力。
首先,全球温室气体排放问题日益严重,各国政府正加大对能源节约和环保的推动力度。
工业热泵作为一种低碳环保的技术,具备减少碳排放和节约能源的优势,符合政府政策的导向。
其次,工业热泵可以有效地利用工业废热,将废热转化为有价值的热能,提高能源利用效率。
这对于资源有限的社会来说,具有重要意义。
另外,工业热泵技术不受地域限制,可以广泛应用于各个产业领域,包括冶金、化工、纺织、造纸等行业,市场规模巨大。
市场竞争目前,工业热泵市场竞争激烈。
主要竞争者包括国内外的热泵制造商和系统集成商。
国内的工业热泵市场正处于快速发展阶段,市场进入门槛相对较低,竞争压力很大。
国外的一些知名企业在工业热泵技术和产品研发方面具有较强的实力和经验,在进入国内市场时具备一定的竞争优势。
此外,技术创新也是市场竞争的关键。
随着科技的不断进步,新型材料、新工艺、新技术的应用不断涌现,提高了工业热泵的性能和效率。
因此,市场竞争主要体现在技术创新能力、产品质量和售后服务上。
市场发展趋势工业热泵市场将呈现以下发展趋势:1. 技术升级随着科技的不断进步,工业热泵技术将不断升级。
新的材料、工艺和技术将被应用于工业热泵产品中,提高产品的性能和效率。
例如,采用新型的换热器材料,可以提高热泵的传热效率;采用新型的压缩机和膨胀阀,可以提高制冷剂的压缩性能和膨胀性能。
2. 市场规模扩大随着环保意识的提高和政府政策的支持,工业热泵市场的规模将不断扩大。
各个行业将逐渐认识到工业热泵的重要性,并积极采用工业热泵技术来提高能源利用效率。
尤其是在一些高能耗行业,如钢铁、化工等行业,工业热泵的应用前景更加广阔。
3. 产品结构优化随着市场竞争的加剧,工业热泵制造商将加大对产品研发的投入,优化产品结构,提高产品的性能和可靠性。
吸收式热泵余热回收技术原理及在热电厂中的应用柳立慧新疆电力科学研究院(乌鲁木齐830011)摘要:介绍了吸收式热泵余热回收技术的基本原理和特点,该技术可回收利用大量循环冷却水的低温余热,回收的余热用于冬季供暖,可大大增加现有热源的供热能力,节能节水效益显著。
关键词:热泵;余热;热电厂0概述2009年的哥本哈根气候变化谈判会议上,我国政府明确量化碳减排目标(到2020年,单位G D P二氧化碳排放比2005年下降40%至45%),展示了中国在应对气候变化、履行大国责任方面的积极态度。
这充分表明我国不再单纯追求经济的增长速度,而是更加强资源的有效利用,关注可持续增长“节能减排”降耗已被摆在前所未有的高度。
而提高能源利用率、加强余热回收利用是节约能源、降低碳排放、保护环境是根本措施。
吸收式热泵余热回收技术以其高效节能和具备显著经济效益的特点,尤为引人注目。
1吸收式热泵原理吸收式热泵是一种利用低品位热源,实现将热量从低温热源向高温热源泵送的循环系统。
是回收利用低温位热能的有效装置,具有节约能源、保护环境的双重作用。
吸收式热泵可以分为两类。
第一类吸收式热泵,也称增热型热泵,是利用少量的高温热源,产生大量的中温有用热能。
即利用高温热能驱动,把低温热源的热能提高到中温,从而提高了热能的利用效率。
第一类吸收式热泵的性能系数大于1,一般为1.5~2.5。
第二类吸收式热泵,也称升温型热泵,是利用大量的中温热源产生少量的高温有用热能。
即利用中低温热能驱动,用大量中温热源和低温热源的热势差,制取热量少于但温度高于中温热源的热量,将部分中低热能转移到更高温位,从而提高了热源的利用品位。
第二类吸收式热泵性能系数总是小于1,一般为0.4~0.5。
两类热泵应用目的不同,工作方式亦不同。
但都是工作于三热源之间,三个热源温度的变化对热泵循环会产生直接影响,升温能力增大,性能系数下降。
目前,吸收式热泵使用的工质为L i Br—H2O或N H3—H2O,其输出的最高温度不超过150℃。
基于石化行业的吸收式热泵余热回收技术分析随着经济的发展和人们生活水平的提高,石油、天然气等化石能源的需求不断增加。
而石油、天然气等化石能源的提取、加工、使用过程中会产生大量的废热,如果这些废热得不到合理的利用,就会浪费大量的能源资源,增加环境负担。
因此,如何有效地回收利用这些废热,成为了一个重要的研究方向。
基于石化行业的吸收式热泵余热回收技术,是一种有效的废热利用技术,具有很大的应用前景。
一、吸收式热泵的原理吸收式热泵是一种将低温热能转化为高温热能的技术,利用吸收剂的溶解度与温度的变化来完成热能的转化过程。
其基本工作原理为:将低温余热通过换热器传递给吸收剂,并通过吸收剂的溶解度与温度的变化来完成热能的转化;吸收剂在吸收低温余热的同时,从稀溶液转变为浓溶液,释放出吸收热;然后将浓溶液通过换热器将吸收热传递给水,将其蒸发成为蒸汽,从而达到提高温度的目的;然后将蒸汽通过冷凝器冷却,回收热能,形成冷凝水,再通过减压器降压,回到吸收器中,从而完成一次循环。
二、以石化行业为例的吸收式热泵余热回收技术石化行业中,炼油、化工、油气田等生产过程中均会产生大量的废热,这些废热是可以利用的,如油气田的热采过程中产生的大量热水,可用于生产用水、供暖等;炼油过程中产生的烟气废热,可用于蒸馏、加热以及压缩气体的预热等;化工过程中产生的废热,可用于加热反应槽、干燥器、冷却水等。
以上这些废热均可通过吸收式热泵技术进行回收利用,将其转化为高温高品质的热能,供热、供电等,从而节约能源、减少排放。
如以炼油过程中产生的烟气废热为例,采用吸收式热泵技术回收利用,可使烟气温度从180℃降至60℃以下,并再次用于蒸馏加热、压缩气体预热等,日节约能源约15000立方米。
在油气田中,采用吸收式热泵技术回收利用热水废热,可使生产用水的温度提高10℃左右,从而减少热能的浪费,提高能源的利用效率。
三、吸收式热泵余热回收技术的优点1. 废热回收利用效率高:吸收式热泵的转化效率高,可将低品质的热能转化为高温高品质的热能,且不需要额外消耗燃料等能源物质,可大量节约能源资源。
热泵技术的优势与应用前景热泵技术是一种将低温热量转化为高温热量的能源转换技术。
它可以通过从空气、水或土壤中提取热量来为建筑供热或制冷,并且相比传统能源使用方式,更加经济环保。
本文将探讨热泵技术的优势与应用前景。
一、热泵技术的优势1. 省能环保热泵技术是一种高效、环保的能源技术,能够利用自然界中的低温热源,比如空气、水、土壤中的热能,通过转换过程,将其转化为可以用于供暖和制冷的高温热源。
相比于传统能源,热泵技术可以减少温室气体排放,降低环境负担。
2. 多功能性热泵技术不仅可以用于供暖和制冷,还可以用于制热热水、恒温恒湿、脱湿等方面。
在寒冷的冬季,热泵可以将低温的空气热量提取出来,为家庭供暖;在炎热的夏季,热泵可以将室内的热量转移到外部,实现空调降温。
3. 稳定可靠热泵具有稳定可靠的特点,采用了数字化控制技术,能够对环境温度及湿度进行精确控制,从而实现稳定的温度控制。
与传统的冷暖设备相比,热泵在使用中噪音较小、运行更加平稳。
二、热泵技术的应用前景1. 家庭供暖市场随着全国性供暖改革逐渐推进,人们对于能源转换技术的研究和应用需求逐渐提升。
过去,中央空调、壁挂炉、地暖等传统供暖方式多在北方地区使用,但由于其能源消耗、安全隐患等问题,受到越来越多的消费者质疑。
而热泵技术的应用,能够实现绿色环保、高效节能、低碳环保的目标,因此未来在家庭供暖市场有望广泛应用。
2. 商业领域在商业领域,尤其是大型商业中心、酒店等企业中,热泵技术也有着广泛的应用前景。
例如,酒店可以采用热泵技术,实现客房空调和热水供应的整合,节约能源,提高效率。
3. 工业市场热泵技术在工业市场同样具有许多应用前景。
例如,热泵设备可以将低温的工业废物热能转化为高温热源,实现能源的回收和再利用,从而节省成本并减少环境污染。
4. 农业领域在农业领域,热泵技术也有着广泛的应用前景。
例如,热泵设备可以将空气、水、土壤中的温度转化为高温热能,提供温室种植所需的热量和湿度,提高农产品的生产力和品质。
吸收式热泵在循环水余热利用中的应用研究于玲红;王东;李卫平【摘要】为了有效回收工业生产过程中产生的大量余热,降低能源消耗及热污染,对包头市某集团循环水系统进行了改造,采用吸收式热泵对循环水系统的余热进行了有效回收并用于周围建筑物冬季供暖.工业余热与建筑供热的有效结合,实现了企业开式循环冷却水系统向闭式系统的转变,在循环水水质达到控制和保障的同时大大提高了其冷却效果,且满足了周围建筑物的供暖需求.既解决了能源浪费、热污染等问题,又降低了供热能耗,具有较大的经济效益、环境效益和社会效益.【期刊名称】《内蒙古科技大学学报》【年(卷),期】2016(035)002【总页数】4页(P181-184)【关键词】吸收式热泵;循环水系统;余热利用;节能降耗【作者】于玲红;王东;李卫平【作者单位】内蒙古科技大学能源与环境学院,内蒙古包头014010;内蒙古科技大学能源与环境学院,内蒙古包头014010;内蒙古第一机械集团有限公司动力能源公司,内蒙古包头014010;内蒙古科技大学能源与环境学院,内蒙古包头014010【正文语种】中文【中图分类】TK11+5我国能源利用目前仍然存在着利用效率低、经济效益差、生态环境压力大等主要问题.节能减排、降低能耗、提高能源综合利用率作为能源发展战略规划的重要内容,是解决我国能源问题的根本途径[1,2].然而,众多企业的冷却系统将大量的热量直接排放到大气中,造成了巨大的能源浪费和明显的环境湿热影响[3].面对能源利用状况日趋严峻的不利形式,世界各国都在余热利用、提高能源利用率等方面做积极的探索研究,包括吸收式热泵的开发利用、吸收式热泵供热以及能源的有效利用[4-7].基于此,对包头市某集团的循环水系统进行了改造,采用吸收式热泵回收系统蕴含的大量余热,并将其用于周围建筑物的冬季供暖,大幅度提高了能源的利用率,有效解决了能源浪费及采暖供需之间的矛盾.包头市某集团大循环水系统属敞开式循环水系统,主要供集团公司铸造、锻造、热处理等设备冷却、工件清洗及工件淬火.大循环系统供水水泵的输出能力为915m3/h,管网的最大输配水能力为1 253 m3/h,管网的最大回水(满管流)能力为621.5 m3/h.热水池的蓄水能力为220 m3.系统由循环泵房的三台热水泵与三台冷水泵,冷、热水池及两台500 t/h横流玻璃钢冷却塔及供回水管网组成.集团采暖用热采用电厂高温热水作为一次水,经换热站房进行热交换后,将二次水作为采暖循环用热水,随着厂房新建扩建的逐步推进,原有供热能力已无法满足周围建筑物冬季采暖用热需求.采暖季中间期及尖寒期,只能用大量的蒸汽作为用热补充,对冬季紧张的蒸汽热能也形成了威胁,周边新建厂房已经无法用集中供热进行采暖,只能使用费用极高的天然气作为采暖热能.另一方面,用于生产用的循环水中,携带有大量的废热资源,利用冷却塔进行降温再利用,循环水流量达到400 t/h,降温幅度为3~5 ℃,大量的热能随着冷却降温被排到大气中,造成严重的热能浪费,同时随着开式冷却塔的冷却降温方式的特性使然,还有大量的水分飞溅损失,新鲜水补水量也是不小的投入.由热力学第二定律可知,热量不能自发的从低温物体传递至高温物体,而不引起其他变化.但在日常生产过程中,可以通过施加“驱动力”实现热量从低温物体向高温物体的传递,如图1所示的热泵基本工作原理图,通过对热泵输入一定的能量作为驱动力,如电能、热能和化学能等,即可将热量从低温物体输送至高温热源[8].吸收式热泵一般由发生器、冷凝器、蒸发器、吸收器及换热器等主要部件和溶液泵、工质泵等辅助部分组合而成,是一种用蒸汽或者燃料作为驱动,将热量从低温热源输送到高温热源的一种循环系统.蒸汽或燃料在发生器内释放出热量,溴化锂稀溶液经加热后产生冷剂蒸汽,然后进入冷凝器释放冷凝热,流经冷凝器传热管内的水因此被加热,而其自身却冷凝成液体后通过节流阀进入蒸发器,工质泵将冷剂水喷淋到蒸发器传热管的表面吸收热量,热源水温度随之降低后流出机组,而冷剂水吸收热量后被汽化成冷剂蒸汽再进入吸收器,浓缩后的溴化锂溶液又返回吸收器进行喷淋,吸收从蒸发器传过来的冷剂蒸汽后,放出的吸收热,用以加热流经吸收器传热管内的热水.热水流经吸收器、冷凝器经升温后,输送给热用户.3.1 系统改造通过充分的调研论证,集团公司引入水源热泵技术来回收循环水系统的余热,改造方案见图2.采用循环水泵房需要冷却的循环水作为余热源,以蒸汽作为驱动源,通过吸收式水源热泵机组,将2#采暖换热站南线的回水加热后,回到2#换热站集水缸,与另两路回水混合,作为2#换热站整体热量的补充,达到节能的目的.循环水泵房的循环水全年运行,有充足的余热可以利用,2#换热站在整个采暖期(10月15日~4月15日)24小时不间断运行,有大量的用热需求,可以保证水源热泵在整个采暖期的正常使用,充分发挥它的节能作用.3.2 循环系统运行方式采取热泵机组替代现有冷却塔,运行系统不做大的调整,循环系统运行方式见图3,其供水流程:热水泵抽取热水池中的循环回水,加压后打入热泵蒸发系统进行冷却(原水打到冷却塔进行冷却),冷却后的水回到冷水池,经冷水池加压后打入循环供水系统,经用户换热后,回至热水池.3.3 采暖系统运行方式采暖系统运行方式见图4.采暖供水流程:采暖循环泵抽取采暖2#站采暖回水,加压后打入热泵冷凝器系统进行加热,加热后的水由55 ℃升高到70 ℃,供到周围308厂房及周围建筑物采暖用能,将加热后富裕的采暖热水打入采暖南线.压力与流量及软化补水须有采暖2#站统一调整与控制.4.1 余热量计算系统余热量按式(1)进行计算:Q=1.163G(Tg-Th)式中,Q为余热量,kW;G为循环水流量,t/h;Th为循环回水温度,℃;Tg为循环供水温度,℃.根据上式测算不同流量及温差下的余热量,结果见表1.4.2 采暖负荷计算(1)大成装备公司308厂房采暖能耗测算通过对原设计图纸进行核查:308厂房长192 m,宽48 m,高14 m,采暖设计热负荷2 200 kW,办公辅助设施采暖设计热负荷101.1 kW.308厂房及辅助设施设计热负荷为2 301.1 kW,采暖全年耗热量按式(2)进行计算:式中,为采暖全年耗热量,GJ;Qn为采暖设计热负荷,MW;np为采暖小时数,为4 320 h(采暖天数为180 d);tp为采暖室外平均温度(包头地区-6.2 ℃);为采暖室外计算温度(包头地区-19 ℃);tn为采暖室外设计温度(14 ℃).经计算:平均热负荷1 408.49 (kW)全年采暖耗热量2 301.1×4 320=2.19 (万GJ)(2)2#采暖站南线建筑物采暖能耗测算2#采暖站南线建筑物采暖面积39 335 m2,采暖设计热负荷2 615.2 kW,采暖平均热负荷1 601 kW,全年采暖热负荷2.49万GJ.通过对比和分析,大循环能够提供4 200 kW热能,308厂房及2#站南线采暖用能设计负荷为4 916.3 kW,缺口为716.3 kW,这部分主要出现在尖寒期和夜晚(夜晚不需要很高的温度,达到8 ℃左右是没有问题的),缺口的影响没有多大(也可以由2#换热站来补充这部分缺口热负荷).在循环水量与温差达到450 m3/h和3 ℃时,基本能够满足308厂房及其周围建筑物的采暖用能,且在非尖寒期仍有大量富裕.热泵系统在不同方式运行下的节能收益和回收期按下式进行计算:节能收益=改造前能源费用-改造后运行费用;回收期;集团大循环冷却水系统改造前能源费用消耗见表2,系统总投资为314.04万元.(1)热泵全负荷运行通过测算,热泵全负荷运行状态下系统运行费用为321.90万元,其节能收益为432.80-321.90=110.90万元,回收期为314.04/110.90=2.8 a(2)热泵机组按热能需用负荷运行通过测算,热泵机组按热能需用负荷运行状态下系统运行费用为129.97万元,节能收益为432.80-129.97=302.83万元,回收期为:大循环冷却水系统热泵技术可以收集4 200 kW热量作为308厂房、308附属建筑及周围建筑采暖基础能源,且有较大富裕,通过综合测算现运行能耗及改造后能耗,节能空间较大,回收期短.采用吸收式热泵回收包头市某集团循环水系统的余热,满足了冬季308厂房及其周围建筑物的采暖用能需求.在循环水量与温差达到450 m3/h和3 ℃时,能满足308厂房及其周围建筑物的采暖用能,且有大量富裕.整个系统改造后的节能收益达百万元以上,回收期短.工业余热与建筑供热的有效结合,实现了企业从开式循环冷却水系统向闭式系统的转变,既有效解决了热能严重浪费的问题,也为周围建筑物冬季采暖提供了保障,取得了较大的经济效益、环境效益和社会效益.【相关文献】[1] 刘福秋.热泵技术在25MW供热机组循环水余热利用中的研究[D].河北:华北电力大学,2014,6.[2] 戈志华,胡学伟,杨志平.能量梯级利用在热电联产中的应用[J].华北电力大学学报,2010,37(1):66-68.[3] 贺益英.关于火、核电厂循环冷却水的余热利用问题[J].中国水利水电科学研究院学报,2004,2(4):315-320.[4] Brenn J ,Soltic P,Bach parison of natural gas driven heat pumps and electrically driven heat pumps with conventional systems for building heating purposes[J].Energy and Buildings,2010,42(6):904-908.[5] Hepbasli A. A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future[J].Renewable and Sustainable EnergyReviews,2008,12(3): 593-661.[6] Hepbasli A,Kalinci Y. A review of heat pump water heating systems[J].Renewable and Sustainable Energy Reviews,2009,13(6-7):1211-1229.[7] Alberg P,Lund H. A renewable energy system in Frederikshavn using low-temperature geothermal energy for district heating[J].Applied Energy,2010,88(2):479-487.[8] 王枫.电厂循环水余热利用方案的研究[D].华北电力大学,2009,12.。