系统发育进化树构建
- 格式:docx
- 大小:16.82 KB
- 文档页数:2
系统发育树构建教程(PHYLIP)PHYLIP网址:/phylip.html(一)序列的前期准备1.用ENTREZ或SRS搜索同源DNA/蛋白质序列(same sequence in different organisms) 2.用CLUSTALX进行多条序列比对,在output format option选定PHY格式,构建进化树需要这个phy文件。
Figure 4.1 用clustalx进行多条序列比对3.解压缩phylip-3.68.exe,得到三个文件夹,doc文件夹里是关于所有PHYLIP子程序的使用说明,exe文件夹里是直接可以使用的各个子程序,src文件夹里是所有程序的源文件。
4.打开exe文件夹,双击SEQBOOTt子程序(SEQBOOT是一个利用bootstrap方法产生伪样本的程序),输入刚刚生成的phy文件的路径,点击enter。
5.所有PHYLIP程序默认的输入文件名为infile, 输出文件名为outfile。
如果在exe文件夹里找不到默认的输入文件,会提示can’t find input file “infile”。
Figure 4.2 seqboot程序起始界面6.进入程序参数选择页面(Figure 4.3)。
第一列中的D、J、%、B、R、W、C、S等代表可选的参数。
想改变哪个参数,就键入此参数对应的字母,并点击回车键,对应参数将会发生改变。
当我们设置好所有参数后,(这里我们可以不做任何修改),键入Y,按回车。
此时程序询问“random numbe r seed? <must be odd>”,这是询问生成随机数的种子是多少,输入一个4N+1的数,点击回车程序开始运行,输出结果到文件outfile,保存在当前文件夹里。
.Figure 4.3 seqboot程序参数选择页面主要参数解释:D: 数据类型,有Molecular sequence、discrete morphology、restriction sites和gene frequencies4个选项。
系统发育进化树构建1. 什么是系统发育进化树?系统发育进化树(Phylogenetic Tree),也称为系统树或进化树,是生物学中常用的一种图形表示方法,用于展示不同物种之间的亲缘关系以及它们的进化历史。
系统发育进化树可以帮助我们理解生物多样性的起源、演化以及物种之间的关系。
2. 构建系统发育进化树的方法2.1 形态学特征比较法形态学特征比较法是构建系统发育进化树最早也是最常用的方法之一。
通过比较不同物种的形态特征,如体型、颜色、器官结构等,来推断它们之间的亲缘关系。
这种方法适用于无法进行分子遗传学研究的古生物学领域。
2.2 分子遗传学方法分子遗传学方法是目前构建系统发育进化树的主要手段之一。
它利用DNA、RNA、蛋白质等分子的序列信息来推断不同物种之间的亲缘关系。
常用的方法包括序列比对、构建进化模型、计算进化距离等。
2.3 组织化石记录法组织化石记录法是通过研究化石中的细胞结构、细胞组织等信息,来推断不同物种之间的亲缘关系。
这种方法适用于无法获取分子遗传学信息的古生物学领域。
3. 构建系统发育进化树的步骤3.1 收集相关数据构建系统发育进化树的第一步是收集相关的数据,包括形态学特征数据、分子序列数据或化石记录数据。
数据的准确性和全面性对于构建准确的进化树非常重要。
3.2 数据处理与分析在收集到数据后,需要对数据进行处理和分析。
对于形态学特征数据,可以通过比较不同物种的特征值来计算相似性矩阵;对于分子序列数据,可以进行序列比对和计算进化距离等操作。
3.3 构建进化模型在数据处理与分析的基础上,需要选择合适的进化模型来描述不同物种之间的进化关系。
常用的进化模型包括NJ(Neighbor-Joining)方法、ML(Maximum Likelihood)方法和Bayesian方法等。
3.4 构建进化树在选择了合适的进化模型后,可以利用计算机软件或在线工具来构建进化树。
常用的软件包括MEGA、PAUP*和MrBayes等。
1.邻接法邻接法(neighbor-joiningmethod,NJ)由Saitou和Nei(1987)提出,NJ法是基于最小进化原理经常被使用的一种算法,它不检验所有可能的拓扑结构,能同时给出拓扑结构和分支长度。
在重建系统发生树时,它取消了UPGMA法所做的假定,认为在进化分支上,发生趋异的次数可以不同。
最近的计算机模拟已表明它是最有效的基于距离数据重建系统树的方法之一。
该方法通过确定距离最近(或相邻)的成对分类单位来使系统树的总距离达到最小。
它的特点是重建的树相对准确,假设少,计算速度快,只得一棵树。
其缺点主要表现在将序列上的所有位点等同对待,且所分析序列的进化距离不能太大。
故NJ法适用于进化距离不大,信息位点少的短序列。
邻接法在距离建树中经常会用到,而不用理会使用什么样的优化标准。
完全解析出的进化树是通过对完全没有解析出的“星型”进化树进行“分解”得到的,分解的步骤是连续不断地在最接近(实际上是最孤立的)的序列对中插入树枝,而保留进化树的终端。
于是,最接近的序列对被巩固了,而“星型”进化树被改善了,这个过程将不断重复。
这个方法相对而言很快,也就是说,对于一个50个序列的进化树,只需要若干秒甚至更少。
2.最大简约法最大简约法(maximum parsimony method,MP)最早是基于形态特征分类的需要发展起来的,具体的算法有许多不同版本,其中有些已被广泛地应用于分子进化研究中。
利用MP方法重建系统发生树,实际上是一个对给定OTUs其所有可能的树进行比较的过程。
对某一个可能的树,首先对每个位点祖先序列的核苷酸组成做出推断,然后统计每个位点用来阐明差异的核苷酸最小替换数目。
在整个树中,所有信息简约位点最小核苷酸替换数的总和称为树的长度(常青和周开亚,1998)。
MP法是一种优化标准,这种标准遵循“奥卡姆剃刀原则(Occam’S Razor principle)”:对数据最好的解释也是最简单的,而最简单的所需要的特别假定也最少。
叙述系统发育树的构建过程嘿,咱今儿就来讲讲系统发育树的构建过程,这可有意思啦!你看啊,系统发育树就像是一棵大树,它的枝桠代表着各种生物之间的关系。
那怎么把这棵大树给“种”出来呢?首先得有一堆生物的数据呀,就像盖房子得有砖头一样。
这些数据可以是各种各样的,比如基因序列啦、形态特征啦等等。
然后呢,就开始比对这些数据,这就好比把不同的砖头摆在一起,看看哪些相似,哪些不同。
接着,就根据这些比对的结果来确定它们之间的亲缘关系。
这就好像在给砖头们找它们的“家族”一样,哪些是近亲,哪些是远亲。
这可不是一件容易的事儿啊,得非常仔细地去分析。
然后呢,把这些亲缘关系用一种特别的方式表示出来,就像把砖头们按照一定的规律摆好,形成一个结构。
这个结构慢慢就变成了系统发育树的雏形。
这时候,就像是在给大树修剪枝叶一样,要对这个雏形进行调整和优化。
要确保每个部分都放对了位置,不能有差错。
最后,一棵完整的系统发育树就出来啦!哇塞,你想想看,通过这么多复杂的步骤,终于把生物之间的关系给清楚地呈现出来了,这难道不神奇吗?你说,这系统发育树构建的过程,像不像一个艺术家在精心雕琢一件作品?每一个细节都要处理好,才能呈现出完美的结果。
而且啊,这可不是一次性就能完成的事儿,得反复地去研究、去调整。
你再想想,要是没有系统发育树,我们怎么能知道各种生物之间有着这样那样的联系呢?我们怎么能更好地理解生命的奥秘呢?所以啊,这个构建过程虽然复杂,但真的超级重要呢!咱平时生活中也有类似的情况呀,比如说搭积木,不也是一块一块地搭起来,最后形成一个完整的造型嘛。
这和构建系统发育树不是有点像嘛!总之呢,系统发育树的构建过程就是这么神奇又有趣,它让我们对生物的世界有了更深的了解和认识。
这可真是一项伟大的工作啊!你难道不这么觉得吗?。
分子进化学中的进化树构建方法随着科技的进步和生物技术的广泛应用,分子生物学的研究逐渐深入,成为生物学、生物技术和医药学等领域的重要研究方向。
而分子进化学作为分子生物学中的一个重要分支,研究物种间的分子差异和进化关系。
其中,构建进化树是分子进化学研究中的重要工作,下面我们来了解一下进化树构建的方法。
一、进化树的基本概念进化树是描述不同物种、不同基因或不同蛋白质之间进化关系的图形化表示。
在进化树中,每一个分支代表了一个物种、一个基因或一个蛋白质序列,分支的长度表示了物种、基因或序列的进化距离,而进化距离则是衡量不同物种或不同序列之间关系的基本参数。
而构建进化树的过程则是根据分子序列数据的重构得到物种或基因的进化树。
二、进化树的构建方法构建进化树有多种方法,主要有距离矩阵法、系统发育学法、最大似然法和贝叶斯法等。
下面我们逐一介绍这些方法的基本原理。
1.距离矩阵法距离矩阵法是最早采用的一种构建进化树的方法,它基于序列之间的距离矩阵计算和聚类方法来得到进化树。
该方法首先计算所有分子序列之间的距离(距离可由序列相似性计算得出),然后根据聚类方法构建进化树。
聚类方法包括单链接聚类、均链接聚类和最大链接聚类等。
距离矩阵法的优点是构建速度快、适用性广,但是对于高变异的序列来说,该方法可能会产生误导性的结果。
2.系统发育学法系统发育学法是基于系统学原理,采用系统发生学的理论和方法来构建进化树。
该方法主要是通过分子序列的相似性构建系统发育分析矩阵,然后利用不同的计算方法(如UPGMA、NJ和ML等)推断进化树。
系统发育学法的优点是能够更准确地反映分子序列的演化,并且可以通过不同的方法比较结果,但是该方法需要大量的计算资源和长时间的计算。
3.最大似然法最大似然法是一种统计学上的方法,通过最大化序列数据与观测数据的相似度,来推断出最可能的进化树。
该方法需要整合进化模型和数据,然后计算不同进化模型下数据的似然函数,最终选择似然度最大的进化树。
系统发育树构建分析..实习报告3:系统发育树构建与分析——Phylip方法,MEGA方法,MrBayes方法学号 20090**** 姓名 ****** 专业年级生命生技******实验时间 2012.6.15 时间 2012.6.17实验目的:1. 学会使用Phylip,MEGA和MrBayes构建进化树;2. 学会分析建树结果,体会各种方法差异实验内容:1. 利用系统发育分析软件PHYLIP、MEGA、MrBayes分别对同源核酸序列和同源蛋白质序列构建系统发育树,分析比较建树结果。
2. 完成作业。
作业:1. 利用实习1搜索到的五个以上物种的直系同源核酸和蛋白质序列(给出fasta格式第一行信息),用Phylip软件,分别选择最大简约法,最大似然法和距离法(NJ, UPGMA, FM)构建进化树,要求bootstrap产生500个伪样本,分析核酸和蛋白质序列采用不同建树方法得到的进化树是否存在差异,试分析原因。
答:直系同源核酸序列(calcium binding protein):>Homo_sapiens gi|315221156|ref|NM_002964.4| Homo sapiens S100 calcium binding protein A8 (S100A8), mRNA>Pan_troglodytes gi|114559691|ref|XM_001137986.1| PREDICTED: Pan troglodytes S100 calcium binding protein A8, transcript variant 3(S100A8), mRNA >Macaca_mulatta gi|388453998|ref|NM_001266907.1| Macaca mulatta S100 calcium binding protein A8 (S100A8), mRNA>Canis_lupus_familiarisgi|225784824|ref|NM_001146144.1| Canis lupus familiaris S100 calcium binding protein A8 (S100A8), mRNA >Mus_musculus gi|113930764|ref|NM_013650.2| Mus musculus S100 calcium binding protein A8 (calgranulin A) (S100a8), mRNA >attus_norvegicus gi|281485599|ref|NM_053822.2| Rattus norvegicus S100 calcium binding protein A8 (S100a8), mRNA直系同源蛋白质序列(calcium binding protein):>Homo_sapiens gi|21614544|ref|NP_002955.2| protein S100-A8 [Homo sapiens] >Pan_troglodytes gi|114559692|ref|XP_001137986.1| PREDICTED: protein S100-A8 isoform 3 [Pan troglodytes]>Macaca_mulatta gi|109016347|ref|XP_001110530.1| PREDICTED: protein S100-A8 isoform 3 [Macaca mulatta]>Canis_lupus_familiaris gi|225784825|ref|NP_001139616.1| proteinS100-A8 [Canis lupus familiaris]>Bos_taurus gi|165973998|ref|NP_001107197.1| protein S100-A8 [Bos taurus] ...>Mus_musculus gi|7305453|ref|NP_038678.1| protein S100-A8 [Mus musculus]>Rattus_norvegicus gi|16758672|ref|NP_446274.1| S100 calcium binding protein A8 [Rattusnorvegicus](1)最大简约法同源核酸序列建树结果如图所示:由系统发育树可以看出,Homo sapiens,Pan troglodytes的具有较近的亲缘关系,Pan troglodytes与Macaca mulatta的亲缘关系较远,Canis lupus familiaris和Bos taurus亲缘关系较近,Mus musculus和Rattus norvegicus的亲缘关系较近。
系统发育进化树构建
【实用版】
目录
一、什么是系统发育进化树
二、系统发育进化树的构建方法
三、系统发育进化树的应用
四、总结
正文
一、什么是系统发育进化树
系统发育进化树是一种用来表示物种或基因间亲缘关系的树状图,它可以利用树状分支图形来展示生物之间的进化关系。
系统发育进化树主要用于研究物种或序列的进化和系统分类,其研究对象通常包括碱基序列或氨基酸序列。
二、系统发育进化树的构建方法
系统发育进化树的构建过程被称为分支系统发育分析,或分子系统发育分析。
该过程主要通过数理统计算法来计算生物间的进化距离,并以此为基础构建进化树。
具体的构建方法包括以下步骤:
1.选择合适的分析方法:根据研究对象的特性和研究目的,选择合适的分析方法,如最大似然法、贝叶斯法等。
2.构建初始树:基于分子数据,通过计算不同物种或基因间的进化距离,构建初始的系统发育进化树。
3.优化树结构:通过比较不同树的结构和分支,利用统计学方法优化树结构,得到更准确的系统发育进化树。
4.评估树可靠性:通过评估树的分支稳定性和树顶角度等指标,判断
树的可靠性和精度。
三、系统发育进化树的应用
系统发育进化树在生物学领域具有广泛的应用,包括:
1.物种分类和进化关系研究:通过构建系统发育进化树,可以揭示物种之间的亲缘关系和进化历史,为生物分类和系统演化研究提供重要依据。
2.基因功能和调控关系分析:在基因组学研究中,可以通过构建基因序列的系统发育进化树,揭示基因之间的功能和调控关系。
3.病原体演化研究:对于病原微生物的研究,可以通过构建系统发育进化树,揭示病原体的演化过程和传播路径,为传染病防控提供重要信息。
4.生物多样性保护策略制定:通过对不同物种的系统发育进化树分析,可以评估物种的演化地位和保护价值,为生物多样性保护策略的制定提供参考。
四、总结
系统发育进化树作为一种重要的生物学研究方法,可以帮助我们揭示生物之间的亲缘关系和进化历史。