数值分析第六章学习小结
- 格式:docx
- 大小:102.50 KB
- 文档页数:3
第1篇在数值分析这门课程的学习过程中,我深刻体会到了理论知识与实践操作相结合的重要性。
通过一系列的实验,我对数值分析的基本概念、方法和应用有了更加深入的理解。
以下是我对数值分析实验的心得体会。
一、实验目的与意义1. 巩固数值分析理论知识:通过实验,将课堂上学到的理论知识应用到实际问题中,加深对数值分析概念和方法的理解。
2. 培养实际操作能力:实验过程中,我学会了使用Matlab等软件进行数值计算,提高了编程能力。
3. 增强解决实际问题的能力:实验项目涉及多个领域,通过解决实际问题,提高了我的问题分析和解决能力。
4. 培养团队协作精神:实验过程中,我与同学们分工合作,共同完成任务,培养了团队协作精神。
二、实验内容及方法1. 实验一:拉格朗日插值法与牛顿插值法(1)实验目的:掌握拉格朗日插值法和牛顿插值法的原理,能够运用这两种方法进行函数逼近。
(2)实验方法:首先,我们选择一组数据点,然后利用拉格朗日插值法和牛顿插值法构造插值多项式。
最后,我们将插值多项式与原始函数进行比较,分析误差。
2. 实验二:方程求根(1)实验目的:掌握二分法、Newton法、不动点迭代法、弦截法等方程求根方法,能够运用这些方法求解非线性方程的根。
(2)实验方法:首先,我们选择一个非线性方程,然后运用二分法、Newton法、不动点迭代法、弦截法等方法求解方程的根。
最后,比较不同方法的收敛速度和精度。
3. 实验三:线性方程组求解(1)实验目的:掌握高斯消元法、矩阵分解法等线性方程组求解方法,能够运用这些方法求解线性方程组。
(2)实验方法:首先,我们构造一个线性方程组,然后运用高斯消元法、矩阵分解法等方法求解方程组。
最后,比较不同方法的计算量和精度。
4. 实验四:多元统计分析(1)实验目的:掌握多元统计分析的基本方法,能够运用这些方法对数据进行分析。
(2)实验方法:首先,我们收集一组多元数据,然后运用主成分分析、因子分析等方法对数据进行降维。
数值分析学习总结感想在数值分析学习的过程中,我深刻体会到了这门学科的重要性和广泛应用的范围。
通过学习数值分析,我不仅加深了对数学理论的理解,还掌握了一些重要的数值计算方法和算法。
在此过程中,我收获了很多,也产生了许多感想。
首先,数值分析教给我了科学问题解决的方法。
在数值计算中,我们通常无法通过简单的代数运算来求解问题,而是需要借助计算机和数值算法来逼近解。
这种方法可以应用于很多实际问题,例如求解线性方程组、积分、微分方程等。
通过数值分析课程的学习,我掌握了很多常见的数值计算方法,例如高斯消元法、插值方法、数值积分等。
这些方法在实际问题中的应用非常广泛,能够帮助我们解决许多实际问题,提高计算效率和精度。
其次,数值分析也教会了我如何分析和估计误差。
在数值计算中,误差是无法避免的,而且可能会在计算过程中不断累积。
因此,我们需要了解误差的来源,能够进行误差估计和控制。
通过学习数值分析,我学会了如何使用泰勒展开式、理解截断误差和舍入误差等概念,同时也学会了如何使用残差计算和误差估计方法。
这对于判断数值结果的可靠性和计算效果的好坏非常重要,能够帮助我们找到优化方法和改进方案。
另外,数值分析还教会了我如何进行数值模拟和数据处理。
在实际工程和科学研究中,常常需要通过数值模拟来研究分析问题。
通过数值分析的学习,我学会了如何建立数学模型、选择合适的数值方法和算法来模拟求解问题,并能够对模拟结果进行合理的处理和分析。
这对于科学研究和工程设计都非常有价值,能够提高研究效率和解决复杂问题的能力。
最后,数值分析还培养了我一种严谨的科学态度和问题解决的能力。
在数值计算中,一个细微的误差可能会导致完全不同的结果,因此需要我们对问题进行仔细的分析,并保持谨慎的态度。
通过编程实现数值算法,我学会了如何调试代码和检查问题,发现解决bug的方法。
这培养了我的逻辑思维和问题解决能力,也增强了我对科学研究和工程实践的兴趣和热情。
综上所述,通过数值分析的学习,我不仅掌握了一些重要的数值计算方法和算法,还学会了科学问题解决的方法和误差估计的技巧。
第一章绪论1.数值运算的误差估计2.绝对误差、相对误差与有效数字3.避免误差的相关问题病态问题与条件数算法的数值稳定性数值运算中的若干原则第二章非线性方程求根1.不动点迭代格式不动点迭代格式的构造、计算全局收敛性判断局部收敛性与收敛阶判断(两个方法)2.Newton迭代格式、计算及几何意义局部收敛性及收敛阶(单、重根)非局部收敛性判断(两个方法)3.Steffensen迭代格式及计算(具有)二阶的局部收敛性4.Newton迭代的变形求重根的迭代法(三种方法)避免导数计算的弦割法(两种方法)Newton下山法*5.二分法计算预先估计对分次数第三章解线性方程组的直接法1.矩阵三角分解法及其方程组求解 直接三角分解法及其分解的条件平方根法(Cholesky 分解)追赶法列主元三角分解法* 2.Gauss 消去法Gauss 主元素消去法(列主元素消去法、全主元素消去法) Gauss 顺序消去法3.方程组的性态与误差分析 向量和矩阵的范数(基础知识) 方程组解的相对误差估计 矩阵的条件数 病态方程组的求解*第四章解线性代数方程组的迭代法1.迭代法的基本理论简单迭代法格式的构造、收敛性判断以及方程组的求解Gauss—Seidel迭代法格式的构造、收敛性判断以及方程组的求解2.三种迭代法的构造、收敛性判断以及方程组的求解Jacobi迭代法基于Jacobi迭代法的Gauss—Seidel迭代法逐次超松弛迭代法①掌握简单迭代收敛性判断的方法。
设B为迭代矩阵,如果||B||<1,则用||B||判断迭代的收敛性比用ρ(B)<1更为方便,但此结论仅为充分条件。
如果||B||≥1,判断迭代的收敛性需考察ρ(B)<1是否成立。
如果需证明迭代发散,则需证明ρ(B)≥1。
②简单迭代法的收敛快慢,依赖于迭代矩阵谱半径的大小。
当ρ(B)<1,迭代次数k≥(mln10)/(-lnρ(B)),则迭代矩阵谱半径越小,收敛越快。
数值分析总结数值分析是一门应用数学的学科,它的目标是使用数值方法来解决数学问题,尤其是那些难以使用解析方法求解的问题。
通过使用计算机来计算近似解,数值分析提供了一种实用而有效的解决方案。
在本文中,我将对我在学习数值分析过程中的一些主要收获进行总结。
一、数值方法的重要性数值方法不仅在科学计算中起着重要作用,而且在工程和实际应用领域也有广泛的应用。
无论是模拟天气预报、设计飞机的机翼,还是分析金融市场的波动,数值分析都可以提供快速、准确的结果。
因此,掌握数值方法成为了现代科学与工程领域必备的技能之一。
二、数值计算的误差与稳定性在数值计算中,我们经常会面对误差的问题。
舍入误差、截断误差和舍入误差都是我们需要关注的。
舍入误差是由于计算机在进行浮点数计算时的有限精度而引入的,而截断误差则是由于将无限精度的数学问题转化为有限精度计算引起的。
为了减小误差,我们可以使用舍入规则,并尽可能减小截断误差。
稳定性是另一个需要考虑的重要因素。
在一些计算中,输入数据的微小变化可能会导致输出结果的巨大变化。
这种情况下,我们说该算法是不稳定的。
为了确保计算的稳定性,我们需要选择合适的算法和数据结构,并且要进行合理的数值分析。
三、插值和拟合插值和拟合是数值分析的重要应用之一。
在实际问题中,我们往往只能够获得有限个数据点,但是我们需要获得一条曲线或函数来描述这些数据。
插值方法可以通过连接这些数据点来获得平滑的曲线,而拟合方法则通过选择一个合适的函数来逼近数据点。
在实际应用中,我们需要根据具体问题选择合适的插值和拟合方法,并进行适当的调整和优化。
四、求解非线性方程求解非线性方程是数值分析中的一个重要问题。
在实际应用中,很多问题都可以归纳为求解非线性方程。
例如,求解光学系统中的折射问题、解微分方程等。
数值分析提供了多种求解非线性方程的方法,如牛顿法、二分法、割线法等。
这些方法有着各自的特点和适用范围,我们需要根据问题的性质选择合适的方法。
数值分析学习总结感想第一篇:数值分析学习总结感想数值分析学习感想一个学期的数值分析,在老师的带领下,让我对这门课程有了深刻的理解和感悟。
这门课程是一个十分重视算法和原理的学科,同时它能够将人的思维引入数学思考的模式,在处理问题的时候,可以合理适当的提出方案和假设。
他的内容贴近实际,像数值分析,数值微分,求解线性方程组的解等,使数学理论更加有实际意义。
数值分析在给我们的知识上,有很大一部分都对我有很大的帮助,让我的生活和学习有了更加方便以及科学的方法。
像第一章就讲的误差,在现实生活中,也许没有太过于注意误差,所以对误差的看法有些轻视,但在学习了这一章之后,在老师的讲解下,了解到这些误差看似小,实则影响很大,更如后面所讲的余项,那些差别总是让人很容易就出错,也许在别的地方没有什么,但是在数学领域,一个小的误差,就很容易有不好的后果,而学习了数值分析的内容,很容易就可以将误差锁定在一个很小的范围内,在这一范围内再逼近,得出的近似值要准确的多,而在最开始的计算中,误差越小,对后面的影响越小,这无疑是好的。
数值分析不只在知识上传授了我很多,在思想上也对我有很大的影响,他给了我很多数学思想,很多思考的角度,在看待问题的方面上,多方位的去思考,并从别的例子上举一反三。
像其中所讲的插值法,在先学习了拉格朗日插值法后,对其理解透彻,了解了其中的原理和思想,再学习之后的牛顿插值以及三次样条插值等等,都很容易的融会贯通,很容易的就理解了其中所想,他们的中心思想并没有多大的变化,但是使用的方式却是不同的,这不仅可以学习到其中心内容,还可以去学习他们的思考方式,每个不同的思考方式带来的都是不同的算法。
而在看待问题上,不同的思考方式总是可以快速的全方位的去看透彻问题,从而知道如何去解决。
在不断的学习中,知识在不断的获取,能力在不断的提升,同时在老师的不懈讲解下,我逐渐的发现数值分析所涵盖的知识面特别的广泛,而我所需要学习的地方也更加的多,自己的不足也在不断的体现,我知道这只是我刚刚接触到了数学的那一角,在以后我还会接触到更多,而这求知的欲望也在不停的驱赶我,学习的越多,对今后的生活才会有更大的帮助。
数学分析I 第六章总结一、定义小结定义一:f 为凸函数,如果 12,,(0,1),..f I x x I s t λ∀∈∈定义在上, 1212((1))()(1)f x x f x x λλλλ+-≤+-f 为凹函数,如果 12,,(0,1),..f I x x I s t λ∀∈∈定义在上, 1212((1))()(1)f x x f x x λλλλ+-≥+-定义二:设函数f 在0x 处有穿过曲线的切线,若切点两侧的凹向性相反,则称点0x 为函数曲线的拐点二、定理小结引理:[]Fermat 定理000'(),'()=0x f f x f x 若是函数的极值点,存在导数则一定有定理一:[Rolle 中值定理],],[()()],[,..'()0f a b a b f a f b a b s t f ξξ=∃∈=在[]连续,在可导,且,那么 定理二:[Lagrange 中值定理]()(),],[],[,..'()f b f a f a b a b a b s t f b aξξ-∃∈=-在[]连续,在可导,那么 [推论:导数极限定理]0o 00()()lim ()x x f U x U x f x →在连续,在可导,且极限存在 000'()lim '()x x f x f x f x →=则在可导,且 定理三: '()0(0)f I f Iff f x ≥≤在可导,则递增(减)定理四:[]Darboux 定理++[,]'()'(),(,),'()f a b f a f b k a b f k ξξ≠∈=若在可导,且介于二者之间,则存在定理五:[]Cauchy 中值定理,,],[0()();f g a b a b g a g b ≠在[]连续,在可导,导数不同时为且 那么'()()()],[,..'()()()f f b f a a b s tg g b g a ξξξ-∃∈=-定理六:[']L Hospital 法则0000001.0(1),0, (2),'()0'()(3)lim'()()'()lim lim ()'()x x x x x x f g x x f g x g x f x A g x f x f x A g x g x →→→→→≠===型不定式极限在某个空心邻域可导,则00000+++2.(1), (2),'()0'()(3)lim'()()'()lim lim ()'()x x x x x x g x x f g x g x f x A g x f x f x A g x g x →→→∞∞→∞→≠===型不定式极限在某个空心右邻域可导,则定理七:[Taylor 公式]00 ()()(())n n f x n f x T x o x x =+-在存在直至阶导数,则有定理八:[]Taylor 定理[,] ],[1f a b n a b n +在存在直至阶导函数,在存在阶导函数(1)100(),[,],],[,()()()(1)!n n n f x x a b a b f x T x x x n ξξ++∀∈∃∈=+-+则有 定理九:[极值充分条件]1.函数f 在点0x 连续,邻域内可导。
姓名班级学号第六章数值积分一、学习体会这一章主要解决的问题是定积分的数值方法——数值积分法,对于解决一些很难求解原函数或者根本就没有解析表达式的定积分,非常有用。
它直接利用求积公式来求出所给定积分的近似值,使其达到一定的求解精度。
本章第一节首先定义了数值求积公式及其代数精度,之后介绍插值型的求积公式进而引出按照节点等距求解的Newton-Cotes求积公式。
对于该公式对应不同的N那么就产生了不同的求积公式,求积公式的数值稳定性无法得到保证,而且仅适用于少节点的情形,这样就产生了另一类求积公式,即复化求积法,它将区间划分为若干子区间,在每个子区间上运用Newton-Cotes求积公式,进而使得这种方法达到了很高的精确度。
但是计算节点过多又会产生计算量大,所以为了适用最少的节点达到预先的精度,这样就产生了区间主次划分的方法,这种方法的基本思想是让步长可变。
在N个节点的求积公式中,Gauss型求积公式具有最高的求积精度,由于正交多项式随区间和权函数的不同而不同,因而就可以构造出不同类型的求积公式。
我们在进行定积分求解时,要根据求解的条件和结果不同,选择不同的求积方法,进行以得出比较准确的求解结果,这对以后工程上的求解问题有很大帮助。
二、知识梳理)]三、思考题1、推导中点求积公式3''()()()()()()224baa b b a f x dx b a f f a b ξξ+-=-+<<⎰证明:构造一次函数P (x ),使'''',()(),()02222a b a b a b a b P f P f P x ++++⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭则,易求得'()()()()222a b a b a b P x f x f +++=-+ 且'()()()()222bb aa ab a b a b P x dx f x f dx +++⎡⎤=-+⎢⎥⎣⎦⎰⎰0()()()22ba ab a bf dx b a f ++=+=-⎰,令()()b a P x dx I f =⎰现分析截断误差:令'()()()()()()()222a b a b a b r x f x P x f x f x f +++=-=--+ 数值积分由'''()()()2a b r x f x f +=-易知2a bx +=为()r x 的二重零点, 所以可令2()()()2a b r x x x ϕ+=-, 构造辅助函数()()()()()2a bK t f t P t x t ϕ+=---,则易知: ()02a b K x K +⎛⎫== ⎪⎝⎭其中2a b t +=为二重根()K t ∴有三个零点 由罗尔定理,存在''''''()(,)()0()2()0()2f a b K f K x K x ηηηη∈=-=∴=使即从而可知''2()()()()()22f a b r x f x P x x η+=-=- 所以截断误差:[]''2()()()()()()()()22b bb baaa af a b R f f x dx I f f x P x dx r x dx x dx η+=-=-==-⎰⎰⎰⎰2()2a b x +-在(a,b)区间上不变号,且连续可积,由第二积分中值定理 ''''322''()()()()()()()(,)222224b b aa f ab f a b b a R f x dx x dx f a b ηξξξ++-=-=-=∈⎰⎰综上所述3''()()()()()()()224baa b b a f x dx I f R f b a f f ξ+-=+=-+⎰证毕2、构造Gauss 型求积公式的解法有哪些? 第一种:定义法(1)利用 5.5.1小节的知识求出在区间上的带权函数()x ρ的正交多项式()()()()012,,,...,n g x g x g x g x ;(2)令方程()0n g x =,解出求积节点12,,...,n x x x ; (3)利用定义求解求积系数12,,...,n A A A ; (4)得出求积公式第二种:利用求积公式的性质()1nbi ai A x dx ρ==∑⎰和其代数精度有2N-1次(1)令()()()()221012211,,,...,n n f x f x x f x x f x x --====,(2)利用求积公式的性质()1nbi ai A x dx ρ==∑⎰和其代数精度有2N-1次,构造2n个方程;(3)求解方程中的未知数i i A 和x ; (4)得出求积公式 四、测试题对积分dx x x f ⎰-12)1)((,求构造两点Gauss 求积公式,要求:(1)在[0,1]上构造带权21)(x x -=ρ的二次正交多项式; (2)用所构造的正交多项式导出求积公式。
第六章数值积分小结第六章 数值积分 --------学习小结姓名 班级 学号一、 本章学习体会通过本章的学习,掌握了数值积分的基本思想和原理,深刻认识了数值积分法的意义,了解了代数精度的概念,以及数值积分精度和步长的关系,学习了Newton-Cotes 求积公式,复化求积法,Romberg 积分法,和Gauss 型求积公式。
了解了他们各自的优点和缺点及适用范围。
二、 本章知识梳理插值型求积公式()0()()nbn k k ak f x dx f x λ=≈∑⎰其中()()(0,1,...,)bn kk al x dx k n λ==⎰(1)0()[()](1)!n nbn j aj f R x x dxn ξ+==-+∏⎰其中(,)a b ξ∈定理6.1 n+1个节点的插值型求积公式至少具有n 次代数精度。
推论 对于n+1个节点的插值型求积公式的求积系数,必满足()0nn kk b aλ==-∑定理6.2 n+1个节点的求积公式如果具有n 次或者大于n 次的代数精度,则它是插值型求积公式。
6.3 Newton-Cotes 求积公式如果节点等距,且0,,(0,1,...,),n k b ax a x b x a kh k n h n -===+==,则相应的插值型求积公式称为Newton-Cotes 求积公式,相应的求积系数称为Newton-Cotes 求积系数。
令x a th =+()()()(0,1,...,)n n k k b a c k n λ∴=-=()00(1)[()]!()!n kn n n kj j kct j dt k n k n -=≠-=--∏⎰()0()()nbn k ak b af x dx f a kn λ=-≈+∑⎰2(1)00()[()](1)!n nn n n j h R f t j dt n ξ++==-+∏⎰(1)(2)(3)(4)11:,22141:,,6661331:,,,88887162167:,,,,9045154590k k k k c c c c定理6.3 当n 为偶数时,n+1个节点的Newton-Cotes 求积公式的代数精度至少是n+1。
2024年数值分析学习心得体会____年数值分析学习心得体会随着技术的快速发展和应用的广泛推广,数值分析作为一门重要的学科,不断地在各个领域中展现出它的价值和作用。
在____年的这段时间里,我有幸学习了数值分析这门课程,并且在学习的过程中积累了一些心得体会。
在此将我的学习心得体会整理总结,与大家分享。
首先,数值分析是一门综合性的学科。
在学习数值分析的过程中,我逐渐认识到数值分析实际上是一个综合性的学科,它涉及到数学、计算机科学、物理学等多个领域的知识。
在数值分析的学习过程中,我们需要了解和掌握各种数值计算方法、算法和技术,同时还需要对计算机的运行原理和计算机编程有所了解。
只有全面掌握了这些知识,才能更好地应用数值分析方法来解决实际问题。
其次,数值分析需要具备良好的数学基础。
数值分析是建立在数学基础之上的一门学科,对于数学的掌握程度直接影响着数值分析的学习效果和应用能力。
在学习数值分析的过程中,我们需要有扎实的数学基础,特别是在微积分、线性代数、概率论等方面。
只有通过对数学知识的深入学习和理解,才能更好地把握数值分析方法的原理和应用技巧。
再次,数值分析需要具备良好的编程能力。
在数值分析中,计算机编程是必不可少的工具。
通过编程,我们可以将数值分析的方法和算法实现为具体的程序,使得计算机能够高效地完成复杂的计算任务。
因此,作为数值分析的学习者,我们需要具备良好的编程能力。
在学习数值分析的过程中,我通过学习和实践,逐渐掌握了Python等编程语言,学会了使用计算机编程解决数值分析中的各种问题。
此外,数值分析需要具备较强的分析和抽象能力。
数值分析是一个需要深入思考和抽象问题的学科。
在解决实际问题时,我们需要从具体问题中抽象出数学模型,并通过数值分析的方法来求解。
在学习数值分析的过程中,我逐渐锻炼了自己的分析和抽象能力,学会了从问题中抽象出数学模型,并通过数值计算的方法来解决问题。
最后,数值分析需要不断实践和总结。
第六章学习小结
姓名:张亚杰班级:机械1505班学号:S2*******
一、本章学习体会
1、在工程实际中经常会遇到一些原函数难于表出,或者原
函数的表达式过于复杂,或者被积函数以离散的数值给出,这时本科时学的牛顿——莱布尼茨公式就无法计算了,本
章是基于上述情况给出一个近似求解定积分的计算方法。
P x近似代替被积
2、数值积分的基本思想是:用简单函数()
函数,然后建立多项式的积分公式,这样就将积分求值问
题转换为了被积函数数值的计算,避开了牛顿——莱布尼
茨公式需要寻求原函数的困难。
3、数值积分是数值逼近的
一个重要内容,也是插值函数的一个直接应用。
4、本章重
点是牛顿—科特斯求积公式和高斯型求积公式。
二、知识构图:
n x b <
<≤为任何次数不高于m 的多项式时都成为等式(6.1)具有m 次代数精度,,m x 时都成为等式f(x)为1m x +利用前面的拉格朗日插值公式知识,出。
两个定理: 1、n+1节点的求积公式如果至少具有1,2,,n ,高斯点为切比雪夫多项式零点。
三、 思考题
1、牛顿—科特斯求积和高斯求积节点分布有何不同?对同样数目的节点,两种求法哪种更精确?为什么?
答:牛顿—科特斯求积时,将积分区间
n 等分,求积节点是1n +个等距节点,高
斯求积公式的节点称为高斯点,一般是不等距点。
对于同样数目的节点,高斯型求积公式是代数精度最高的求积公式,更精确些。
2、什么是高斯型求积公式?它的求积节点是如何确定的?它的代数精度是多少?为何称它是具有最高代数精度的求积公式?答:对于
n 个求积节点,若求积公式具
有21n -次代数精度,则称其节点为高斯点,相应的求积公式为高斯型求积公式。
插值型求积公式的节点011n a x x x b -≤≤≤⋅⋅⋅<≤是高斯点的充分必要条件是这些节点为零点的多项式I T <
与任何次数不超过n 的多项式()p x 带权()x ρ正交,即()()()0b n a
p x x x dx ωρ=⎰
高斯型求积公式的代数精度是21n -,n 个求积节点的求积公式的代数精度最高为21
n -次。
四、测验题
如果''()0f x >,证明用梯形公式计算积分()b
a
I
f x =⎰所得的结果比准确值I 大,并说明几何
意义。
解:
采用梯形公式计算积分时其余项为:
''3()
(),[,]12
T f R b a a b ηη=--∈
又因为''
()0f x >且b a > 所以0T R < 又因为T R I T =-
所以I T < 即计算值比准确值大。
其几何意义为,''
()0f x >为下凸函数,梯形面积大于曲边梯形面积。