贝叶斯分类器经典讲解
- 格式:ppt
- 大小:2.43 MB
- 文档页数:38
朴素贝叶斯分类器详解及中⽂⽂本舆情分析(附代码实践)本⽂主要讲述朴素贝叶斯分类算法并实现中⽂数据集的舆情分析案例,希望这篇⽂章对⼤家有所帮助,提供些思路。
内容包括:1.朴素贝叶斯数学原理知识2.naive_bayes⽤法及简单案例3.中⽂⽂本数据集预处理4.朴素贝叶斯中⽂⽂本舆情分析本篇⽂章为基础性⽂章,希望对你有所帮助,如果⽂章中存在错误或不⾜之处,还请海涵。
同时,推荐⼤家阅读我以前的⽂章了解基础知识。
▌⼀. 朴素贝叶斯数学原理知识朴素贝叶斯(Naive Bayesian)是基于贝叶斯定理和特征条件独⽴假设的分类⽅法,它通过特征计算分类的概率,选取概率⼤的情况,是基于概率论的⼀种机器学习分类(监督学习)⽅法,被⼴泛应⽤于情感分类领域的分类器。
下⾯简单回顾下概率论知识:1.什么是基于概率论的⽅法?通过概率来衡量事件发⽣的可能性。
概率论和统计学是两个相反的概念,统计学是抽取部分样本统计来估算总体情况,⽽概率论是通过总体情况来估计单个事件或部分事情的发⽣情况。
概率论需要已知数据去预测未知的事件。
例如,我们看到天⽓乌云密布,电闪雷鸣并阵阵狂风,在这样的天⽓特征(F)下,我们推断下⾬的概率⽐不下⾬的概率⼤,也就是p(下⾬)>p(不下⾬),所以认为待会⼉会下⾬,这个从经验上看对概率进⾏判断。
⽽⽓象局通过多年长期积累的数据,经过计算,今天下⾬的概率p(下⾬)=85%、p(不下⾬)=15%,同样的 p(下⾬)>p(不下⾬),因此今天的天⽓预报肯定预报下⾬。
这是通过⼀定的⽅法计算概率从⽽对下⾬事件进⾏判断。
2.条件概率若Ω是全集,A、B是其中的事件(⼦集),P表⽰事件发⽣的概率,则条件概率表⽰某个事件发⽣时另⼀个事件发⽣的概率。
假设事件B发⽣后事件A发⽣的概率为:设P(A)>0,则有 P(AB) = P(B|A)P(A) = P(A|B)P(B)。
设A、B、C为事件,且P(AB)>0,则有 P(ABC) = P(A)P(B|A)P(C|AB)。
分类算法之朴素贝叶斯分类(NaiveBayesianClassification)1、什么是分类分类是⼀种重要的数据分析形式,它提取刻画重要数据类的模型。
这种模型称为分类器,预测分类的(离散的,⽆序的)类标号。
例如医⽣对病⼈进⾏诊断是⼀个典型的分类过程,医⽣不是⼀眼就看出病⼈得了哪种病,⽽是要根据病⼈的症状和化验单结果诊断病⼈得了哪种病,采⽤哪种治疗⽅案。
再⽐如,零售业中的销售经理需要分析客户数据,以便帮助他猜测具有某些特征的客户会购买某种商品。
2、如何进⾏分类数据分类是⼀个两阶段过程,包括学习阶段(构建分类模型)和分类阶段(使⽤模型预测给定数据的类标号)3、贝叶斯分类的基本概念贝叶斯分类法是统计学分类⽅法,它可以预测类⾪属关系的概率,如⼀个给定元组属于⼀个特定类的概率。
贝叶斯分类基于贝叶斯定理。
朴素贝叶斯分类法假定⼀个属性值在给定类上的概率独⽴于其他属性的值,这⼀假定称为类条件独⽴性。
4、贝叶斯定理贝叶斯定理特别好⽤,但并不复杂,它解决了⽣活中经常碰到的问题:已知某条件下的概率,如何得到两条件交换后的概率,也就是在已知P(A|B)的情况下如何求得P(B|A)的概率。
P(A|B)是后验概率(posterior probability),也就是我们常说的条件概率,即在条件B下,事件A 发⽣的概率。
相反P(A)或P(B)称为先验概率(prior probability·)。
贝叶斯定理之所以有⽤,是因为我们在⽣活中经常遇到这种情况:我们可以很容易直接得出P(A|B),P(B|A)则很难直接得出,但我们更关⼼P(B|A),贝叶斯定理就为我们打通从P(A|B)获得P(B|A)的道路。
下⾯不加证明地直接给出贝叶斯定理:5、朴素贝叶斯分类的思想和⼯作过程。
朴素贝叶斯分类的思想真的很朴素,它的思想基础是这样的:对于给出的待分类项,求解此项出现的条件下各个类别出现的概率,哪个最⼤,就认为此待分类属于哪个类别。
详解贝叶斯分类器1.贝叶斯决策论贝叶斯分类器是一类分类算法的总称,贝叶斯定理是这类算法的核心,因此统称为贝叶斯分类。
贝叶斯决策论通过相关概率已知的情况下利用误判损失来选择最优的类别分类。
“风险”(误判损失)= 原本为cj的样本误分类成ci产生的期望损失,期望损失可通过下式计算:为了最小化总体风险,只需在每个样本上选择能够使条件风险R(c|x)最小的类别标记。
最小化分类错误率的贝叶斯最优分类器为:即对每个样本x,选择能使后验概率P(c|x)最大的类别标记。
利用贝叶斯判定准则来最小化决策风险,首先要获得后验概率P(c|x),机器学习要实现的是基于有限的训练样本集尽可能准确的估计出后验概率P(c|x)。
主要有两种模型:一是“判别式模型”:通过直接建模P(c|x)来预测,其中决策树,BP神经网络,支持向量机都属于判别式模型。
另外一种是“生成式模型”:通过对联合概率模型P(x,c)进行建模,然后再获得P(c|x)。
对于生成模型来说:基于贝叶斯定理,可写为下式(1)通俗的理解:P(c)是类“先验”概率,P(x|c)是样本x相对于类标记c的类条件概率,或称似然。
p(x)是用于归一化的“证据”因子,对于给定样本x,证据因子p(x)与类标记无关。
于是,估计p(c|x)的问题变为基于训练数据来估计p(c)和p(x|c),对于条件概率p(x|c)来说,它涉及x所有属性的联合概率。
2.极大似然估计假设p(x|c))具有确定的形式并且被参数向量唯一确定,则我们的任务是利用训练集估计参数θc,将P(x|c)记为P(x|θc)。
令Dc表示训练集D第c类样本的集合,假设样本独立同分布,则参数θc对于数据集Dc的似然是对进行极大似然估计,就是去寻找能最大化P(Dc|θc)的参数值。
直观上看,极大似然估计是试图在θc所有可能的取值中,找到一个能使数据出现的“可能性”最大的值。
上式的连乘操作易造成下溢,通常使用对数似然:此时参数θc的极大似然估计为在连续属性情形下,假设概率密度函数,则参数和的极大似然估计为:也就是说,通过极大似然法得到的正态分布均值就是样本均值,方差就是的均值,在离散情况下,也可通过类似的方式估计类条件概率。
贝叶斯的原理和应用1. 贝叶斯原理介绍贝叶斯原理是基于概率论的一种推理方法,它被广泛地应用于统计学、人工智能和机器学习等领域。
其核心思想是通过已有的先验知识和新的观察数据来更新我们对于某个事件的信念。
2. 贝叶斯公式贝叶斯公式是贝叶斯原理的数学表达方式,它可以用来计算在观察到一些新的证据后,更新对于某个事件的概率。
贝叶斯公式的表达如下:P(A|B) = (P(B|A) * P(A)) / P(B)其中,P(A|B)表示在观察到事件B之后,事件A发生的概率;P(B|A)表示在事件A发生的前提下,事件B发生的概率;P(A)和P(B)分别是事件A和事件B的先验概率。
3. 贝叶斯分类器贝叶斯分类器是基于贝叶斯原理的一种分类算法。
它利用已有的训练数据来估计不同特征值条件下的类别概率,然后根据贝叶斯公式计算得到新样本属于不同类别的概率,从而进行分类。
贝叶斯分类器的主要步骤包括:•学习阶段:通过已有的训练数据计算得到类别的先验概率和特征条件概率。
•预测阶段:对于给定的新样本,计算得到其属于不同类别的概率,并选择概率最大的类别作为分类结果。
贝叶斯分类器的优点在于对于数据集的要求较低,并且能够处理高维特征数据。
但是,贝叶斯分类器的缺点是假设特征之间相互独立,这在实际应用中可能不符合实际情况。
4. 贝叶斯网络贝叶斯网络是一种用有向无环图来表示变量之间条件依赖关系的概率图模型。
它可以用来描述变量之间的因果关系,并通过贝叶斯推理来进行推断。
贝叶斯网络的节点表示随机变量,边表示变量之间的条件概率关系。
通过学习已有的数据,可以构建贝叶斯网络模型,然后利用贝叶斯推理来计算给定一些观察值的情况下,其他变量的概率分布。
贝叶斯网络在人工智能、决策分析和医学诊断等领域有广泛的应用。
它可以通过概率推断来进行决策支持,帮助人们进行风险评估和决策分析。
5. 贝叶斯优化贝叶斯优化是一种用来进行参数优化的方法。
在参数优化问题中,我们需要找到使得某个性能指标最好的参数组合。
常用的分类模型一、引言分类模型是机器学习中常用的一种模型,它用于将数据集中的样本分成不同的类别。
分类模型在各个领域有着广泛的应用,如垃圾邮件过滤、情感分析、疾病诊断等。
在本文中,我们将介绍一些常用的分类模型,包括朴素贝叶斯分类器、决策树、支持向量机和神经网络。
二、朴素贝叶斯分类器朴素贝叶斯分类器是一种基于贝叶斯定理的分类模型。
它假设所有的特征都是相互独立的,这在实际应用中并不一定成立,但朴素贝叶斯分类器仍然是一种简单而有效的分类算法。
2.1 贝叶斯定理贝叶斯定理是概率论中的一条基本公式,它描述了在已知一些先验概率的情况下,如何根据新的证据来更新概率的计算方法。
贝叶斯定理的公式如下:P(A|B) = P(B|A) * P(A) / P(B)其中,P(A|B)表示在事件B已经发生的条件下事件A发生的概率,P(B|A)表示在事件A已经发生的条件下事件B发生的概率,P(A)和P(B)分别表示事件A和事件B独立发生的概率。
2.2 朴素贝叶斯分类器的工作原理朴素贝叶斯分类器假设所有特征之间相互独立,基于贝叶斯定理计算出后验概率最大的类别作为预测结果。
具体地,朴素贝叶斯分类器的工作原理如下:1.计算每个类别的先验概率,即在样本集中每个类别的概率。
2.对于给定的输入样本,计算每个类别的后验概率,即在样本集中每个类别下该样本出现的概率。
3.选择后验概率最大的类别作为预测结果。
2.3 朴素贝叶斯分类器的优缺点朴素贝叶斯分类器有以下优点:•算法简单,易于实现。
•在处理大规模数据集时速度较快。
•对缺失数据不敏感。
但朴素贝叶斯分类器也有一些缺点:•假设特征之间相互独立,这在实际应用中并不一定成立。
•对输入数据的分布假设较强。
三、决策树决策树是一种基于树结构的分类模型,它根据特征的取值以及样本的类别信息构建一个树状模型,并利用该模型进行分类预测。
3.1 决策树的构建决策树的构建过程可以分为三个步骤:1.特征选择:选择一个最佳的特征作为当前节点的划分特征。
贝叶斯分类1、 定义: 依据贝叶斯准则(两组间最大分离原则)建立的判别函数集进行的图像 分类。
贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝 叶斯分类。
2、 贝叶斯定理:p(B|A) = P (A| B )P (B )P(A)说明:p(A|B)表示事件B 发生的前提下,事件A 发生的概率;p(A)表示事件A 发生的概率;p(B)事件B 发生的概率。
则可以求得事件 A 发生的前提下,事件B 发生的概率。
贝叶斯定理给出了最小化误差的最优解决方法,可用于分类和预测。
将前面贝叶斯公式变化如下:P(x) P(c)xP(x) P(x)上述公式中,C 代表类别,X 代表特征,很明显,我们做出预测肯定是利用当 前的特征,来判断输出的类别。
当然这里也可以很明显的看到贝叶斯公式先验与后 验概率之间的转换,很明显,P(c|x)在我们的定义里面是后验概率,也是我们想要 得到的东西。
而P(x)、P(c)以及P(x|c)都是先验概率,它们分别 X 特征出现的概 率,C 类出现的概率,C 类中,出现X 的概率。
而第一项对于多类分类来说,都是一 样,都是当前观察到的特征,所以此项可以略去。
那最终的结果就是计算P(x|c)*P(c) 这一项,P (c )是可以通过观察来解决的。
重点也就全部落在了 P(x|c)上,上面对 于此项的解释是在C 类中,X 特征出现的概率,其实简单来讲,就是 X 的概率密度。
3、特点1)o 贝叶斯分类并不是把一个对象绝对地指派给某一类, 而是通过计算得出属于某一类的概率。
具有最大概率的类便是该对象所属的类。
2) o 一般情况下在贝叶斯分 类中所有的属性都潜在的起作用,即并不是一个或几个属性决定分类,而是所有的 属性都参与分类。
3)贝叶斯分类的属性可以是离散的、连续的、也可以是混合的。
4、分类:(1)朴素贝叶斯算法。
⑵TAN 算法1)朴素贝叶斯算法成立的前提是各属性之间互相独立。
贝叶斯分类器(3)朴素贝叶斯分类器根据,我们对贝叶斯分类器所要解决的问题、问题的求解⽅法做了概述,将贝叶斯分类问题转化成了求解P(x|c)的问题,在上⼀篇中,我们分析了第⼀个求解⽅法:极⼤似然估计。
在本篇中,我们来介绍⼀个更加简单的P(x|c)求解⽅法,并在此基础上讲讲常⽤的⼀个贝叶斯分类器的实现:朴素贝叶斯分类器(Naive Bayes classifier)。
1 朴素贝叶斯分类原理1.1 分类问题回顾我们的⽬标是通过对样本的学习来得到⼀个分类器,以此来对未知数据进⾏分类,即求后验概率P(c|x)。
在中,我们描述了贝叶斯分类器是以⽣成式模型的思路来处理这个问题的,如下⾯的公式所⽰,贝叶斯分类器通过求得联合概率P(x,c)来计算P(c|x),并将联合概率P(x,c)转化成了计算类先验概率P(c)、类条件概率P(x|c)、证据因⼦P(x)。
h∗(x)=\argmax c∈Y P(c|x)=\argmax c∈Y P(x,c)P(x)=\argmaxc∈YP(c)∗P(x|c)P(x)其中的难点是类条件概率P(x|c)的计算,因为样本x本⾝就是其所有属性的联合概率,各种属性随意组合,变幻莫测,要计算其中某⼀种组合出现的概率真的是太难了,⽽朴素贝叶斯的出现就是为了解决这个问题的。
要想计算联合概率P(a,b),我们肯定是希望事件a与事件b是相互独⽴的,可以简单粗暴的P(a,b)=P(a)P(b),多想对着流星许下⼼愿:让世界上复杂的联合概率都变成简单的连乘!1.2 朴素贝叶斯朴素贝叶斯实现了我们的梦想!朴素贝叶斯中的朴素就是对多属性的联合分布做了⼀个⼤胆的假设,即x的n个维度之间相互独⽴:P([x1,x2,...,x n]|c)=P(x1|c)P(x2|c)...P(x1|c)朴素贝叶斯通过这⼀假设⼤⼤简化了P(x|c)的计算,当然,使⽤这个假设是有代价的,⼀般情况下,⼤量样本的特征之间独⽴这个条件是弱成⽴的,毕竟哲学上说联系是普遍的,所以我们使⽤朴素贝叶斯会降低⼀些准确性;如果实际问题中的事件的各个属性⾮常不独⽴的话,甚⾄是⽆法使⽤朴素贝叶斯的。
贝叶斯分类器与决策树分类器的比较一原理:1.1贝叶斯分类器的原理:贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类,是通过某些特征对不同的内容进行分类。
特征的定义任何可以用来判断内容中具备或缺失的东西。
如要对文档进行分类时,所谓的内容就是文档,特征就是文档中的单词(当然你也可以选择其他合理的东西)。
当向贝叶斯分类器输入一个要进行分类的样本后,分类器会先对该样本进行分析,确定其特征,然后将根据这些特征时,计算样本属于各分类的概率。
条件概率:定义:设A, B是两个事件,且P(A)>0 称P(B∣A)=P(AB)/P(A)为在条件A 下发生的条件事件B发生的条件概率。
乘法公式:设P(A)>0,则有P(AB)=P(B∣A)P(A)全概率公式和贝叶斯公式:定义设S为试验E的样本空间,B1, B2, …Bn为E的一组事件,若BiBj=Ф, i≠j, i, j=1, 2, …,n; B1∪B2∪…∪Bn=S则称B1, B2, …, Bn为样本空间的一个划分。
定理设试验E的样本空间为,A为E的事件,B1, B2, …,Bn为的一个划分,且P(Bi)>0 (i=1, 2, …n),则P(A)=P(A∣B1)P(B1)+P(A∣B2)+ …+P(A∣Bn)P(Bn)称为全概率公式。
定理设试验E的样本空间为S,A为E的事件,B1, B2, …,Bn为的一个划分,则P(Bi∣A)=P(A∣Bi)P(Bi)/∑P(B|Aj)P(Aj)=P(B|Ai)P(Ai)/P(B)称为贝叶斯公式。
说明:i,j均为下标,求和均是1到n。
1.2 决策树分类器的原理:树:树是一种数据结构,它是由n(n>=1)个有限结点组成一个具有层次关系的集合。
把它叫做“树”是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。