高一上期中数学试卷(有答案)
- 格式:docx
- 大小:39.48 KB
- 文档页数:12
2023-2024学年高一(上)期中数学试卷一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3} 2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥04.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.37.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.368.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为.14.(5分)已知函数f(x)满足,则函数f(x)的解析式为.15.(5分)已知函数,则f(﹣26)+f(﹣25)+⋯+f(﹣1)+f (1)+⋯+f(26)+f(27)的值为.16.(5分)已知x,y>0且满足x+y=1,若不等式恒成立,记的最小值为n,则m+n的最小值为.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.21.(12分)已知a,b,c是实数,且满足a+b+c=0,证明下列命题:(1)“a=b=c=0”是“ab+bc+ac=0”的充要条件;(2)“abc=1,a≥b≥c”是“”的充分条件.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.2023-2024学年高一(上)期中数学试卷参考答案与试题解析一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3}【分析】结合交集的定义,即可求解.【解答】解:集合A={1,2,3},集合B={x||x﹣1|<1}={x|0<x<2},故A∩B={1}.故选:B.【点评】本题主要考查交集及其运算,属于基础题.2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据题意,解绝对值不等式得1<x<3,结合充要条件的定义加以判断,即可得到本题的答案.【解答】解:根据题意,|x﹣2|<1⇒﹣1<x﹣2<1⇒1<x<3,由|x﹣2|<1可以推出1<x<5,且由1<x<5不能推出|x﹣2|<1.因此,若p:|x﹣2|<1,q:1<x<5,则p是q的充分不必要条件.故选:A.【点评】本题主要考查不等式的性质、充要条件的判断等知识,考查了计算能力、逻辑推理能力,属于基础题.3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥0【分析】根据命题的否定的定义,即可求解.【解答】解:命题“∃x∈(1,+∞),x2+2<0”的否定是:∀x∈(1,+∞),x2+2≥0.故选:D.【点评】本题主要考查特称命题的否定,属于基础题.4.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,【分析】观察函数三要素,逐项判断是否同一函数.【解答】解:由题意得:选项A定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项B定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项C对应法则不同,g(x)=|x|;D项,三要素相同,为同一函数.故选:D.【点评】本题考查同一函数的判断,属于基础题.5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或【分析】由题意可知,a<0,方程ax2+bx+c=0的两个根分别为x1,x2,再结合韦达定理求解即可.【解答】解:根据题意:a<0,方程ax2+bx+c=0的两个根分别为x1,x2,所以,,,,解得,即不等式的解集为{x|}.故选:C.【点评】本题主要考查了韦达定理的应用,考查了一元二次不等式的解法,属于基础题.6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.3【分析】根据函数f(x)的定义可知,在一个坐标系中画出y=﹣x+1,y=x2﹣3x+2,y =x﹣1的图象,取最上面的部分作为函数f(x)的图象,由图象即可求出函数的最小值.【解答】解:根据题意,在同一个直角坐标系中,由﹣x+1=x2﹣3x+2,得x2﹣2x+1=0,解得x=1;由x2﹣3x+2=x﹣1,得x2﹣4x+3=0,解得x=3或x=1,所以f(x)=,同时画出函数y=﹣x+1,y=x2﹣3x+2,y=x﹣1,如图分析:所以函数f(x)的最小值为0.故选:A.【点评】本题考查利用函数的图象求函数的最值,属中档题.7.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.36【分析】由已知结合基本不等式先求出xy的范围,即可求a,然后利用乘1法,结合基本不等式可求b,进而可求a+b.【解答】解:∵xy=2x+y+6+6,当且仅当2x=y,即x=3,y=6时取等号,∴a=18.∵m+n=1,m>0,n>0.则=6,当且仅当n=3m且m+n=1,即m=,n=时取等号,∴,∴b=16;∴a+b=34.故选:C.【点评】本题主要考查了基本不等式在最值求解中的应用,属于基础题.8.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a【分析】由已知结合函数的对称性先求出函数的周期,然后结合对称性及周期性即可求解.【解答】解:根据题意:函数f(x)满足f(x)+f(4﹣x)=4,可得函数f(x)关于点(2,2)成中心对称,函数f(x)满足f(x+2)﹣f(﹣x)=0,所以函数f(x)关于x=1对称,所以函数f(x)既关于x=1成轴对称,同时关于点(2,2)成中心对称,所以f(2)=2,T=4,又因为f(1)=a,所以f(3)=4﹣a,f(4)=f(﹣2)=f(﹣2+4)=f(2)=2,所以f(1)+f(2)+f(3)+f(4)=a+2+4﹣a+2=8,所以f(1)+f(2)+f(3)+⋯+f(51)=12[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2)+f(3)=12×8+a+2+4﹣a=102.故选:C.【点评】本题主要考查了函数的奇偶性,对称性及周期性在函数求值中的应用,属于中档题.二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0【分析】由已知举出反例检验选项A,D;结合不等式的性质检验B,C即可判断.【解答】解:当a=1,b=﹣1时,A显然错误;若,则=<0,所以ab>0,B正确;若,即b﹣a<0,则=>0,所以ab<0,所以b<0<a,C正确;当a=2,b=﹣1时,D显然错误.故选:BC.【点评】本题主要考查了不等式的性质在不等式大小比较中的应用,属于基础题.(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.【分析】根据二次函数的性质检验选项A,结合基本不等式检验选项BCD即可判断.【解答】解:根据题意:选项A,y=x2﹣4x+8,根据二次函数的性质可知,x=2时取最小值4,故选A;,当且仅当时取最小值,不在x∈(1,+∞)范围内,故选项B错误;选项C,=,当且仅当,即x=3时成立,故选项C正确;选项D,,令,原式为,当且仅当t=,即t=2时等式成立,不在范围内,故选项D错误.故选:AC.【点评】本题主要考查了基本不等式及二次函数性质在最值求解中的应用,属于中档题.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件【分析】根据充分必要条件的定义,对各个选项中的两个条件进行正反推理论证,即可得到本题的答案.【解答】解:对于选项A,a>1,b>1⇒a﹣1>0,b﹣1>0⇒(a﹣1)(b﹣1)>0,反之,若(a﹣1)(b﹣1)>0,则可能a=b=0,不能得出a>1,b>1.故“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件,A正确;对于选项B,ax2+ax+1>0在R上恒成立,当a=0时,可得1>0恒成立,而区间(0,4)上没有0,故“0<a<4”不是“ax2+ax+1>0在R上恒成立”的充要条件,B不正确;对于选项C,f(x)=x2﹣ax在(1,+∞)上单调递增,可以推出是a⩽2的子集,故“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的充分不必要条件,C不正确;对于选项D,a3+a2b﹣a2﹣ab+a+b=a2(a+b)﹣a(a+b)+(a+b)=(a+b)(a2﹣a+1),,ab>0⇎(a+b)>0,因此,“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件,D正确.故选:AD.【点评】本题主要考查了充分条件与必要条件的判断、不等式的性质、二次函数的单调性等知识,属于基础题.(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9【分析】将所给等式化简整理,得到(x+y)2=x2y2,结合x,y>0可得x+y=xy,.由此出发对各个选项逐一加以验证,即可得到本题的答案.【解答】解:根据题意,x2+y2+1=(xy﹣1)2,即x2+y2=x2y2﹣2xy,整理得x2+y2+2xy =x2y2,所以x2+y2+2xy=x2y2,即(x+y)2=x2y2,而x、y均为正数,故x+y=xy,可得.对于A,,两边平方得x2y2≥4xy,可得xy≥4,故A错误;对于B,由A的计算可知x+y=xy≥4,当且仅当x=y=2时取到等号,故B正确;对于C,x2+y2=x2y2﹣2xy=(xy﹣1)2+1≥32﹣1=8,当且仅当x=y=2时取到等号,故C正确;对于D,,当且仅当x=2y,即时取到等号,故D正确.故选:BCD.【点评】本题主要考查了不等式的性质、基本不等式及其应用等知识,考查了计算能力、逻辑推理能力,属于中档题.三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为[﹣2,1].【分析】根据函数的解析式,列出使函数解析式有意义的不等式组,求出解集即可.【解答】解:函数∴﹣x2﹣x+2⩾0,解得﹣2⩽x⩽1.∴函数的定义域为[﹣2,1].故答案为:[﹣2,1].【点评】本题主要考查函数定义域的求解,属于基础题.14.(5分)已知函数f (x )满足,则函数f (x )的解析式为.【分析】利用解方程组的方法求函数解析式即可.【解答】解:根据题意:①,令代替x ,可得②,①﹣②×2得:,∴函数f (x )的解析式为.故答案为:.【点评】本题考查求函数解析式,属于基础题.15.(5分)已知函数,则f (﹣26)+f (﹣25)+⋯+f (﹣1)+f(1)+⋯+f (26)+f (27)的值为.【分析】根据已知条件,结合偶函数的性质,即可求解.【解答】解:令函数,可得函数f (x )=g (x )+2,∵函数为奇函数,∴g (﹣x )=﹣g (x )⇒g (﹣x )+g (x )=0,f (﹣26)+f (﹣25)+⋯+f (﹣1)+f (1)+⋯+f (26)+f (27)=g (﹣26)+g (﹣25)+⋯+g (﹣1)+g (1)+⋯+g (26)+g (27)+2×53=g (27)+2×53=.故答案为:.【点评】本题主要考查函数值的求解,属于基础题.16.(5分)已知x ,y >0且满足x +y =1,若不等式恒成立,记的最小值为n ,则m +n 的最小值为.【分析】由恒成立,可知左边的最小值大于等于9,因此求的最小值,结合基本不等式求出m+n的最小值.【解答】解:∵实数x,y>0满足x+y=1,∴x+y+1=2,而=,当时,等号成立,所以,解得m⩾8.而=,令,则原式,当时,等号成立,∴实数n的值为,可得实数m+n的最小值为.故答案为:.【点评】本题主要考查基本不等式及其应用,考查了计算能力、逻辑推理能力,属于基础题.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.【分析】(1)把m=3代入求得B,再由并集运算求解;(2)“x∈A”是“x∈B”的必要不充分条件,得B⫋A,然后分B=∅和B≠∅分别求解m 的范围,取并集得答案.【解答】解:(1)∵集合A={x|x2﹣2x﹣3⩽0},由x2﹣2x﹣3⩽0,即(x+1)(x﹣3)⩽0,解得﹣1⩽x⩽3,∵集合B={x|m﹣1<x<2m+1},当m=3时,即B={x|2<x<7},∴A∪B={x|﹣1⩽x<7}.(2)“x∈A”足“x∈B”的必要不充分条件,可得集合B是集合A的真子集,当m﹣1⩾2m+1⇒m⩽﹣2时,集合B为空集,满足题意;当m﹣1<2m+1⇒m>﹣2时,集合B是集合A的真子集,可得,∴实数m的取值范围为{m|m⩽﹣2或0⩽m⩽1}.【点评】本题考查并集的运算,考查分类讨论思想,是中档题.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.【分析】(1)结合幂函数的性质,以及偶函数的性质,即可求解;(2)结合函数的性质,即可求解.【解答】解:(1)由题意可知,2m2﹣m=1,解得m=或1,又∵函数f(x)关于y轴对称,当,满足题意;当m=1⇒f(x)=x5,此时函数f(x)为奇函数,不满足题意,∴实数m的值为;(2)函数,分析可得该函数在(0,+∞)单调递减,∴由(a﹣1)m<(2a﹣3)m可得:.∴实数a的取值范围为.【点评】本题主要考查函数的性质,是基础题.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.【分析】(1)当x<0时,﹣x>0,代入已知函数解析式,对比函数解析式即可求解a,b;(2)结合奇函数的对称性及二次不等式的求法即可求解.【解答】解:(1)根据题意:当x<0时,﹣x>0,则f(x)=﹣f(﹣x)=﹣[(﹣x)2+2(﹣x)]=﹣x2+2x,故a=﹣1,b=2;(2)当x⩾0时,|f(x)|⩾3可得f(x)⩾3,即x2+2x⩾3⇒x2+2x﹣3⩾0,解得x⩾1,根据奇函数可得:|f(x)|⩾3的解集为{x|x⩾1或x⩽﹣1}.【点评】本题主要考查了奇函数的定义在函数解析式求解中的应用,还考查了奇函数的对称性在不等式求解中的应用,属于中档题.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.【分析】(1)根据单日销售额函数,列方程求出m的值,再利用利润=销售额﹣成本,即可得出日销售利润函数的解析式.(2)利用分段函数求出每个区间上的最大值,比较即可得出结论.【解答】解:(1)根据题意知,单日销售额为f(x)=,因为f(3)=+6+3=+9,解得m=,因为利润=销售额﹣成本,所以日销售利润为P(x)=,化简为P (x )=.(2)根据题意分析:①日销售利润P (x )=+x +3=+(x +1)+2,令t =x +1=2,3,4,所以函数为,分析可得当t =2时,取最大值,其最大值为;②日销售利润P (x )=+2x =+2x =﹣+2x ,该函数单调递增,所以当x =6时,P (x )取最大值,此最大值为15;③日销售利润P (x )=21﹣x ,该函数单调递减,所以当x =7时,P (x )取最大值,此最大值为14;综上知,当x =6时,日销售利润最大,最大值为15千元.【点评】本题考查了分段函数模型应用问题,也考查了运算求解能力,是中档题.21.(12分)已知a ,b ,c 是实数,且满足a +b +c =0,证明下列命题:(1)“a =b =c =0”是“ab +bc +ac =0”的充要条件;(2)“abc =1,a ≥b ≥c ”是“”的充分条件.【分析】(1)根据完全平方公式,等价变形,可证出结论;(2)利用基本不等式,结合不等式的性质加以证明,即可得到本题的答案.【解答】证明:(1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,充分性:若a =b =c =0,则ab +bc +ac =0,充分性成立;必要性:若ab +bc +ac =0,由a +b +c =0,得(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,所以a 2+b 2+c 2=0,可得a =b =c =0,必要性成立.综上所述,a =b =c =0是ab +bc +ac =0的充要条件;(2)由a ⩾b ⩾c ,且abc =1>0,可知a >0,b <0,c <0,由a +b +c =0,得,当且仅当b =c 时等号成立,由,得,a 3⩾4,可知≤a =﹣b ﹣c ≤﹣2c ,解得,因此,abc=1且a⩾b⩾c是的充分条件.【点评】本题主要考查等式的恒等变形、不等式的性质与基本不等式等知识,考查了计算能力、逻辑推理能力,属于基础题.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.【分析】(1)根据题意,由f(0)=1,f(1)=3分析可得f(x)=ax2+(2﹣a)x+1,由二次函数的最小值求出a的值,进而计算可得答案;(2)根据题意,由二次函数的性质分a>0与a<0两种情况讨论,分析g(a)的解析式,综合可得答案.【解答】解:(1)根据题意,函数f(x)=ax2+bx+c满足f(0)=1,f(1)=3,则有f(0)=c=1,f(1)=a+b+c=3,变形可得b=2﹣a,函数f(x)=ax2+(2﹣a)x+1,∵函数f(x)有最小值,∴a>0,函数f(x)的最小值为=,解可得:a=4或1,∴当a=4时,b=﹣2,函数f(x)的解析式为f(x)=4x2﹣2x+1;当a=1时,b=1,函数f(x)的解析式为f(x)=x2+x+1.(2)根据题意,由(1)的结论,f(x)=ax2+(2﹣a)x+1,是二次函数,分2种情况讨论:①当a>0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5,ii.当对称轴时,与a>0矛盾,故当a>0时,函数f(x)在区间[1,2]上的最大值g(a)=2a+5;②当a<0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(1)=3,ii.当对称轴时,函数f(x)在区间[1,2]上的最大值,iii.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5.综上所述,【点评】本题考查函数的最值,涉及二次函数的性质,属于中档题.。
2023-2024学年河南省南阳市高一(上)期中数学试卷一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={x|1<x<3},B={y|y=2x﹣1,x∈A},则A∩B=()A.∅B.A C.B D.A∪B2.命题“方程x2﹣8x+15=0有一个根是偶数”的否定是()A.方程x2﹣8x+15=0有一个根不是偶数B.方程x2﹣8x+15=0至少有一个根不是偶数C.方程x2﹣8x+15=0至多有一个根不是偶数D.方程x2﹣8x+15=0的每一个根都不是偶数3.若函数f(x)的图象如图所示,则f(x)的解析式可能是()A.f(x)=1e x+e−x B.f(x)=1e x−e−xC.f(x)=e x−e−xe x+e−x D.f(x)=ex+e−xe x−e−x4.我国古代数学家李善兰在《对数探源》中利用尖锥术理论来制作对数表,他通过“对数积”求得ln2≈0.693,ln54≈0.223,由此可知ln5的近似值为()A.1.519B.1.726C.1.609D.1.3165.已知a=243,b=425,c=2013,则()A.b<a<c B.b<c<a C.c<b<a D.a<c<b6.通过北师大版必修一教材57页的详细介绍,我们把y=[x]称为取整函数.那么“[x]=[y]”是“|x﹣y|<1”的()条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要7.若关于x的不等式1x−a >1x−b的解集是{x|1<x<3},则下列式子中错误的是()A.a﹣b<0B.a+b=4C.a=1,b=3D.a=3,b=18.已知函数f(x)={−2x 2+4x ,x ≤2,x−2x+1,x >2,若存在三个不相等的实数x 1,x 2,x 3使得f (x 1)=f (x 2)=f (x 3),则f (x 1+x 2+x 3)的取值范围是( ) A .(25,1)B .(25,+∞)C .(25,2)D .(2,+∞)二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.满足函数f (x )=x 2﹣ax +1在区间[1,3]上不单调的实数a 的值可能是( ) A .3B .4C .5D .610.下列函数中,具备奇偶性的函数是( ) A .f(x)=(√x)2B .f(x)=1+22x−1C .f(x)={−x ,x <−11,−1<x <1,x ,x >1.D .f(x)=√4−x 22−|x−2|11.已知二次函数f (x )=ax 2+bx +c 满足f (1+x )=f (1﹣x ),且对∀x 1,x 2∈(﹣∞,1),都有f(x 1)−f(x 2)x 1−x 2>0,则下列结论正确的有( )A .f (1.2)>f (1.5)B .2a +b =0C .f(−√2)<f(√3)D .abc <012.已知a >0,b >0,a +b =1,则下列结论成立的是( ) A .1a +1b的最小值为4B .1a +ab 的最小值为3C .11−a+12−b的最小值为2D .a +1b的最小值为1三、填空题(本题共4小题,每小题5分,共20分.)13.幂函数f (x )=(a 2﹣2a +2)x b (a >0)的图像经过点(2,4),则a +b = . 14.若函数f (x )的定义域是[2,5],则函数y =f(2x−3)√x 2−2x−3的定义域是 .15.已知f (x )=x 2+|x |+2;则不等式f (x +1)<8的解集是 .16.如图,已知等腰三角形中一腰上的中线长为√6,则该等腰三角形的面积最大值为 .四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)(1)已知x+x﹣1=3,求是x 12+x−12值;(2)计算:2−12+2+(1−√2)−1−823+2lg5lg20+(lg2)2.18.(12分)已知函数f(x)=x+1x.(1)判断函数f(x)在[1+∞)上的单调性,并用单调性的定义证明;(2)求函数g(x)=√x2+4x2+5的值域.19.(12分)已知集合A={x|x2+ax﹣a﹣1<0,a∈R},B={x|2<x<3}.(1)若0∈A且2∉A,求实数a的取值范围;(2)设p:x∈A,q:x∈B,若p是q的必要不充分条件,求实数a的取值范围.20.(12分)为鼓励大学毕业生自主创业,某市出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.大学毕业生袁阳按照相关政策投资销售本市生产的一种新型节能灯,已知这种节能灯的成本价为每件20元,出厂价为每件24元,每月的销售量y(单位:件)与销售单价x(单位:元)之间的关系近似满足一次函数:y=﹣10x+600.(1)设袁阳每月获得的利润为ω(单位:元),写出每月获得的利润ω与销售单价x的函数关系;(2)物价部门规定,这种节能灯的销售单价不得高于40元.如果袁阳想要每月获得的利润不小于3000元,那么政府每个月为他承担的总差价的取值范围是多少元?21.(12分)已知log a b+log b a=52,a b=b a,其中a>b>1.(1)求实数a,b的值;(2)若函数f(x)=m•a x+b x+1在定义域[1,2]上为增函数,求实数m的取值范围.22.(12分)已知函数f(x)的定义域为R.当x>0时,f(x)=2x+a,a∈R.(1)若函数f(x)为奇函数,求函数f(x)的表达式;(2)若函数f(x)是奇函数且在R上单调,求实数a的取值范围;(3)在(1)的条件下,若关于x的方程((f(x)+2+a)(f(x)﹣a)=0有三个不等的实数根,求实数a的取值范围.2023-2024学年河南省南阳市高一(上)期中数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={x|1<x<3},B={y|y=2x﹣1,x∈A},则A∩B=()A.∅B.A C.B D.A∪B解:集合A={x|1<x<3},则B={y|y=2x﹣1,x∈A}={y|1<y<5},故A∩B=A.故选:B.2.命题“方程x2﹣8x+15=0有一个根是偶数”的否定是()A.方程x2﹣8x+15=0有一个根不是偶数B.方程x2﹣8x+15=0至少有一个根不是偶数C.方程x2﹣8x+15=0至多有一个根不是偶数D.方程x2﹣8x+15=0的每一个根都不是偶数解:“方程x2﹣8x+15=0有一个根是偶数”的否定是:方程x2﹣8x+15=0的每一个根都不是偶数.故选:D.3.若函数f(x)的图象如图所示,则f(x)的解析式可能是()A.f(x)=1e x+e−x B.f(x)=1e x−e−xC.f(x)=e x−e−xe x+e−x D.f(x)=ex+e−xe x−e−x解:对于A,f(0)=12,与图象不相符,故A错误;对于B,f(0)无意义,与图象不相符,故B错误;对于C,函数定义域为R,f(0)=0,f(−x)=e−x−e xe−x+e x=−f(x),函数为奇函数,符合图象,故C正确;对于D,f(0)无意义,与图象不相符,故D错误.故选:C.4.我国古代数学家李善兰在《对数探源》中利用尖锥术理论来制作对数表,他通过“对数积”求得ln2≈0.693,ln 54≈0.223,由此可知ln 5的近似值为( )A .1.519B .1.726C .1.609D .1.316解:因为ln 2≈0.693,ln 54≈0.223=ln 5﹣2ln 2=ln 5﹣1.386,由此可知ln 5≈1.609.故选:C . 5.已知a =243,b=425,c=2013,则( )A .b <a <cB .b <c <aC .c <b <aD .a <c <b解:∵a =243=√163,b =425=√165,c =2013=√203,y =x 13=√x 3是R 上的增函数,20>16,∴√203>√163,即c >a .再根据√163>√165,可得a >b . 综上可得,c >a >b . 故选:A .6.通过北师大版必修一教材57页的详细介绍,我们把y =[x ]称为取整函数.那么“[x ]=[y ]”是“|x ﹣y |<1”的( )条件 A .充分不必要 B .必要不充分 C .充要D .既不充分也不必要解:若[x ]=[y ],设[x ]=[y ]=m ,则x =m +a (0≤a <1),y =m +b (0≤b <1), ∴x ﹣y =a ﹣b ∈(﹣1,1),∴|x ﹣y |<1,反之,令x =1.1,y =0.9,则满足|x ﹣y |=0.2<1,但[x ]=1,[y ]=0,[x ]≠[y ], ∴[x ]=[y ]是|x ﹣y |<1的充分不必要条件. 故选:A . 7.若关于x 的不等式1x−a>1x−b的解集是{x |1<x <3},则下列式子中错误的是( )A .a ﹣b <0B .a +b =4C .a =1,b =3D .a =3,b =1解:由1x−a>1x−b,得1x−a−1x−b>0,化简得,a−b(x−a)(x−b)>0,即(a ﹣b )(x ﹣a )(x ﹣b )>0,∵不等式1x >a>1x−b的解集是{x |1<x <3},∴a ﹣b <0,且1和3是方程(x ﹣a )(x ﹣b )=0的两个根, ∴a =1,b =3,∴a +b =4,故A 正确,B 正确,C 正确,D 错误. 故选:D .8.已知函数f(x)={−2x 2+4x ,x ≤2,x−2x+1,x >2,若存在三个不相等的实数x 1,x 2,x 3使得f (x 1)=f (x 2)=f (x 3),则f (x 1+x 2+x 3)的取值范围是( ) A .(25,1)B .(25,+∞)C .(25,2)D .(2,+∞)解:函数f (x )={−2x 2+4x ,x ≤2x−2x+1,x >2的图象如图所示:由f (x )在(﹣∞,2]上关于x =1对称,且f max (x )=2, 当x ∈(2,+∞)时,f (x )=x−2x+1=1−3x+1是增函数, 且f (x )=x−2x+1=1−3x+1∈(0,1), 所以x 1+x 2=2,x 3∈(2,+∞), 所以x 1+x 2+x 3∈(4,+∞),又f (4)=4−24+1=25, 故f (x 1+x 2+x 3)∈(25,1).故选:A .二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.满足函数f (x )=x 2﹣ax +1在区间[1,3]上不单调的实数a 的值可能是( ) A .3B .4C .5D .6解:因为函数f (x )=x 2﹣ax +1在区间[1,3]上不单调,所以1<12a <3,即2<a <6.故选:ABC .10.下列函数中,具备奇偶性的函数是( ) A .f(x)=(√x)2B .f(x)=1+22x−1C .f(x)={−x ,x <−11,−1<x <1,x ,x >1.D .f(x)=√4−x 22−|x−2|解:根据题意,依次分析选项:对于A ,f (x )=(√x )2,其定义域为[0,+∞),不关于原点对称, 则该函数为非奇非偶函数,不符合题意; 对于B ,f (x )=1+22x−1,其定义域为R , 有f (﹣x )+f (x )=1+22−x −1+1+22x −1=2+2⋅2x1−2x +22x−1=0,即f (﹣x )=﹣f (x ), 则该函数为奇函数,符合题意;对于C ,f(x)={−x ,x <−11,−1<x <1,x ,x >1.其定义域为{x |x ≠±1},当x <﹣1时,﹣x >1,有f (﹣x )=f (x )=﹣x , 当﹣1<x <1时,﹣1<﹣x <1,有f (﹣x )=f (x )=1, 当x >1时,﹣x <﹣1,有f (﹣x )=f (x )=x ,综合可得:∀x ∈{x |x ≠±1},都有f (x )=f (﹣x ),则f (x )为偶函数,符合题意;对于D ,f (x )=√4−x 22−|x−2|,则有{4−x 2≥02−|x −2|≠0,解可得﹣2≤x ≤2且x ≠0,即函数的定义域为{x |﹣2≤x ≤2且x ≠0}, 则f (x )=√4−x 2x,则有f (﹣x )=−√4−x 2x=−f (x ),则f (x )为奇函数.故选:BCD .11.已知二次函数f (x )=ax 2+bx +c 满足f (1+x )=f (1﹣x ),且对∀x 1,x 2∈(﹣∞,1),都有f(x 1)−f(x 2)x 1−x 2>0,则下列结论正确的有( )A .f (1.2)>f (1.5)B .2a +b =0C .f(−√2)<f(√3)D .abc <0解:因为二次函数f (x )=ax 2+bx +c 满足f (1+x )=f (1﹣x ), 即函数的图象关于x =1对称,故−b2a=1,所以b +2a =0,B 正确; 对∀x 1,x 2∈(﹣∞,1),都有f(x 1)−f(x 2)x 1−x 2>0,所以f (x )在(﹣∞,1)上单调递增,所以a <0,b =﹣2a >0,但c 的正负无法确定,D 错误;根据函数的对称性可知,f (x )在(1,+∞)上单调递减,则f (1.2)>f (1.5),A 正确, 又f (−√2)=f (2+√2)<f (√3),C 正确. 故选:ABC .12.已知a >0,b >0,a +b =1,则下列结论成立的是( )A .1a +1b的最小值为4B .1a +ab 的最小值为3C .11−a+12−b的最小值为2D .a +1b的最小值为1解:对于A ,1a +1b =(a +b)(1a +1b )=2+b a +a b ≥2+2√b a ⋅a b=4,当且仅当a =b =12时,取等号,故A 正确;对于B ,1a =a+b a =1+b a ,故1a +a b =1+b a +a b ≥1+2√b a ⋅a b=3,当且仅当a =b =12时,取等号,故B 正确;对于C ,由a >0,b >0,a +b =1,可知(1﹣a )+(2﹣b )=3﹣(a +b )=2,且1﹣a >0,2﹣b >0, 11−a+12−b=12[(1−a)+(2−b)](11−a+12−b)=12(2+2−b 1−a+1−a 2−b)≥12(2+√2−b 1−a ⋅1−a 2−b)=2, 不等式取等号的条件是1﹣a =2﹣b =1,即a =0,b =1,与题设a +b =1矛盾,故11−a+12−b的最小值大于2,C 不正确;对于D ,a +1b −1=1b −b =1−b 2b =(1+b)(1−b)b >0,故a +1b>1,最小值大于1,故D 不正确.故选:AB .三、填空题(本题共4小题,每小题5分,共20分.)13.幂函数f (x )=(a 2﹣2a +2)x b (a >0)的图像经过点(2,4),则a +b = 3 . 解:幂函数f (x )=(a 2﹣2a +2)x b (a >0)的图像经过点(2,4), ∴{a 2−2a +2=1f(2)=2b =4,解得a =1,b =2,则a +b =1+2=3. 故答案为:3.14.若函数f (x )的定义域是[2,5],则函数y =f(2x−3)√x 2−2x−3的定义域是 (3,4] .解:由题意得,{2≤2x −3≤5x 2−2x −3>0,解得3<x ≤4.故答案为:(3,4].15.已知f (x )=x 2+|x |+2;则不等式f (x +1)<8的解集是 (﹣3,1) .解:对于f (x )=x 2+|x |+2,当x ≥0时,f (x )=x 2+x +2,当x <0时,f (x )=x 2﹣x +2, 所以f(x)={x 2+x +2,x ≥0x 2−x +2,x <0,当x +1≥0时,即x ≥﹣1时,不等式f (x +1)<8可化为(x +1)2+(x +1)+2<8,即x2+3x﹣4<0,解得﹣4<x<1,所以﹣1≤x<1;当x+1<0时,即x<﹣1时,不等式f(x+1)<8可化为(x+1)2﹣(x+1)+2<8,即x2+x﹣6<0,解得﹣3<x<2,所以﹣3<x<﹣1;综上,不等式f(x+1)<8的解集为(﹣3,1).故答案为:(﹣3,1).16.如图,已知等腰三角形中一腰上的中线长为√6,则该等腰三角形的面积最大值为4.解:如图所示:作CE⊥AB于E,DF⊥AB于F,则AE=EB,EF=FB,设DF=h,FB=b,故AF=3b,在△ADF中:6=9b2+h2≥2√9b2×ℎ2=6bh,即bh≤1,当且仅当9b2=h2,即h=√3,b=√33时等号成立,S△ABC=2S△ABD=4bh≤4.故答案为:4.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)(1)已知x+x﹣1=3,求是x 12+x−12值;(2)计算:2−12+40√2+(1−√2)−1−823+2lg5lg20+(lg2)2.解:(1)由于(x 12+x12)2=x+x−1+2=5,又x 12+x−12>0,故x12+x12=√5;(2)原式=√222−(√2+1)﹣4+2=﹣3.18.(12分)已知函数f(x)=x+1x.(1)判断函数f(x)在[1+∞)上的单调性,并用单调性的定义证明;(2)求函数g(x)=√x2+4x2+5的值域.解:(1)函数f(x)在[1+∞)上单调递增,证明如下:任取x1,x2∈[1,+∞),且x1<x2,则x2﹣x1>0,x2x1>1,则f(x2)−f(x1)=(x2+1x2)−(x1+1x1)=x2−x1+1x1=(x2−x1)(x2x1−1)x2x1>0,∴f(x2)﹣f(x1)>0,即f(x1)<f(x2),∴函数f(x)是[1,+∞)上的增函数.(2)令t=√x2+4(t≥2),则t2﹣4=x2,于是g(x)的值域即为求ℎ(t)=tt2+1=1t+1t的值域,由(1)知函数y=t+1t(t≥2)在[2,+∞)是单调递增的,所以当t=2时,即√x2+4=2,即x=0处y取最小值y min=2+12=52,所以0<1t+1t≤25,所以函数g(x)=√x2+4x2+5的值域为(0,25].19.(12分)已知集合A={x|x2+ax﹣a﹣1<0,a∈R},B={x|2<x<3}.(1)若0∈A且2∉A,求实数a的取值范围;(2)设p:x∈A,q:x∈B,若p是q的必要不充分条件,求实数a的取值范围.解:(1)由0∈A且2∉A,得{−a−1<0a+3≥0,∴a>﹣1,∴a的取值范围为(﹣1,+∞);(2)由p是q的必要不充分条件,∴B⫋A,∵x2+ax﹣a﹣1=(x﹣1)(x+a+1)<0,且B={x|2<x<3},故A={x|1<x<﹣a﹣1},∴{1<−a−1−a−1≥3,∴a≤﹣4,∴a的取值范围为(﹣∞,﹣4].20.(12分)为鼓励大学毕业生自主创业,某市出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.大学毕业生袁阳按照相关政策投资销售本市生产的一种新型节能灯,已知这种节能灯的成本价为每件20元,出厂价为每件24元,每月的销售量y(单位:件)与销售单价x(单位:元)之间的关系近似满足一次函数:y=﹣10x+600.(1)设袁阳每月获得的利润为ω(单位:元),写出每月获得的利润ω与销售单价x 的函数关系;(2)物价部门规定,这种节能灯的销售单价不得高于40元.如果袁阳想要每月获得的利润不小于3000元,那么政府每个月为他承担的总差价的取值范围是多少元?解:(1)依题意可知每件的销售利润为(x ﹣20)元,每月的销售量为(﹣10x +600)件,所以每月获得的利润ω与销售单价x 的函数关系为ω=(x ﹣20)(﹣10x +600)(20≤x ≤60);(2)由每月获得的利润不小于3000元,即(x ﹣20)(﹣10x +600)≥3000,即x 2﹣80x +1500≤0,即(x ﹣30)(x ﹣50)≤0,解得30≤x ≤50,又因为这种节能灯的销售单价不得高于40元,所以30≤x ≤40,设政府每个月为他承担的总差价为p 元,则p =(24﹣20)(﹣10x +600)=﹣40x +2400,由30≤x ≤40,得800≤p ≤1200,故政府每个月为他承担的总差价的取值范围为[800,1200]元.21.(12分)已知log a b +log b a =52,a b =b a ,其中a >b >1. (1)求实数a ,b 的值;(2)若函数f (x )=m •a x +b x +1在定义域[1,2]上为增函数,求实数m 的取值范围.解:(1)设log b a =k ,则k >1,因为log a b +log b a =52, 可得k +1k =52,所以k =2,则a =b 2. 又a b =b a ,所以b 2b =b b 2,即2b =b 2,又a >b >1,解得b =2,a =4.(2)由(1)以及函数f (x )=m •a x +b x +1,得f (x )=m •4x +2x +1,令t =2x ,x ∈[1,2],则y =mt 2+t +1,t ∈[2,4].为使f (x )在[1,2]上为增函数,则m =0或{m >0−12m <2或{m <0−12m≥4,解得m =0或m >0或−18≤m <0. 综上,m 的取值范围为[−18,+∞). 22.(12分)已知函数f (x )的定义域为R .当x >0时,f (x )=2x +a ,a ∈R .(1)若函数f (x )为奇函数,求函数f (x )的表达式;(2)若函数f (x )是奇函数且在R 上单调,求实数a 的取值范围;(3)在(1)的条件下,若关于x 的方程((f (x )+2+a )(f (x )﹣a )=0有三个不等的实数根,求实数a 的取值范围.解:(1)当x =0时,f (0)=0;当x <0时,f (x )=﹣f (﹣x )=﹣(2﹣x +a )=﹣2﹣x ﹣a ;故f(x)={2x +a ,x >00,x =0−2−x −a ,x <0.(2)因为当x >0时,f (x )=2x +a 是单调增函数,所以若f (x )在R 上单调,则f (x )必为R 上的单调增函数,只须满足﹣20﹣a ≤0≤20+a ,得a ≥﹣1,实数a 的取值范围是[﹣1,+∞);(3)由方程(f (x )+2+a )(f (x )﹣a )=0⋯(*),可得f (x )=﹣2﹣a 或f (x )=a ,由题意可知,f (x )不可能是单调函数,故a <﹣1,又因为方程(*)有三个不等的实数根,且a <1+a ,所以只须1+a <﹣2﹣a <﹣1﹣a 且﹣2﹣a ≠0,解得a <−32且a ≠﹣2, 综上所述,a 的取值范围为(−∞,−2)∪(−2,−32).。
2024-2025学年湖南省长沙市百强校(YZ)高一上期中考试数学试题❖一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.已知集合{|21}A x x =-<≤,{|03}B x x =<≤,则A B = ()A.(]2,3- B.()2,0- C.(]0,1 D.(]1,3【答案】C 【解析】【分析】由交集的运算法则求解即可.【详解】解:{}{}2103A x x B x x =-<≤=<≤ ,,{}01A B x x ∴⋂=<≤,故选:C.2.函数1()2f x x =+-的定义域为()A.2|2}3{x x x >≠且 B.2{|2}3x x x <>且C.3{|2}2x x ≤≤ D.3{|2}2x x x ≥≠且【答案】D 【解析】【分析】利用函数有意义,列出不等式组求解即得.【详解】函数1()2f x x =+-的意义,则230x -≥且20x -≠,解得32x ≥且2x ≠,所以原函数的定义域为3{|2}2x x x ≥≠且.故选:D 3.已知()()5,62,6x x f x f x x -≥⎧=⎨+<⎩,则()4f =()A.3 B.2C.1D.0【答案】C 【解析】【分析】根据分段函数解析式列式求解即可.【详解】由题意可得:()()46651f f ==-=.故选:C.4.设x ∈R ,则“2x ≤”是“11x -≤”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】从充分性和必要性两个方面考虑.【详解】先说充分性:当2x ≤,比如2x =-,此时:12131x -=--=≤不成立,所以“2x ≤”不是“11x -≤”的充分条件;再说必要性:11x -≤⇒111x -≤-≤⇒02x ≤≤,所以2x ≤成立,所以“2x ≤”是“11x -≤”的必要条件.故“2x ≤”是“11x -≤”的必要不充分条件.故选:B5.若不等式210x tx -+<对一切132x ⎛⎫∈ ⎪⎝⎭,恒成立,则实数t 的取值范围为()A.52t ≥B.52t >C.2t ≥D.103t ≥【答案】D 【解析】【分析】首先分离参数,然后结合对勾函数的性质求得函数的最值,从而可确定t 的取值范围.【详解】因为不等式210x tx -+<对一切132x ⎛⎫∈ ⎪⎝⎭,恒成立,所以211x t x x x+>=+在区间132⎛⎫ ⎪⎝⎭,上恒成立,由对勾函数的性质可知函数1y x x =+在区间112⎛⎫⎪⎝⎭上单调递减,在区间()13,上单调递增,且当12x =时,15222y =+=,当3x =时,110333y =+=,所以1103x x +<,故103t ≥,故选:D6.若实数,x y 满足221x y xy ++=,则x y +的最大值是A.6B.3C.4D.23【答案】B 【解析】【分析】根据22x y xy +⎛⎫≤ ⎪⎝⎭,将等式转化为不等式,求x y +的最大值.【详解】()22211x y xy x y xy ++=⇒+-=,22x y xy +⎛⎫≤ ⎪⎝⎭,()2212x y x y +⎛⎫∴+-≤ ⎪⎝⎭,解得()2314x y +≤,x y ≤+≤x y ∴+故选B.【点睛】本题考查了基本不等式求最值,属于基础题型.7.已知函数()1f x +是偶函数,当121x x <<时,()()()12120f x f x x x -->⎡⎤⎣⎦恒成立,设12a f ⎛⎫=-⎪⎝⎭,(2)b f =,(3)c f =,则a ,b ,c 的大小关系为()A.c b a << B.b a c<< C.b c a<< D.a b c<<【答案】B 【解析】【分析】根据题意先求出函数()f x 在(1,)+∞上为单调增函数且关于直线1x =对称,然后利用函数的单调性和对称性即可求解.【详解】∵当121x x <<时,()()()12120f x f x x x -->⎡⎤⎣⎦恒成立,∴当121x x <<时,()()210f x f x ->,即()()21f x f x >,∴函数()f x 在(1,)+∞上为单调增函数,∵函数(1)f x +是偶函数,即()()11f x f x +=-,∴函数()f x 的图象关于直线1x =对称,∴1522a f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,又函数()f x 在(1,)+∞上为单调增函数,∴5(2)(3)2f f f ⎛⎫<<⎪⎝⎭,即1(2)(3)2f f f ⎛⎫<-< ⎪⎝⎭,∴b a c <<,故选:B.8.幂函数()()22251m m f x m m x+-=--在区间()0,∞+上单调递增,且0a b +>,则()()f a f b +的值()A.恒大于0B.恒小于0C.等于0D.无法判断【答案】A 【解析】【分析】由已知条件求出m 的值,则可得幂函数的解析式,再利用幂函数的性质判断即可【详解】由函数()()22251m m f x m m x+-=--是幂函数,可得211m m --=,解得2m =或1m =-.当2m =时,()3f x x =;当1m =-时,()6f x x -=.因为函数()f x 在()0,∞+上是单调递增函数,故()3f x x =.又0a b +>,所以a b >-,所以()()()f a f b f b >-=-,则()()0f a f b +>.故选:A .二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得2分,有选错的得0分.9.下列说法正确的是()A.{}0∅∈B.集合{|2,Z}{|Z}2xx x n n x =∈=∈C.集合{}{}3,44,3= D.集合22{|}{|}x y x y y x ===【答案】BC 【解析】【分析】根据集合间的基本关系逐一判定即可.【详解】解:对于A ,{}0∅⊆,故A 错误;对于B ,由Z 2x ∈,可得x 为偶数,所以集合{|2,Z}{|Z}2xx x n n x =∈=∈,故B 正确;对于C ,集合{}{}3,44,3=,故C 正确;对于D ,集合2{|}R x y x ==,2{|}{|0}y y x y y ==≥,故D 错误.故选:BC.10.已知20ax bx c ++>的解集是()2,3-,则下列说法正确的是()A.>0B.不等式20cx bx a ++<的解集是11,23⎛⎫- ⎪⎝⎭C.1234b b ++的最小值是83D.当2c =时,()236f x ax bx =+,[]12,x n n ∈的值域是[]3,1-,则21n n -的取值范围是[]2,4【答案】BCD 【解析】【分析】对A ,B ,利用一元二次不等式与相应函数和方程的关系求解判断;对C ,利用基本不等式求最值,对D ,利用二次函数图象与性质,进行分析可得结果.【详解】对于A ,由题意可知:2,3-是关于x 的方程B 2+B +=0的两个根,且0a <,故A 错误;对于B ,由题意可知:16bac a⎧-=⎪⎪⎨⎪=-⎪⎩,可得,6b a c a =-=-,0a <.不等式20cx bx a ++<化为:260ax ax a --+<,由0a <可得2610x x +-<,解得1123x -<<,所以不等式20cx bx a ++<的解集为1123⎛⎫- ⎪⎝⎭,,故B 正确;对于C ,因为=-b a ,0b >,可得()121214483434343333b b b b +=++-≥-=++,当且仅当()12134343b b =++,即23b =时,等号成立,所以1234b b ++的最小值是83,故C 正确;对于D ,当2c =时,13b a =-=,则()222362(1)1f x ax bx x x x =+=-+=--+,当=1时,()f x 取到最大值()11f =,由()3f x =-得,=−1或3x =,()[]212,36f x ax bx x n n =+∈,的值域是[]3,1-,因()f x 在[]12,n n 上的最小值为3-,最大值为1,从而得121,13n n =-≤≤或1211,3n n -≤≤=,因此2124n n ≤-≤,故D 正确.故选:BCD.11.已知函数()f x 是定义在R 上的奇函数,当>0时,()21f x x x =-+,则下列结论正确的是()A.()02f =-B.()f x 的单调递增区间为()1,0-,()1,+∞C.当0x <时,()21f x x x=+-D.()0xf x <的解集为()()1,00,1-⋃【答案】BCD 【解析】【分析】由奇函数()f x 在=0处有定义,可得()00f =,可判断A ;由>0的函数的解析式,结合奇函数的定义可得0x <时的函数解析式,可判断C ;判断>0时的()f x 的单调性,可得0x <时的()f x 的单调性,不等式()0xf x <等价为>0且()0f x <,0x <且()0f x >,结合()()110f f -==,解不等式可判断D ;由()y f x =的图象与=op 的图象特点,结合单调性可判断B.【详解】对于A ,函数()f x 是定义在R 上的奇函数,可得()00f =,故A 错误;对于C ,当>0时,()21f x x x =-+,设0x <,则0x ->,()21f x x x-=---,又−=−,所以0x <时,()21f x x x=+-,故C 正确;对于D ,由>0时,()21f x x x =-+,可得1=0,又y x =和21y x =-+在()0,∞+递增,可得()f x 在()0,∞+递增,由奇函数的图象关于原点对称,可得()f x 在(),0∞-递增,且()10f -=,所以()0xf x <等价为>0op <0=o1)或<0op >0=o −1),解得01x <<或10x -<<,故D 正确;对于B ,因为()f x 在(),0∞-和()0,∞+上递增,且()()110f f =-=,由()y f x =的图象可看做=op 的图象位于x 轴上方的图象不变,将x 轴下方的图象翻折到x 轴上方得到,所以()y f x =的递增区间为()1,0-,1,+∞,故B 正确.故选:BCD.三、填空题:本题共3小题,每小题5分,共15分.12.已知a =,b =,则a ______b .(填“>”或“<”)【答案】<【解析】【分析】对,a b 进行分子有理化,然后通过比较分母的大小,从而可得结果.【详解】a ==b ==,>0+>,<<所以a b <.故答案为:<13.已知()5311f x ax bx cx x=-+++,且()35f -=-,则()3f =__________.【答案】7【解析】【分析】根据题意,由函数的解析式可得()()2f x f x -+=,结合()35f -=-即可求解.【详解】()5311f x ax bx cx x=-+++,则()()531()()1f x a x b x c x x ⎛⎫-=---+-+-+ ⎪⎝⎭5311ax bx cx x ⎛⎫=--+++ ⎪⎝⎭则有()()2f x f x -+=,若()35f -=-,则()()3257.f =--=故答案为:7.14.定义{},min ,=,>a a b a b b a b≤⎧⎨⎩,若函数(){}2min 33,33f x x x x =-+--+,且()f x 在区间[],m n 上的值域为37,44⎡⎤⎢⎥⎣⎦,则区间[],m n 长度的最大值为________.【答案】74.【解析】【分析】根据定义作出函数()=y f x 的图像,根据函数值域,求出对应点的坐标,利用数形结合进行判断即可.【详解】根据定义作出函数()=y f x 的图像如图:(实线部分的曲线).其中()()1,13,3A B 、,即23|3|,13()=3+3,1<<3x x x f x x x x --≤≥-⎧⎨⎩或.当()34f x =时,当1x ≤或3x ≥时,由3334x --=,解得:34C x =或214G x =;当()74f x =时,当13x <<时,由27334x x -+=解得:52E x =.由图像知,若函数()f x 在区间[],m n 上的值域为37,44⎡⎤⎢⎥⎣⎦,则区间[],m n 长度的最大值为537244E C x x -=-=.故答案为:74四、解答题:本题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤.15.(1)计算:111224127()10()()20024-+⨯⨯(2)已知11223x x-+=,求22122x x x x --+-+-的值.【答案】(1)25;(2)9.【解析】【分析】(1)(2)利用指数性质、运算法则直接求解.【详解】(1)原式131144221103(1)151025.2++=+⨯⨯-=+-+=(2)由11223x x-+=,得129x x -++=,则17x x -+=,2247x x -+=,所以22124729272x x x x --+--==+--.16.若关于x 的不等式2310ax x +->的解集是112A x x ⎧⎫=<<⎨⎬⎩⎭.(1)求a 的值;(2)设集合=2<<1−,若“x A ∈”是“x B ∈”的充分条件,求实数m 的取值范围.【答案】(1)−2(2)0m ≤【解析】【分析】(1)根据一元二次不等式的解集,利用根与系数的关系,即可求得答案;(2)由题意可得A B ⊆,由此列不等式求解,即得答案.【小问1详解】因为关于x 的不等式2310ax x +->的解集是112x x ⎧⎫<<⎨⎬⎩⎭,故2310ax x +-=的两根为1,12,且0a <,故11122a a⨯=-⇒=-;【小问2详解】由题意集合{}21B x m x m =<<-,“x A ∈”是“x B ∈”的充分条件,故A B ⊆,由于112A xx ⎧⎫=<<⎨⎬⎩⎭,故B 不为空集,则1221121m m m m ⎧≤⎪⎪-≥⎨⎪<-⎪⎩,解得0m ≤.17.函数()29x x ax f b--=是定义在区间()3,3-上的奇函数,且()11.4f =(1)确定()f x 的解析式,并用定义证明()f x 在区间()3,3-上的单调性;(2)解关于t 的不等式()()10.f t f t -+<【答案】(1)()229xf x x =-;证明见解析(2)12,2⎛⎫- ⎪⎝⎭【解析】【分析】(1)利用函数在()3,3-上有定义且为奇函数,则()00f =,求出b 的值,再由()114f =求出a 的值,即可确定()f x 的解析式;直接利用定义法证明函数()f x 在()3,3-上的单调性;(2)由奇函数的性质知()()1f t f t -<-,由函数单调性得313331t t t t -<-<⎧⎪-<<⎨⎪-<-⎩,求解即可.【小问1详解】根据题意,函数()29ax bf x x -=-是定义在()3,3-上的奇函数,则()009bf -==,解可得0b =;又由()114f =,则有()1184a f ==,解可得2a =,则()229xf x x=-,又()()()222299x xf x f x x x --==-=----,符合题意,故()229xf x x=-.设1233x x -<<<,则()()()()()()2212211212222212122929229999x x x x x x f x f x x x x x ----=-=----()()()()121222122999x x x x x x +-=--,又由1233x x -<<<,则1290x x +>,120x x -<,2190x ->,2290x ->,则()()120f x f x -<,即()()12f x f x <,则函数()f x 在()3,3-上为增函数;【小问2详解】由(1)知()f x 为奇函数且在()3,3-上为增函数.则()()()()101f t f t f t f t -+<⇒-<-()()1f t f t ⇒-<-,故313331t t t t-<-<⎧⎪-<<⎨⎪-<-⎩,解可得:122t -<<,即不等式的解集为12,2⎛⎫- ⎪⎝⎭.18.某机床厂今年年初用100万元购入一台数控机床,并立即投入生产使用.已知该机床在使用过程中所需要的各种支出费用总和t (单位:万元)与使用时间x (*,20x x ∈≤N ,单位:年)之间满足函数关系式为:228.t x x =+该机床每年的生产总收入为50万元.设使用x 年后数控机床的盈利额为y 万元.(盈利额等于总收入减去购买成本及所有使用支出费用).(1)写出y 与x 之间的函数关系式;(2)从第几年开始,该机床开始盈利(盈利额为正值)?(3)该机床使用过程中,已知年平均折旧率为4%(固定资产使用1年后,价值的损耗与前一年价值的比率).现对该机床的处理方案有两种:第一方案:当盈利额达到最大值时,再将该机床卖出;第二方案:当年平均盈利额达到最大值时,再将该机床卖出.研究一下哪种处理方案较为合理?请说明理由.(参考数据:70.960.751≈,80.960.721≈,90.960.693≈,100.960.665≈)【答案】(1)2242100y x x =-+-,()*,20x x ∈≤N (2)第3年(3)选第一方案较为合理,理由见解析【解析】【分析】(1)利用盈利额等于总收入减去购买成本及所有使用支出费用,得到y 与x 之间的函数关系式;(2)令0y >,解一元二次不等式即可;(3)利用二次函数求最值,求出第一方案总获利,由100100242422y x x x x x ⎛⎫=-+-=-+ ⎪⎝⎭,利用函数单调性求出第二方案总获利,再比较即可.【小问1详解】由题意,使用过程中所需要的各种支出费用总和t 与使用时间x 之间的函数关系式为228t x x =+,且该机床每年的生产总收入为50万元,设使用x 年后数控机床的盈利额为y 万元,可得y 与x 之间的函数关系式()225028100242100y x x x x x =-+-=-+-,()*,20x x ∈≤N ;【小问2详解】由(1)知:2242100y x x =-+-,()*,20x x ∈≤N ,令0y >,可得22421000x x -+->,解得212412124122x -+<<,因为1516<<,所以521322-<<,213718.22+<<因为*x ∈N ,所以318x ≤≤且*x ∈N ,故从第3年开始盈利.【小问3详解】由(1)知2242100y x x =-+-,()*,20x x ∈≤N ,因为22212412421002()22y x x x =-+-=--+,所以当10x =或11x =时,营利额达到最大值为120万元,使用10年后机床剩余价值为:10100(14%)66.5-≈(万元),所以按第一方案处理,总获利为12066.5186.5+=(万元);又由100100242422y x x x x x ⎛⎫=-+-=-+ ⎪⎝⎭,令()100422h x x x ⎛⎫=-+⎪⎝⎭,()020x <≤,12020x x ∀<<≤,则()()()()12121212121250100100222x x x x h x h x x x x x x x --⎛⎫⎛⎫-=-+++=- ⎪ ⎪⎝⎭⎝⎭,当120x x <<<时,12120,500x x x x -<-<,则()()120h x h x -<,即()()12h x h x <,因此可得ℎ在(上单调递增;1220x x <<≤时,12120,500x x x x -<->,则()()120h x h x ->,即()()12h x h x >,因此可得ℎ20⎤⎦上单调递减;又78<<,当7x =时,年平均盈利为967万元,当8x =时,年平均盈利为272万元,又962772>,所以当第7年时,年平均盈利额达到最大值,此时机床剩余价值为:7100(14%)75.1-≈(万元),所以按第二方案处理,总获利为96775.1171.17⨯+=(万元).由于186.5171.1>,则选第一方案较为合理.【点睛】方法点睛:解答函数应用题的一般步骤:(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)求模:求解数学模型,得出数学结论;(4)还原:将数学问题还原为实际问题的意义.19.定义:对于定义在区间I 上的函数()f x 和正数(01)αα<≤,若存在正数M ,使不等式()()1212|f x f x M x x |α-≤-对任意1x ,2x I ∈恒成立,则称函数()f x 在区间I 上满足α阶李普希兹条件.(1)判断函数y x =,3y x =在R 上是否满足1阶李普希兹条件;(2)证明函数y =在区间[)1,+∞上满足12阶李普希兹条件,并求出M 的取值范围;(3)若函数y =[)1,+∞上满足α阶李普希兹条件,求α的范围.【答案】(1)y x =满足1阶李普希兹条件,3y x =不满足1阶李普希兹条件.(2)证明见解析,1M ≥(3)112α≤≤.【解析】【分析】(1)结合题意根据1阶李普希兹条件的含义即可求解;(2)结合已知条件以及题干定义即可求解.(3)分情况讨论α的取值范围结合定义从而即可求解.【小问1详解】y x =满足1阶李普希兹条件,3y x =不满足1阶李普希兹条件.理由:对于y x =,1212||||x x M x x -≤-,只需1M ≥,所以存在正数1M ≥,对任意1x ,2R x ∈使()()1212f x f x M x x -≤-成立,所以y x =满足1阶李普希兹条件;对于3y x =,331212||||x x M x x -≤-,不妨设12x x >,则≥12+12+22=1+22−12>()21234x x +,()[)212304y x x ∞=+∈+,,即不存在正数M ,使不等式()()1212f x f x M x x -≤-对任意1x ,2x I ∈恒成立,所以3y x =不满足1阶李普希兹条件.【小问2详解】证明:不妨设121x x >≥,()()12f x f x ∴-=()()()()()1212212120,1f x f x x x x x -∴=--,故1M ≥时,对1x ∀,[)21,x ∈+∞,均有()()121212()f x f x M xx -≤-,故函数y =在区间[)1,+∞上满足12阶李普希兹条件,1M ≥;【小问3详解】①首先证明102α<<时不成立,假设函数y =在区间[)1+∞,上满足1(02αα<<阶李普希兹条件,12()M x x α≤-,令124x x =,则有22(4)M x x α-≤-,即122221.3M x α-≥>=取()212231x M α-=+,则1221133x M α-=+,则13M M >+,矛盾,所以假设不成立.②然后证明112α≤≤时成立,不妨设12121(x x x x >≥=时显然成立),令212(1)x k x k =>,()()(121f x f x k ∴-==-()22122221x x k x x k x ∴-=-=-;要证函数y =在区间[)1,∞+上满足112αα⎛⎫≤≤⎪⎝⎭阶李普希兹条件,只需证存在正数M12()M x x α≤-成立,即证(221(1)k M k x αα--,又1222211(1)(1)k k x k k ααα---≤--,当(k ∈时,22(1)1k k α-≥-,所以221111(1)11k k k k k α--≤=<--+;当)2k ∈时,1222(1)(1)k k α-≥-,所以211(1)k k α-≤=<-;当[)2,k ∞∈+时,121(1)(1)1(1)(1)(1)k k k k k k ααααα----=≤<-++,故取1M≥,不等式即可成立.综上,α的取值范围为1 1. 2α≤≤【点睛】难点点睛:本题考查函数新定义问题,难度大.解答时要根据题目所给α阶李普希兹条件的定义分析所给函数的结合不等式分析可解答.。
浙江省宁波2023-2024学年高一上学期期中考试数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每个题给出的四个选项中,只有一项是符合题目要求的.(答案在最后)1.已知集合{||11},{14}A x x B x x =-<=≤≤∣∣,则A B = ()A.{12}x x <<∣B.{12}xx ≤<∣C .{04}xx <<∣ D.{04}xx <≤∣【答案】B 【解析】【分析】先求集合A ,再根据交集运算求解即可.【详解】由题意,因为集合{|02},{|14}A x x B x x =<<=≤≤所以{|12}A B x x =≤< .故选:B.2.已知命题2000:1,0p x x x ∃≥-<,则命题p 的否定为()A.200010x ,x x ∃≥-≥ B.200010x ,x x ∃<-≥C.210x ,x x ∀<-≥ D.210x ,x x ∀≥-≥【答案】D 【解析】【分析】根据存在量词命题的否定方法对命题p 否定即可.【详解】由命题否定的定义可知,命题2000:1,0p x x x ∃≥-<的否定是:210x ,x x ∀≥-≥.故选:D.3.对于实数a ,b ,c ,下列结论中正确的是()A.若a b >,则22>ac bcB.若>>0a b ,则11>a bC.若<<0a b ,则<a b b aD.若a b >,11>a b,则<0ab 【答案】D 【解析】【分析】由不等式的性质逐一判断.【详解】解:对于A :0c =时,不成立,A 错误;对于B :若>>0a b ,则11<a b,B 错误;对于C :令2,a =-1b =-,代入不成立,C 错误;对于D :若a b >,11>a b,则0a >,0b <,则<0ab ,D 正确;故选:D .4.已知0x 是函数1()33xf x x ⎛⎫=-+ ⎪⎝⎭的一个零点,则0x ∈()A.(1,2)B.(2,3)C.(3,4)D.(4,5)【答案】C 【解析】【分析】根据题意,由条件可得函数单调递减,再由零点存在定理即可得到结果.【详解】根据题意知函数1()3xf x ⎛⎫= ⎪⎝⎭在区间1,+∞上单调递减,函数()3f x x =-+在区间()1,∞+单调递减,故函数1()33xf x x ⎛⎫=-+ ⎪⎝⎭在区间1,+∞上单调递减,又因1>2>3>0,4<0,又因()133xf x x ⎛⎫=-+ ⎪⎝⎭在()1,∞+上是连续不中断的,所以根据零点存在定理即可得知存在()03,4x ∈使得()00f x =.故选:C5.“2a ≤”是“函数()2()ln 1f x x ax =-+在区间[)2,+∞上单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】A 【解析】【分析】根据复合函数的单调性求函数()2()ln 1f x x ax =-+在区间[)2,+∞上单调递增的等价条件,在结合充分条件、必要条件的定义判断即可.【详解】二次函数21y x ax =-+图象的对称轴为2a x =,若函数()2()ln 1f x x ax =-+在区间[)2,+∞上单调递增,根据复合函数的单调性可得2≤24−2+1>0,即52a <,若2a ≤,则52a <,但是52a <,2a ≤不一定成立,故“2a ≤”是“函数()2()ln 1f x x ax =-+在区间[)2,+∞上单调递增”的充分不必要条件.故选:A 6.函数22()1xf x x =+的图象大致是()A. B.C. D.【答案】D 【解析】【分析】首先判断函数的奇偶性,即可判断A 、B ,再根据0x >时函数值的特征排除C.【详解】函数22()1x f x x =+的定义域为R ,且()()2222()11x x f x f x x x --==-=-+-+,所以22()1xf x x =+为奇函数,函数图象关于原点对称,故排除A 、B ;又当0x >时()0f x >,故排除C.故选:D7.已知42log 3x =,9log 16y =,5log 4z =,则x ,y ,z 的大小关系为()A.y x z >>B.z x y >>C.x y z >>D.y z x>>【答案】C 【解析】【分析】利用对数运算法则以及对数函数单调性可限定出x ,y ,z 的取自范围,即可得出结论.【详解】根据题意可得2222log 3log 3x ==,2233log 4log 4y ==,5log 4z =利用对数函数单调性可知32223log 3log log log 22x ===,即32x >;又323333331log 3log 4log log log 32y ====<,可得312y <<;而55log 4log 51z ==<,即1z <;综上可得x y z >>.故选:C8.已知函数323log ,03()1024,3x x f x x x x ⎧<≤=⎨-+>⎩,若方程()f x m =有四个不同的实根()12341234,,,x x x x x x x x <<<,则()()3412344x x x x x --的取值范围是()A.(0,1)B.(1,0)- C.(4,2)- D.(2,0]-【答案】B 【解析】【分析】根据图象分析可得121x x =,()()343410,3,4,6,7x x x x +=∈∈,整理得3431233(4)(4)2410x x x x x x x ⎛⎫--=-++ ⎪⎝⎭,结合对勾函数运算求解.【详解】因为op =3log 3,0<≤32−10+24,>3,当3x >时()22()102451f x x x x =-+=--,可知其对称轴为5x =,令210240x x -+=,解得4x =或6x =;令210243x x -+=,解得3x =或7x =;当03x <≤时3()3log f x x =,令33log 3x =,解得13x =或3x=,作出函数=的图象,如图所示,若方程()f x m =有四个不同的实根12341234,,,()x x x x x x x x <<<,即()y f x =与y m =有四个不同的交点,交点横坐标依次为12341234,,,()x x x x x x x x <<<,则12341134673x x x x <<<<<<<<<,对于12,x x ,则3132log log x x =,可得3132312log log log 0x x x x +==,所以121x x =;对于34,x x ,则()()343410,3,4,6,7x x x x +=∈∈,可得4310x x =-;所以()()3434333431233334161024(4)(4)2410x x x x x x x x x x x x x x x -++--⎛⎫--===-++ ⎪⎝⎭,由对勾函数可知332410y x x ⎛⎫=-++ ⎪⎝⎭在()3,4上单调递增,得()3324101,0x x ⎛⎫-++∈- ⎪⎝⎭,所以34123(4)(4)x x x x x --的取值范围是()1,0-.故选:B.【点睛】关键点点睛:本题解答的关键是画出函数图象,结合函数图象分析出121x x =,()()343410,3,4,6,7x x x x +=∈∈,从而转化为关于3x 的函数;二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法正确的是()A.函数1()21x f x -=+恒过定点(1,1)B.函数3x y =与3log y x =的图象关于直线y x =对称C.0x ∃∈R ,当0x x >时,恒有32x x >D.若幂函数()f x x α=在(0,)+∞单调递减,则0α<【答案】BCD 【解析】【分析】由指数函数的性质可判断A ;由反函数的性质可判断B ;由指数函数的增长速度远远快于幂函数,可判断C ;由幂函数的性质可判断D .【详解】对于A ,函数1()21x f x -=+恒过定点(1,2),故A 错误;对于B ,函数3x y =与3log y x =的图象关于直线y x =对称,故B 正确;对于C ,因为指数函数的增长速度远远快于幂函数,所以0x x >时,恒有32x x >,故C 正确;对于D ,当0α<时,幂函数()f x x α=在(0,)+∞单调递减,故D 正确;故选:BCD .10.已知函数e 1()e 1x x f x +=-,则下列结论正确的是()A.函数()f x 的定义域为RB.函数()f x 的值域为(,1)(1,)-∞-+∞C.()()0f x f x +-=D.函数()f x 为减函数【答案】BC 【解析】【分析】根据分母不为0求出函数的定义域,即可判断A ;再将函数解析式变形为2()1e 1xf x =+-,即可求出函数的值域,从而判断B ;根据指数幂的运算判断C ,根据函数值的特征判断D.【详解】对于函数e 1()e 1x x f x +=-,则e 10x -≠,解得0x ≠,所以函数的定义域为{}|0x x ≠,故A 错误;因为e 1e 122()1e 1e 1e 1x x x x xf x +-+===+---,又e 0x >,当e 10x ->时20e 1x >-,则()1f x >,当1e 10x -<-<时22e 1x<--,则()1f x <-,所以函数()f x 的值域为(,1)(1,)-∞-+∞ ,故B 正确;又11e 1e 1e 1e 1e 1e ()()01e 1e 1e 11e e 11e xxxx x x x x x xx xf x f x --++++++-+=+=+=+------,故C 正确;当0x >时()0f x >,当0x <时()0f x <,所以()f x 不是减函数,故D 错误.11.已知0,0a b >>,且1a b +=,则()A.22log log 2a b +≥- B.22a b +≥C.149a b +≥ D.33114a b ≤+<【答案】BCD 【解析】【分析】利用基本不等式求出ab 的范围,即可判断A ;利用基本不等式及指数的运算法则判断B ;利用乘“1”法及基本不等式判断C ;利用立方和公式及ab 的范围判断D.【详解】因为0,0a b >>,且1a b +=,所以2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时取等号,所以()22221log log log log 24a b ab +=≤=-,当且仅当12a b ==时取等号,故A 错误;22a b +≥=22a b =,即12a b ==时取等号,故B 正确;()14144559b a a b a b a b a b ⎛⎫+=++=++≥+ ⎪⎝⎭,当且仅当4b a a b =,即13a =,23b =时取等号,故C 正确;()()()2332222313a b a b a ab b a ab b a b ab ab +=+-+=-+=+-=-,因为104ab <≤,所以3034ab <≤,所以11314ab ≤-<,即33114a b ≤+<,故D 正确.故选:BCD12.对于定义在[]0,1上的函数()f x 如果同时满足以下三个条件:①()11f =;②对任意[]()0,1,0x f x ∈≥成立;③当12120,0,1x x x x ≥≥+≤时,总有()()()1212f x f x f x x +≤+成立,则称()f x 为“天一函数”.若()f x 为“天一函数”,则下列选项正确的是()A.()00f =B.()0.50.5f ≤C.()f x 为增函数 D.对任意[0,1]x ∈,都有()2f x x ≤成立【答案】ABD【分析】对于A ,令120x x ==,结合题中条件即可求解;对于B ,令120.5x x ==,结合题中条件即可求解;对于C ,令2121101X x x x X +>≥=≥=,结合性质②③可得()()21f X f X ≥,因此有()f x 在[]0,1x ∈上有递增趋势的函数(不一定严格递增),即可判断;对于D ,应用反证法:若存在[]00,1x ∈,使0>20成立,讨论1,12x ⎡⎤∈⎢⎥⎣⎦,10,2x ⎡⎫∈⎪⎢⎣⎭,结合递归思想判断0x 的存在性.【详解】对于A ,令120x x ==,则()()()000f f f +≤,即()00f ≤,又对任意[]()0,1,0x f x ∈≥成立,因此可得()00f =,故A 正确;对于B ,令120.5x x ==,则()()()0.50.51f f f +≤,又()11f =,则()0.50.5f ≤,故B 正确;对于C ,令2121101X x x x X +>≥=≥=,则221(0,1]x X X -∈=,所以()()()()()()12122121f X f X X f X f X f X f X X +-≤⇒-≥-,又对任意[]()0,1,0x f x ∈≥成立,则()221()0f x f X X =-≥,即()()210f X f X -≥,所以()()21f X f X ≥,即对任意1201x x ≤<≤,都有()()12f x f x ≤,所以()f x 在[]0,1x ∈上非递减,有递增趋势的函数(不一定严格递增),故C 错误;对于D ,由对任意1201x x ≤<≤,都有()()12f x f x ≤,又()00f =,()11f =,故()[]0,1f x ∈,反证法:若存在[]00,1x ∈,使0>20成立,对于1,12x ⎡⎤∈⎢⎥⎣⎦,()1f x ≤,而21x ≥,此时不存在01,12x ⎡⎤∈⎢⎥⎣⎦使0>20成立;对于10,2x ⎡⎫∈⎪⎢⎣⎭,若存在010,2x ⎡⎫∈⎪⎢⎣⎭使0>20成立,则()()()002f f x f x ≥,而[)020,1x ∈,则()()()()000022f x f x f x f x ≥+=,即0≥20>40,由()[)00,1f x ∈,依次类推,必有[)0,1∈t ,0()2nf t x >且*n ∈N 趋向于无穷大,此时()[0,1)f t ∈,而02nx 必然会出现大于1的情况,与>20矛盾,所以在10,2x ⎡⎫∈⎪⎢⎣⎭上也不存在010,2x ⎡⎫∈⎪⎢⎣⎭使0>20成立,综上,对任意[]0,1x ∈,都有()2f x x ≤成立,故D 正确;故选:ABD.【点睛】关键点点睛:对于D ,应用反证及递归思想推出1,12x ⎡⎤∈⎢⎥⎣⎦,10,2x ⎡⎫∈⎪⎢⎣⎭情况下与假设矛盾的结论.三、填空题:本大题共4小题,每小题5分,共20分.13.若23(1)()log (1)x x f x x x ⎧≤=⎨>⎩,则(0)(8)f f +=______.【答案】4【解析】【分析】根据分段函数解析式计算可得.【详解】因为23(1)()log (1)x x f x x x ⎧≤=⎨>⎩,所以()0031f ==,()32228log 8log 23log 23f ====,所以(0)(8)4f f +=.故答案为:414.已知()f x 是定义在R 上的奇函数,当0x >时,()22xf x x =-,则()()10f f -+=__________.【答案】1-【解析】【分析】根据()f x 是定义在R 上的奇函数,可得(1)(1)f f -=-,(0)0f =,只需将1x =代入表达式,即可求出(1)f 的值,进而求出(1)(0)f f -+的值.【详解】因为()f x 是定义在R 上的奇函数,可得(1)(1)f f -=-,(0)0f =,又当0x >时,()22xf x x =-,所以12(1)211f =-=,所以(1)(0)101f f -+=-+=-.故答案为:1-【点睛】本题主要考查利用奇函数的性质转化求函数值,关键是定义的灵活运用,属于基础题.15.定义在R 上的偶函数()f x 满足:在[)0,+∞上单调递减,则满足()()211f x f ->的解集________.【答案】()0,1【解析】【分析】利用偶函数,单调性解抽象不等式【详解】因为()f x 为定义在R 上的偶函数,且在[)0,+∞上单调递减,所以()()()()211211f x f fx f ->⇔->,所以2111211x x -<⇔-<-<,即01x <<,故答案为:()0,116.设函数31()221x f x =-+,正实数,a b 满足()(1)2f a f b +-=,则2212b aa b +++的最小值为______.【答案】14##0.25【解析】【分析】首先推导出()()2f x f x +-=,再说明()f x 的单调性,即可得到1a b +=,再由乘“1”法及基本不等式计算可得.【详解】因为31()221x f x =-+,所以3132()221221xx xf x --=-=-++,所以331()()22221221x x x f x f x +-=-+-=++,又21x y =+在定义域R 上单调递增,且值域为()1,+∞,1y x =-在()1,+∞上单调递增,所以31()221x f x =-+在定义域R 上单调递增,因为正实数,a b 满足()(1)2f a f b +-=,所以10a b +-=,即1a b +=,所以()()222211212412b a b a a b a b a b ⎛⎫⎡⎤+=++++ ⎪⎣⎦++++⎝⎭()()2222211412b b a a b a a b ⎡⎤++=+++⎢⎥++⎣⎦()()22222111124444b a b a ab a b ⎡⎢≥++=++=+=⎢⎣,当且仅当()()222112b b a a a b ++=++,即35a =,25b =时取等号,所以2212b a a b +++的最小值为14.故答案为:14四、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.计算下列各式的值.(1)20.5233727228)9643-⎛⎫⎛⎫⎛⎫+-+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(2)2log 3223(lg5)lg2lg50log 3log 22+⨯+⋅+【答案】(1)229(2)5【解析】【分析】(1)根据指数幂的运算法则计算可得;(2)根据对数的运算性质及换底公式计算可得.【小问1详解】20.5233727229643-⎛⎫⎛⎫⎛⎫+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2223333212139245-⎡⎤⎛⎫⎛⎫⎛⎫=+-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦2323332521334⎛⎫⨯- ⎪⨯⎝⎭⎛⎫=+-+ ⎪⎝⎭5162221399=+-+=.【小问2详解】2log 3223(lg5)lg2lg50log 3log 22+⨯+⋅+()210lg 3lg 2(lg 5)lg lg 10535lg 2lg 3⎛⎫=+⨯⨯+⋅+ ⎪⎝⎭()()2(lg5)1lg51lg513=+-⨯+++()()22lg 51lg 5135=+-++=.18.设全集为R ,已知集合{}2|280A x R x x =∈--≤,(){}2|550B x R x m x m =∈-++≤.(1)若3m =,求A B ,R A ð;(2)若R B A ⊆ð,求实数m 的取值范围.【答案】(1){}25A B x R x ⋃=∈-≤≤;{2R A x x =<-ð或}4x >;(2)4m >.【解析】【分析】(1)先解不等式求出集合A ,B ,根据补集的概念,以及并集的概念,即可得出结果;(2)由(1)得出R A ð,再对m 分类讨论,即可得出结果.【详解】(1)因为{}{}228024A x R x x x R x =∈--≤=∈-≤≤,则{2R A x x =<-ð或}4x >;若3m =,则{}{}2815035B x R x x x R x =∈-+≤=∈≤≤,所以{}25A B x R x ⋃=∈-≤≤.(2)由(1){2R A x x =<-ð或}4x >,()(){}|50B x R x x m =∈--≤,当5m =时,则{5}B =,满足R B A ⊆ð;当5m >时,则[5,]B m =,满足R B A ⊆ð;当5m <时,则[,5]B m =,为使R B A ⊆ð,只需4m >,所以45m <<.综上,4m >.19.为了节能减排,某农场决定安装一个可使用10年旳太阳能供电设备.使用这种供电设备后,该农场每年消耗的电费C (单位:万元)与太阳能电池面积x (单位:平方米)之间的函数关系为4,0105(),10m xx C x m x x-⎧≤≤⎪⎪=⎨⎪>⎪⎩,(m 为常数),已知太阳能电池面积为5平方米时,每年消耗的电费为12万元.安装这种供电设备的工本费为0.5x (单位:1万元),记()F x 为该农场安装这种太阳能供电设备的工本费与该农场10年消耗的电费之和(1)写出()F x 的解析式;(2)当x 为多少平方米时,()F x 取得最小值?最小值是多少万元?【答案】(1)1607.5,010()8000.5,10x x F x x x x-≤≤⎧⎪=⎨+>⎪⎩;(2)40平方米,最小值40万元.【解析】【分析】(1)根据给定的条件,求出m 值及()C x 的解析式,进而求出()F x 的解析式作答.(2)结合均值不等式,分段求出()F x 的最小值,再比较大小作答.【小问1详解】依题意,当5x =时,()12C x =,即有45125m -⨯=,解得80m =,则804,0105()80,10xx C x x x -⎧≤≤⎪⎪=⎨⎪>⎪⎩,于是得1607.5,010()10()0.58000.5,10x x F x C x x x x x -≤≤⎧⎪=+=⎨+>⎪⎩,所以()F x 的解析式是1607.5,010()8000.5,10x x F x x x x-≤≤⎧⎪=⎨+>⎪⎩.【小问2详解】由(1)知,当010x ≤≤时,()1607.5F x x =-在[0,10]上递减,min ()(10)85F x F ==,当10x >时,800()402x F x x =+≥=,当且仅当8002x x =,即40x =时取等号,显然4085<,所以当x 为40平方米时,()F x 取得最小值40万元.【点睛】方法点睛:在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值.20.已知函数1()2(R)2xx m f x m -=-∈是定义在R 上的奇函数.(1)求m 的值;(2)根据函数单调性的定义证明()f x 在R 上单调递增;(3)设关于x 的函数()()()9143xxg x f m f =++-⋅有零点,求实数m 的取值范围.【答案】(1)2m =(2)证明见解析(3)(],3-∞【解析】【分析】(1)由奇函数性质(0)0f =求得参数值,再验证符合题意即可;(2)根据单调性的定义证明;(3)令()0g x =,结合()f x 的单调性得到9431x x m +=⋅-,参变分离可得1943x x m =-+-⨯,依题意可得关于x 的方程1943x x m =-+-⨯有解,令()1943xxh x =-⨯+-,则y m =与()y h x =有交点,利用换元法求出()h x 的值域,即可得解.【小问1详解】因为1()2(R)2xxm f x m -=-∈是定义在R 上的奇函数,所以(0)1(1)0f m =--=,解得2m =,当2m =时,1()2222xx xx f x -=-=-,满足()()f x f x -=-,()f x 是奇函数,所以2m =;【小问2详解】由(1)可得1()22x x f x =-,设任意两个实数12,R x x ∈满足12x x <,则1212121212111()()22(22)(1)2222xx x x x x x x f x f x -=--+=-+⋅,∵12x x <,∴12022x x <<,1211022x x +>⋅,∴12())0(f x f x -<,即12()()f x f x <,所以()f x 在R 上为单调递增;【小问3详解】令()0g x =,则()()9143xxf m f +=--⋅,又()f x 是定义在R 上的奇函数且单调递增,所以()()1943xxf m f +=⋅-,则9431x x m +=⋅-,则1943x x m =-+-⨯,因为关于x 的函数()()()9143xxg x f m f =++-⋅有零点,所以关于x 的方程1943x x m =-+-⨯有解,令()1943xxh x =-⨯+-,则y m =与()y h x =有交点,令3x t =,则()0,t ∈+∞,令()214H t t t +--=,()0,t ∈+∞,则()()222314H t t t t +-==---+,所以()H t 在()0,2上单调递增,在()2,+∞上单调递减,所以()(],3H t ∈-∞,所以()(],3h x ∈-∞,则(],3m ∈-∞,即实数m 的取值范围为(],3-∞.21.设R a ∈,已知函数()y f x =的表达式为21()log f x a x ⎛⎫=+ ⎪⎝⎭.(1)当3a =时,求不等式()1f x >的解集;(2)设0a >,若存在1,12t ⎡⎤∈⎢⎥⎣⎦,使得函数()y f x =在区间[],2t t +上的最大值与最小值的差不超过1,求实数a 的取值范围.【答案】(1)(,1)(0,)-∞-⋃+∞(2)1,3⎡⎫+∞⎪⎢⎣⎭【解析】【分析】(1)根据函数的单调性转化为自变量的不等式,解得即可;(2)根据函数的单调性求出最值,根据不等式有解分离参数求取值范围.【小问1详解】当3a =时,21()log 3f x x ⎛⎫=+⎪⎝⎭,不等式()1f x >,即21log 31x ⎛⎫+>⎪⎝⎭,所以132x +>,即10x x +>,等价于()10x x +>,解得1x <-或0x >;所以不等式()1f x >的解集为(,1)(0,)-∞-⋃+∞;【小问2详解】因为0a >,1[,1]2t ∈,所以当[,2]x t t ∈+时,函数1y a x=+为减函数,所以函数()21log f x a x ⎛⎫=+⎪⎝⎭在区间[],2t t +上单调递减,又函数()y f x =在区间[],2t t +上最大值和最小值的差不超过1,所以()()21f t f t -+≤,即2211log ()log ()12a a t t +-+≤+,即222111log ()1log ()log 2()22a a a t t t +≤++=+++所以112()2a a t t +≤++,即存在1[,1]2t ∈使122a t t ≥-+成立,只需min122a t t ⎛⎫≥- ⎪+⎝⎭即可,考虑函数121,[,1]22y t t t =-∈+,221,[,1]22t y t t t -=∈+,令321,2r t ⎡⎤=-∈⎢⎥⎣⎦,213,1,86826r y r r r r r⎡⎤==∈⎢⎥-+⎣⎦+-,设()8g r r r =+,其中31,2r ⎡⎤∈⎢⎥⎣⎦,任取123,1,2r r ⎡⎤∈⎢⎥⎣⎦,且12r r <,则()()()212121212121888r r g r g r r r r r r r r r ⎛⎫--=+--=- ⎪⎝⎭,因为12r r <,所以210r r ->,因为123,1,2r r ⎡⎤∈⎢⎥⎣⎦,所以2180r r -<,所以()()21g r g r <,所以函数()g r 在31,2⎡⎤⎢⎥⎣⎦上单调递减,所以86y r r =+-在31,2r ⎡⎤∈⎢⎥⎣⎦单调递减,所以856,36r r ⎡⎤+-∈⎢⎥⎣⎦,116,8356r r⎡⎤∈⎢⎥⎣⎦+-,所以13a ≥,所以a 的取值范围为1,3⎡⎫+∞⎪⎢⎣⎭.22.已知函数43()21x x f x +=+,函数2()||1g x x a x =-+-.(1)若[0,)x ∈+∞,求函数()f x 的最小值;(2)若对1[1,1]x ∀∈-,都存在2[0,)x ∈+∞,使得()()21f x g x =,求a 的取值范围.【答案】(1)2(2)1313,,44⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭【解析】【分析】(1)首先利用指数运算,化简函数()()421221xx f x =++-+,再利用换元,结合对勾函数的单调性,即可求解函数的最值;(2)首先将函数()f x 和()g x 在定义域的值域设为,A B ,由题意可知B A ⊆,()02g ≥,确定a 的取值范围,再讨论去绝对值,求集合B ,根据子集关系,比较端点值,即可求解.【小问1详解】若[)0,x ∈+∞,()()()()221221442122121x x x x xf x +-++==++-++,因为[)0,x ∈+∞,令212x t =+≥,则()42,2y t t t=+-≥,又因为42y t t=+-在[)2,+∞上单调递增,当2t =,即0x =时,函数取得最小值2;【小问2详解】设()f x 在[)0,+∞上的值域为A ,()g x 在[]1,1-上的值域为B ,由题意可知,B A ⊆,由(1)知[)2,A =+∞,因为()012g a =-≥,解得:3a ≥或3a ≤-,当3a ≥时,且[]11,1x ∈-,则10x a -<,可得()222111111151124g x x a x x x a x a ⎛⎫=-+-=-+-=-+- ⎪⎝⎭,可得()1g x 的最大值为()11g a -=+,最小值为1524g a ⎛⎫=-⎪⎝⎭,即5,14B a a ⎡⎤=-+⎢⎥⎣⎦,可得524a -≥,解得:134a ≥,当3a ≤-时,且[]11,1x ∈-,10x a ->,可得()222111111151124g x x a x x x a x a ⎛⎫=-+-=+--=+-- ⎪⎝⎭,可知,()1g x 的最大值为()11g a =-,最小值为1524g a ⎛⎫-=-- ⎪⎝⎭,即5,14B a a ⎡⎤=---⎢⎥⎣⎦,可得524a --≥,解得:134a ≤-,综上可知,a 的取值范围是1313,,44⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭.【点睛】关键点点睛:本题第二问的关键是求函数()g x 的值域,根据()02g ≥,缩小a 的取值范围,再讨论去绝对值.。
2024~2025学年第一学期高一年级期中学业诊断数学试卷(答案在最后)(考试时间:上午7:30-9:00)说明:本试卷为闭卷笔答,答题时间90分钟,满分100分.题号一二三四总分得分一、单项选择题(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}0,1,2,3A =,{}2,3,4B =,则A B = A.{}2,3 B.{}0,1,2,3,4 C.[]2,3 D.[]0,42.已知a b >,则下列结论正确的是A.ac bc > B.22a b> C.1a b >- D.11b a>3.函数()ln f x x =的定义域是A.()0,+∞ B.(]0,2 C.()()0,22,+∞ D.[)2,+∞4.“0xy =”是“0x =”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.函数()11x f x a -=-(0a >,且1)a ≠的图象必经过的定点是A.()1,0 B.()1,1- C.()1,0- D.()1,1--5.已知不等式2220kx kx +-<对于一切实数x 都成立,则实数k 的取值范围是A.()2,0- B.(]2,0- C.()0,2 D.[)0,26.已知函数()()1,bf x ax a b x=++∈R ,且()10f -=,则()1f =A.-1B.1C.-2D.27.已知0,0x y >>,且满足2x y xy +=,若228x y m m +>-恒成立,则实数m 的取值范围是A.()1,9- B.()9,1- C.()(),19,-∞-+∞ D.()(),91,-∞-+∞ 二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)9.已知幂函数()f x 的图象经过点(,则下列结论正确的是A.()2f -= B.()f x 是增函数C.()f x 是偶函数D.不等式()1f x <的解集为{}01x x <<10.已知函数()f x 是定义域为R 的奇函数,当0x >时,()22f x x x =-,则下列结论正确的是A.()00f = B.()1f -是函数()f x 的最大值C.当0x <时,()22f x x x=-+ D.不等式()0f x >的解集是()()2,02,-+∞ 11.已知函数()f x 对于一切实数x ,y 都有()()()f x y f x f y +=,当0x >时,()01f x <<,()113f =,则下列结论正确的是A.()01f = B.若()9f m =,则2m =C.()f x 是增函数D.()0f x >三、填空题(本题共3小题,每小题3分,共9分)12.命题“x ∃∈R ,20x x ->”的否定是________13.已知函数()2,0,1,0x a x f x ax x ⎧-=⎨-<⎩在R 上是增函数,则实数a 的取值范围________.14.对实数a 和b ,定义运算“◎”:,1,,1,a ab a b b a b -⎧=⎨->⎩◎,设函数()()222f x x x =+◎,x ∈R .若函数()y f x m =-的图象与x 轴恰有2个公共点,则实数m 的取值范围是________.四、解答题(本题共5小题,共49分.解答应写出文字说明、证明过程或演算步骤)15.计算下列各式的值(每小题4分,共8分)(1)12023489-⎛⎫--⎪⎝⎭;(2)21151133662262a b a b a b ⎛⎫⎛⎫⎛⎫÷- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.16.(本小题满分8分)已知全集U =R ,{}260A x x x =+-<,1282xB x ⎧⎫=<<⎨⎬⎩⎭,{}212C x m x m =+<<-.(1)求()U A B ð;(2)若()A B C ⊆ ,求实数m 的取值范围.17.(本小题满分10分)已知函数()21xf x x =+.(1)判断并证明()f x 的奇偶性;(2)根据定义证明:()f x 在()1,1-上单调递增.18.(本小题满分10分)实行垃圾分类,保护生态环境,促进资源再利用。
厦门2024-2025学年第一学期期中考高一数学试卷(答卷时间:120分钟 卷面总分:150分)一、单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.设全集,集合,则( )A .B .C .D .2.若命题,则命题的否定为( )A .B .C .D .3.已知命题,若命题是命题的充分不必要条件,则命题可以为( )A .B .C .D .4.下列幕函数满足:“①;②当时,为单调通增”的是( )A . B .C .D .5.已知函数(其中)的图象如图所示,则函数的图像是( )A .B .C .D .6.已知且,则的最小值是( )A .B . 25C .5D .{}0,1,2,3,4,5,6U ={}{}1,2,3,3,4,5,6A B ==U ()A B = ð{}1,2{}2,3{}1,2,3{}0,1,2,32:0,320p x x x ∃>-+>p 20,320x x x ∃>-+≤20,320x x x ∃≤-+≤20,320x x x ∀≤-+>20,320x x x ∀>-+≤:32p x -<≤q p q 31x -≤≤1x <31x -<<3x <-,()()x R f x f x ∀∈-=-(0,)x ∈+∞()f x ()f x =3()f x x=1()f x x-=2()f x x=()()()f x x a x b =--a b >()2xg x a b =+-0,0x y >>3210x y +=32x y+52657.已知偶函数与奇函数的定义域都是,它们在上的图象如图所示,则使关于的不等式成立的的取值范围为( )A .B .C .D .8.已知,则与之间的大小关系是( )A .B .C .D .无法比较二、多选题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对得5分,部分选对得部分分.9.下列函数中,与不是同一函数的是( )A .B .C .D .10.若,则下列不等式成立的是( )A .B.C .D .11.设,用符号表示不大于的最大整数,如.若函数,则下列说法正确的是( )A .B .函数的值域是C .若,则D .方程有2个不同的实数根三、填空题:本大题共3小题,每小题5分,共15分.将答案填写在答题卷相应位置上.12.计算________.13.“不等式对一切实数都成立”,则的取值范围为________.()f x ()g x (2,2)-[0,2]x ()()0f x g x ⋅>x (2,1)(0,1)-- (1,0)(0,1)- (1,0)(1,2)- (2,1)(1,2)-- 45342024120241,2024120241a b ++==++a b a b>a b <a b =y x =2y =u =y =2n m n=,0a b c a b c >>++=22a b <ac bc <11a b<32a a a b b+>+x R ∈[]x x [1.6]1,[ 1.6]2=-=-()[]f x x x =-[(1.5)]1f =-()f x [1,0]-()()f a f b =1a b -≥2()30f x x -+=21232927()((1.5)48---+=23208x kx -+-<x k14.某学校高一年级一班48名同学全部参加语文和英语书面表达写作比赛,根据作品质量评定为优秀和合格两个等级,结果如表所示:若在两项比赛中都评定为合格的学生最多为10人,则在两项比赛中都评定为优秀的同学最多为________人.优秀合格合计语文202848英语301848四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知集合,集合.(1)当时,求,.(2)若,求的取值范围.16.(15分)已知函数.(1)判断函数的奇偶性并用定义加以证明;(2)判断函数在上的单调性并用定义加以证明.17.(15分)已知函数.(1)若函数图像关于对称,求不等式的解集;(2)若当时函数的最小值为2,求当时,函数的最大值.18.(17分)某游戏厂商对新出品的一款游戏设定了“防沉迷系统”规则如下①3小时内(含3小时)为健康时间,玩家在这段时间内获得的累积经验值(单位:EXP )与游玩时间(单位:小时)滴足关系式:;②3到5小时(含5小时)为疲劳时间,玩家在这段时间内获得的经验值为0(即累积经验值不变);③超过5小时为不健康时间,累积经验值开始损失,损失的经验值与不健康时国成正比例关系,正比例系数为50.(1)当时,写出累积经验值与游玩时间的函数关系式,求出游玩6小时的累积经验值;(2)该游戏厂商把累积经验值与游现时间的比值称为“玩家愉悦指数”,记为,若,且该游戏厂商希望在健康时间内,这款游戏的“玩家愉悦指数”不低于24,求实数的取值范围.19.(17分)《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂,从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是发现新问题、新结论的重要方法.例如,已知,求证:.{}34A x x =-<≤{}121B x k x k =+≤≤-2k ≠A B ()R A B ðA B B = k 2()f x x x=-()f x ()f x (0,)+∞2()23,f x x bx b R =-+∈()f x 2x =()0f x >[1,2]x ∈-()f x [1,2]e ∈-()f x E t 22016E t t a =++1a =E t ()E f t =E t ()H t 0a >a 1ab =11111a b+=++证明:原式.波利亚在《怎样解题》中也指出:“当你找到第一个蘑菇或作出第一个发现后,再四处看看,他们总是成群生长.”类似上述问题,我们有更多的式子满足以上特征.请根据上述材料解答下列问题:(1)已知,求的值;(2)若,解方程;(3)若正数满足,求的最小值.111111ab b ab a b b b=+=+=++++1ab =221111a b+++1abc =5551111ax bx cxab a bc b ca c ++=++++++,a b 1ab =11112M a b=+++高一数学期中考参考答案1234567891011A DCB DAABABDBDACD12.13.14.1215.解:(1)由题设,则,,则,(2)由,若时,,满足;若时,;综上,.16.解:(1)是奇函数,证明如下:由已知得的定义域是,则,都有,且,所以是定义域在上的奇函数.(2)在上单调递减,证明如下:,且,都有∵,∴,∵,∴∴,即,所以在上单调递减32({}3B ={}34A B x x =-<≤ {}()34R A x x x =≤->或ð()R A B = ð∅A B A B A =⇒⊆ B =∅1212k k k +>-⇒<B ≠∅12151322214k k k k k +≤-⎧⎪+>-⇒≤≤⎨⎪-≤⎩52k ≤()f x ()f x (,0)(0,)-∞+∞ (,0)(0,)x ∀∈-∞+∞ (,0)(0,)x -∈-∞+∞ 22()()()f x x x f x x x-=--=-=--()f x (,0)(0,)-∞+∞ ()f x (0,)+∞12,(0,)x x ∀∈+∞12x x <22212121121212122222()()x x x x x x f x f x x x x x x x --+-=--+=222112************222()()x x x x x x x x x x x x x x x x --+⨯---==211212()(2)x x x x x x -⨯+=12x x <210x x ->12,(0,)x x ∈+∞120x x >12()()0f x f x ->12()()f x f x >()f x (0,)+∞17.解:(1)因为图像关于对称,所以:,所以:得:,即,解得或所以,原不等式的解集为:(2)因为是二次函数,图像抛物线开口向上,对称轴为,①若,则在上是增函数所以:,解得:;所以:,②若,则在上是减函数,所以:,解得:(舍);③若,则在上是减函数,在上是增函数;所以,解得:或(舍),所以:综上,当时,的最大值为11;当时,最大值为6.18.解:(1)当时,,,当时,,当时,当时,所以,当时,.(2)当时,,整理得:恒成立,令函数的对称轴是,当时,取得最小值,即,()f x 2x =2b =22()43()43,1f x xx f x x x e e -+=-+=<2430x x ee -+<2430x x -+<1x <3x >{}13x x x <>或2()23f x x bx =-+x b =1b ≤-()f x [1,2]-min ()(1)422f x f b =-=+=1b =-max ()()7411f x f x b ==-=2b ≥()f x [1,2]-min ()(2)742f x f b ==-=54b =12b -<<()f x [1,]b -(,2]b 2min ()()32f x f b b ==-=1b =1b =-max ()(1)426f x f b =-=+=1b =-()f x 1b =()f x 03t <≤1a =22016E t t =++3t =85E =35t <≤85E =5t >8550(5)33550E t t=--=-22016,03()85,3533550,5t t t E t t t t ⎧++<≤⎪=<≤⎨⎪->⎩6t =()35E t =03t <≤22016()24t t aH t t++=≥24160t t a -+≥2()416f t t t a =-+2(0,3]t =∈2t =()f t 164a -1640a -≥14a ≥19.解:(1).(2)∵,∴原方程可化为:,即:,∴,即,解得:.(3)∵,当且仅当,即∴有最小值,此时有最大值,从而有最小值,即有最小值.222211111ab ab b aa b ab a ab b ab a b+=+=+=++++++1abc =55511(1)ax bx bcxab a abc bc b b ca c ++=++++++5551111x bx bcx b bc bc b bc b ++=++++++5(1)11b bc x b bc ++=++51x =15x =2221122111111211223123123ab b b b b M ab a b b b b b b b b b++=+=+==-=-++++++++++12b b +≥=12b b =1b a b===12b b +1123b b ++3-11123b b-++2-11112M a b=+++2。
江苏省扬州中学2024-2025学年第一学期期中试题高一数学 2024.11试卷满分:150分,考试时间:120分钟注意事项:1.作答前,请考生务必将自己的姓名、考试证号等写在答题卡上并贴上条形码2.将选择题答案填写在答题卡的指定位置上(用2B 铅笔填涂),非选择题一律在答题卡上作答(用0.5mm 黑色签字笔作答),在试卷上答题无效。
3.考试结束后,请将答题卡交监考人员。
一、单项选择题:本大题共8小题,每小题5分,共40分。
在每题给出的四个选项中只有一项是最符合题意的。
1.已知集合,,则( )A. B. C. D. 或2. 已知为常数,集合,集合,且,则的所有取值构成的集合元素个数为( )A. 1B. 2C. 3D.43.设为奇函数,且当时,,则当时,( )A. B. C. D. 4.函数的值域为( )A. B. C. D. 5.已知函数的定义域为,则函数)A. B. C. D. 6. 若不等式的解集为,那么不等式的解集为( ){|02}A x x =<<{|14}B x x =<<A B = {|02}x x <<{|24}x x <<{|04}x x <<{2|x x <4}x >a {}260A x x x =+-=∣{20}B x ax =-=∣B A ⊆a ()f x 0x ≥()2f x x x =+0x <()f x =2x x +2x x -2x x --2x x -+x x y 211-++=(]2,∞-()2,∞-()20,[)∞+,2(2)f x +(3,4)-()g x =(1,6)(1,2)(1,6)-(1,4)20ax bx c ++>{}12x x -<<()()2112a x b x c ax ++-+>A. B. 或C. 或 D. 7.命题在单调增函数,命题在上为增函数,则命题是命题的( )条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要8. 已知,则的最大值为( )A. B. C. D.二、多项选择题:本大题共3小题,每小题6分,共18分。
绵阳中学高2024级高一上期期中测试数学试题第I 卷(选择题)一、单选题(每小题5分,共计40分)1.已知命题,命题的否定是()A.B.C.. D.2.已知集合,若,则实数的值不可以为()A.2 B.1 C.0 D.3.下列函数既是奇函数又在单调递增的是()A. B.C. D.4.已知,若的解集为,则函数的大致图象是( )A. B.C. D.5.已知函数在区间上的值域是,则区间可能是()A. B. C. D.6.“函数的定义域为”是“”的( )2:,210p x x ∀∈+>R p 2,210x x ∀∈+R …2,210x x ∃∈+>R 2,210x x ∃∈+<R 2,210x x ∃∈+R …{}()(){}2320,220A x x x B x x ax =-+==--=∣∣A B A ⋃=a 1-()0,∞+1y x =31y x=1y x x =-1y x x=+()2f x ax x c =--()0f x >()2,1-()y f x =-222y x x =-+[],a b []1,2[],a b []1,0-30,2⎡⎤⎢⎥⎣⎦[]1,3[]1,1-()211f x ax ax =-+R 04a <<A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知且,不等式恒成立,则正实数的取值范围是( )A.B.C. D.8.已知函数是定义在的单调函数,且对于任意的,都有,若关于的方程恰有两个实数根,则实数的取值范围为( )A. B. C. D.二、多选题(每小题6分,共计18分)9.对于任意实数,下列四个命题中为假命题的是( )A.若,则B.若,则C.若,则D.若,则10.已知为正实数,且,则( )A.的最大值为4B.的最小值为18C.的最小值为4D.11.定义在上的偶函数满足:,且对于任意,,若函数,则下列说法正确的是()A.在上单调递增B.0,0a b >>1ab =11422m a b a b++≥+m 2m ≥4m ≥6m ≥8m ≥()f x [)0,∞+[)0,x ∞∈+()2f f x ⎡=⎣x ()2f x x k +=+k 92,4⎡⎫⎪⎢⎣⎭51,4⎡⎫⎪⎢⎣⎭133,4⎡⎫⎪⎢⎣⎭13,4∞⎛⎫- ⎪⎝⎭,,,a b c d ,0a b c >≠ac bc>22ac bc >a b>0a b <<22a ab b >>0,a bcd >>>ac bd>,a b 8ab a b ++=ab 22(1)(1)a b +++a b +1111a b +++R ()f x ()22f =120x x >>()()21122122x f x x f x x x ->-()()2f xg x x -=()g x ()0,∞+()()34g g -<C.在上单调递减D.若正数满足,则第II 卷(非选择题)三、填空题(每小题5分,共计15分)12.函数__________.13.函数,若,则14.已知函数的定义域为的图象关于直线对称,且,若,则__________.四、解答题(共计77分)15.(13分)已知定义在上的函数满足:.(1)求函数的表达式;(2)若不等式在上恒成立,求实数的取值范围.16.(15分)设集合.(1)若,求实数的值;(2)若“”是“”的必要条件,求实数的取值范围.17.(15分)如图,正方形的边长为分别是和边上的点沿折叠使与线段上的点重合(不在端点处),折叠后与交于点.若(1)证明:的周长为定值.(2)求的面积S 的最大值.()f x ()2,∞+m ()()24202m f m f m -+->()2,m ∞∈+()12f x x =+()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩()()2f a f a =+()2__________.f a =()(),f x g x (),y f x =R 1x =()()()()110,45f x g x f x g x -+=--=()21f =()()12g g +=R ()()2223f x f x x x +-=-+()f x ()21f x ax ≥-[]1,3a {}(){}222320,2150A x x x B x x a x a =-+==+++-=∣∣{}2A B ⋂=a x A ∈x B ∈a ABCD 1,,E F AD BC EF C AB M M ,A B CD AD G ,BM x BF y==AMG AMG18.(17分)已知函数是定义在上的奇函数,且.(1)求函数的解析式;(2)判断在上的单调性,并用单调性定义证明;(3)解不等式.19.(17分)若函数的定义域为,集合,若存在正实数,使得任意,都有,且,则称在集合上具有性质.(1)已知函数,判断在区间上是否具有性质,并说明理由;(2)已知函数,且在区间上具有性质,求正整数的最小值;(3)如果是定义域为的奇函数,当时,,且在上具有性质,求实数的取值范围.()21ax b f x x-=+[]1,1-()11f =-()f x ()f x []1,1-()()()210f t f t f -+>()f x D M D ⊆t x M ∈x t D +∈()()f x t f x +>()f x M ()P t 2()f x x =()f x [1,0]-(1)P 3()f x x x =-()f x [0,1]()P n n ()f x R 0x ≥()()f x x a a a =--∈R ()f x R (6)P a数学参考答案题号12345678910答案D D C C B B D C AD ABC题号11答案ABD 填空题12.13.414.【详解】因为的图象关于直线对称,则①,又,即,结合①得②,因为,则,结合②得,则,令,得,令,得,由,得,由,得,则,所以.15.【详解】(1)将的替换为得联立()(],22,1∞--⋃-()y f x =1x =()()11f x f x -=+()()110f x g x -+=()()110f x g x -=-()()110g x f x ++=()()45f x g x --=()()135f x g x +--=()()35g x g x +-=1x =()()125g g +-=2x =()()125g g -+=()()110f x g x -+=()()2110f g +-=()()45f x g x --=()()225f g --=()()125g g -+-=()()125g g +=()()2223f x f x x x +-=-+x x -()()2223f x f x x x -+=++()()()()22223223f x f x x x f x f x x x ⎧+-=-+⎪⎨-+=++⎪⎩解得(2)不等式为,化简得,要使其在上恒成立,则,,当且仅当取等,所以.16.【详解】(1)由,所以或,故集合.因为,所以,将代入中的方程,得,解得或,当时,,满足条件;当时,,满足条件,综上,实数的值为或(2)因为“”是“”的必要条件,所以对于集合.当,即时,,此时;当,即时,,此时;当,即时,要想有,须有,此时:,该方程组无解.综上,实数的取值范围是.17.【详解】(1)设,则,由勾股定理可得,即,由题意,,()21213f x x x =++()21f x ax ≥-2121213x x ax ++≥-116x a x ≤++[]1,3min116x a x ⎛⎫≤++ ⎪⎝⎭11116x x ++≥=x =1a ≤+()()2320120x x x x -+=⇒--=1x =2x ={}1,2A ={}2A B ⋂=2B ∈2x =B 2430a a ++=1a =-3a =-1a =-{}{}2402,2B x x =-==-∣3a =-{}{}24402B x x x =-+==∣a 1-3-x A ∈x B ∈B A⊆()()22,Δ4(1)4583B a a a =+--=+Δ0<3a <-B =∅B A ⊆Δ0=3a =-{}2B =B A ⊆Δ0>3a >-B A ⊆{}1,2B A ==()221352a a ⎧+=-⎨-=⎩a (],3∞--,,01BM x BF y x ==<<1CF MF y ==-222(1)x y y +=-212x y -=90GMF DCF ∠∠==即,可知,设的周长分别为,则又因为,所以,的周长为定值,且定值为2.(2)设的面积为,则,因为,所以,.因为,则,因为,所以,当且仅当,即时,等号成立,满足故的面积的最大值为.18.【详解】(1)函数是定义在上的奇函数,,解得,,而,解得,.(2)函数在上为减函数;90AMG BMF ∠∠+= Rt Rt AMG BFM ∽,AMG BFM 1,p p 11p AM x p BF y -==111p x y y x =++-=+()2111112x x x p p x y y y---==⋅+==AMG BFM 1S 22122(1)S AM x S BF y-==112S xy =()2221221(1)(1)(1)211x x x x x x x S S y y x x ----====-+()()()211121311x x x x x⎡⎤⎡⎤-++-⎣⎦⎣⎦==-+-+++10x +>201x>+211x x ++≥=+3S ≤-211x x+=+1x =-()0,1x ∈AMG 3-()21ax b f x x-=+[]1,1-()()22;11ax b ax b f x f x x x ----=-=-++0b =()21ax f x x ∴=+()11f =-2a =-()[]22,1,11x f x x x -∴=∈-+()221x f x x -=+[]1,1-证明如下:任意且,则因为,所以,又因为,所以,所以,即,所以函数在上为减函数.(3)由题意,,又,所以,即解不等式,所以,所以,解得,所以该不等式的解集为.19.【详解】(1),当时,,故在区间[―1,0]上不具有性质;(2)函数的定义域为,对任意,则,在区间上具有性质,则,即,因为是正整数,化简可得:对任意恒成立,设,其对称轴为,则在区间上是严格增函数,所以,,解得,故正整数的最小值为2;[]12,1,1x x ∈-12x x <()()()()()()121212122222121221221111x x x x x x f x f x x x x x ------=-=++++12x x <120x x -<[]12,1,1x x ∈-1210x x ->()()120f x f x ->()()12f x f x >()()12f x f x >[]1,1-()()()210f t f tf -+>()00f =()()210f t f t -+>()()21f t f t >--()()21f t f t >-22111111t t t t ⎧-≤≤⎪-≤-≤⎨⎪<-⎩0t≤<()()221(1)21f x f x x x x +-=+-=+0.8x =-()()10.60f x f x +-=-<()f x ()1P ()3f x x x =-R []0,1x ∈x n +∈R ()f x [0,1]()P n ()()f x n f x +>33()()x n x n x x +-+>-n 223310x nx n ++->[]0,1x ∈22()331g x x nx n =++-02n x =-<()g x [0,1]2min ()(0)10g x g n ==->1n >n(3)法一:由是定义域为上的奇函数,则,解得,若,,有恒成立,所以符合题意,若,当时,,所以有,若在上具有性质,则对任意恒成立,在上单调递减,则,x 不能同在区间内,,又当时,,当时,,若时,今,则,故,不合题意;,解得,下证:当时,恒成立,若,则,当时,则,,所以成立;当时,则,可得,,即成立;当时,则,即成立;综上所述:当时,对任意x ∈R 均有成立,()f x R (0)0f a a =-=0a ≥0a =()f x x =6x x +>0a >0x <()()()f x f x x a a x a a =--=----=-++()2,,2,x a x a f x x a x a x a x a +<-⎧⎪=--≤≤⎨⎪->⎩()f x R (6)P (6)()f x f x +>x ∈R ()f x [,]a a -6x +[,]a a -6()2a a a ∴>--= [2,0]x a ∈-()0f x ≥[0,2]x a ∈()0f x ≤264a a <≤2x a =-6[0,2]x a +∈(6)()f x f x +≤46a ∴<302a <<302a <<()()6f x f x +>302a <<46a <6x a +≤-()662f x x a +=++()2f x x a =+()()6f x f x +>6a x a -<+<63x a a <-<-()()66f x x a +=-+>-()2f x x a a =+<-()()6f x f x +>6x a +>()()()6622f x x a x a f x +=+->+≥()()6f x f x +>302a ≤<()()6f x f x +>故实数的取值范围为.法二:由是定义域为上的奇函数,则,解得.作出函数图像:由题意得:,解得,若,,有恒成立,所以符合题意,若,则,当时,则,,所以成立;当时,则,可得,,即成立;当时,则,即成立;综上所述:当时,对任意x ∈R 均有成立,故实数的取值范围为.a 30,2⎡⎫⎪⎢⎣⎭()f x R (0)0f a a =-=0a ≥2(2)46a a a --=<302a ≤<0a =()f x x =6x x +>302a <<46a <6x a +≤-()662f x x a +=++()2f x x a =+()()6f x f x +>6a x a -<+<63x a a <-<-()()66f x x a +=-+>-()2f x x a a =+<-()()6f x f x +>6x a +>()()()6622f x x a x a f x +=+->+≥()()6f x f x +>302a ≤<()()6f x f x +>a 30,2⎡⎫⎪⎢⎣⎭。
兰州五十一中2024~2025年度第一学期期中考试试卷高一数学第I 卷(58分)一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.设全集,则( )A. B. C. D.2.“”是“”成立的( )条件.A.充分不必要B.必要不充分C.充分必要D.既不充分又不必要3.函数的定义域是( )A. B. C. D.4.命题“”的否定是( )A. B.C. D.5.不等式的解为( )A. B.或C. D.或6.已知函数,且,则( )A.1B.2C.3D.67.已知函数是定义在上的增函数,则满足的的取值范围是()A. B. C. D.8.函数)A. B. C. D.{}{3},0,1,2,3A x x B =∈<=N ∣A B ⋂={}0,1{}1,2{}0,1,2{}0,1,2,34x =3x ≥0(4)y x =-+[)1,∞-+()1,∞-+[)()1,44,∞-⋃+()()1,44,∞-⋃+2000,10x x x ∃∈++<R 2000,10x x x ∃∈++>R 2000,10x x x ∃∈++≥R 2,10x x x ∀∈++>R 2,10x x x ∀∈++≥R 21xx -≥01x <≤0x <1x ≥01x ≤≤0x ≤1x ≥()21,21,237,3x f x x x x x <⎧⎪=-≤<⎨⎪-≥⎩()02f x =0x =()f x [)0,∞+()1213f x f ⎛⎫-< ⎪⎝⎭x 12,33⎡⎤⎢⎥⎣⎦12,33⎡⎫⎪⎢⎣⎭12,23⎛⎫ ⎪⎝⎭12,23⎡⎫⎪⎢⎣⎭y x =(],2∞-[)2,∞+9,4∞⎛⎤- ⎥⎝⎦9,4∞⎡⎫+⎪⎢⎣⎭二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分.9.下列说法中正确的是()A.若,则B.若,则C.若,则D.若,则10.下列命题正确的是( )A.若,且B.已知正数满足,则的最小值为C.若,则的最大值是D.若,则的最小值是911.定义在上的函数满足,当时,,则下列说法正确的是()A.B.为奇函数C.在区间上有最大值D.的解集为第II 卷(92分)三、填空题:本大题共3小题,每小题5分,共15分.12.已知,则的真子集的个数是__________个.13.已知,则__________.14.若当时,不等式恒成立,则实数的取值范围是__________.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知集合或,关于的不等式的解集为.(1)求集合;0,c ac bc >>a b>24,13a b -<<<<822a b -<-<0,0a b m >><m m a b<24,123a b b a -<+<<-<923a b -<-<,a b ∈R 0,ab a b >+≥x y 、1x y +=141x y ++920x >423x x--2-()2,0,0x x y x y =->>2x y +R ()f x ()()()f x f y f x y +=+0x <()0f x >()00f =()f x ()f x [],m n ()f n ()()22120f x f x -+->{31}x x -<<∣{24,}A xx x =-<<∈Z ∣A +⋂Z ()2132f x x x +=-+()f x =1x >1211x m x +≥--m {2A x x =>∣1}x <-x ()22210x a x a a -+++>B B(2)若,求实数的取值范围.16.若正实数满足:.(1)求的最大值;(2)求的最小值;(3)求的最小值.17.已知函数的解析式为(1)画出这个函数的图象,并写出的最大值;(2)解不等式;(3)若直线(为常数)与函数的图象有两个公共点,直接写出的范围.18.已知函数是上的偶函数,当,(1)求函数的解析式;(2)若,求实数的取值范围.19.对于函数,若,则称实数为的“不动点”,若,则称实数为的“稳定点”,函数的“不动点”和“稳定点”组成的集合分别记为和,即,.(1)对于函数,分别求出集合和;(2)设,若,求集合.A B B ⋃=a ,a b 2a b +=ab 14a b+2211a b +()f x ()22,1,126,2x x f x x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩()f x ()2f x <y k =k ()f x k ()f x R ()20,43x f x x x ≤=-+-()f x ()()211f m f m -<+m ()f x ()f x x =x ()f x ()()f f x x =x ()f x ()f x A B (){}A x f x x ==∣()(){}B x f f x x ==∣()21f x x =-A B ()2f x x ax b =++{}1,3A =-B兰州五十一中2024~2025年度第一学期期中考试试卷高一数学第I卷(58分)题号12345678910答案C A D D A C D C AB BC题号11答案ABD第II卷(92分)三、填空题:本大题共3小题,每小题5分,共15分.12.713.14.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(1)或16.(1)1(2)(3)217.(1),最大值为4(2)或(3)或18.(1)(2)19.(1)256x x-+(],2∞-{x x a<∣()1};211x a a>+-≤≤92{x x<∣4}x>k<14k<<()2243,043,0x x xf xx x x⎧--->=⎨-+-≤⎩()(),02,∞∞-⋃+{}{}1,1A B==B=-(2){。
2023-2024学年山东省潍坊市高一(上)期中数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={﹣1,1,2},B ={x |x 2=x },则A ∩B =( ) A .{﹣1}B .{1}C .{﹣1,1}D .{﹣1,0,1,2}2.命题“∃x ∈Z ,x ∈N ”的否定为( ) A .∃x ∈Z ,x ∉NB .∃x ∉Z ,x ∈NC .∀x ∈Z ,x ∉ND .∀x ∈Z ,x ∈N3.与函数y =√x 3为同一函数的是( ) A .y =x √xB .y =−x √xC .y =x √−xD .y =|x |4.函数f (x )=√−x 2+2x +3的单调递减区间是( ) A .(﹣∞,1]B .[1,3]C .(﹣1,3)D .[1,+∞)5.已知a >b >0,下列不等式中正确的是( ) A .a ﹣1<b ﹣1B .ab <b 2C .1a+1<1b+1D .c a>cb6.已知函数f(x)={x +a ,x >0,|x|+1,x <0,且f (f (﹣1))=4,则a =( )A .2B .1C .0D .﹣17.已知函数f (x )为奇函数,且对任意的x 1,x 2∈R ,当x 1<x 2时,f(x 1)−f(x 2)x 1−x 2<0,则关于x 的不等式f (x 2﹣x )<0的解集为( ) A .(0,1) B .(﹣∞,0)∪(1,+∞) C .(﹣1,0)D .(﹣∞,﹣1)∪(0,+∞)8.某人分两次购买同一种物品,因价格有变动,两次购买时物品的单价分别为a 1,a 2且a 1≠a 2.若他每次购买数量一定,其平均价格为b 1;若他每次购买的费用一定,其平均价格为b 2,则( ) A .b 1<b 2 B .b 1>b 2C .b 1=b 2D .b 1,b 2不能比较大小二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.下列函数值域为[1,+∞)的是( ) A .y =x +1 B .y =x 2+2x +2 C .y =1−x1+xD .y =x −1x +1(x ≥1)10.已知关于x 的不等式ax 2+bx +c <0的解集为{x |x <﹣4或x >3},则( ) A .a >0B .12a +c =0C .a +b +c >0D .不等式ax−b ax−c≤0的解集为{x |﹣12<x ≤1}11.若a >0,b >0,a +b =1,则( ) A .ab ≤14B .1a+1b≥4C .|a −12|+|b −14|≤14D .a 2+b ≥3412.对于任意实数x ,函数f (x )满足:当n −12<x ≤n +12(n ∈Z)时,f (x )=x ﹣n ,则( ) A .f (2023)=0B .f (x )的值域为(−12,12]C .f (x )在区间(−12,52]上单调递增D .f (x )的图象关于点(k ,0)(k ∈Z )对称三、填空题:本题共4小题,每小题5分,共20分.13.已知集合M ={x ,x +2,2},若0∈M ,则x = . 14.已知函数y =f (x )的定义域为[﹣2,5],则函数y =f(2x−1)x−1的定义域为 . 15.已知f (x ),g (x )是分别定义在R 上的奇函数和偶函数,且f (x )﹣g (x )=x 3+x 2+1,则f (1)+g (2)= .16.已知函数f(x)={|x −1|,0≤x <2,2(x −3)2−1,x ≥2,则函数y =f(f(x))−12的零点个数为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)设全集U =R ,集合A ={x |1<x <4},B ={x |m ﹣1≤x ≤m +1}. (1)当m =4时,求A ∪B ,A ∩(∁U B );(2)若“x ∈A ”是“x ∈B ”的必要条件,求实数m 的取值范围.18.(12分)已知f (x )是定义在R 上的偶函数,当x ≤0时,f (x )=x 2+2x . (1)求函数f (x )的解析式;(2)在给出的坐标系中画出f (x )的图象,并写出f (x )的单调增区间.19.(12分)已知函数f (x )=ax 2+(a ﹣2)x +14(a ∈R).(1)若关于x 的不等式f (x )≥0的解集是实数集R ,求a 的取值范围; (2)当a <0时,解关于x 的不等式f (x )−94≤0.20.(12分)为改善生态环境,某企业对生产过程中产生的污水进行处理.已知该企业污水日处理量为x 百吨(70≤x ≤120),日处理污水的总成本y 元与x 百吨之间的函数关系可近似地表示为y =12x 2+40x +5000.(1)该企业日污水处理量为多少百吨时,平均成本最低?(平均成本=y x)(2)若该企业每处理1百吨污水获收益100元,为使该企业可持续发展,政府决定对该企业污水处理进行财政补贴,补贴方式有两种方案:方案一:每日进行定额财政补贴,金额为4200元;方案二:根据日处理量进行财政补贴,处理x 百吨获得金额为40x +1700元.如果你是企业的决策者,为了获得每日最大利润,你会选择哪个方案进行补贴?并说明原因. 21.(12分)已知函数f (x )对于任意实数x ,y ∈R ,都有f (x +y )+2=f (x )+f (y ),且f (2)=4. (1)求f (1)的值;(2)令g (x )=f (x )﹣2,求证:函数g (x )为奇函数;(3)求f (﹣2023)+f (﹣2022)+…+f (﹣1)+f (0)+f (1)+…+f (2022)+f (2023)的值. 22.(12分)已知函数f (x ),g (x )满足g (x )=f (x )+a 2f(x)(a >0). (1)设f (x )=x ,求证:函数g (x )在区间(0,a )上为减函数,在区间(a ,+∞)上为增函数; (2)设f (x )=√1−x1+x. ①当a =1时,求g (x )的最小值;②若对任意实数r ,s ,t ∈[−35,35],|g (r )﹣g (s )|<g (t )恒成立,求实数a 的取值范围.2023-2024学年山东省潍坊市高一(上)期中数学试卷参考答案与试题解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={﹣1,1,2},B={x|x2=x},则A∩B=()A.{﹣1}B.{1}C.{﹣1,1}D.{﹣1,0,1,2}解:集合A={﹣1,1,2},B={x|x2=x}={0,1},则A∩B={1}.故选:B.2.命题“∃x∈Z,x∈N”的否定为()A.∃x∈Z,x∉N B.∃x∉Z,x∈N C.∀x∈Z,x∉N D.∀x∈Z,x∈N解:因为特称命题的否定是全称命题,所以“∃x∈Z,x∈N”的否定是:“∀x∈Z,x∉Z”.故选:C.3.与函数y=√x3为同一函数的是()A.y=x√x B.y=−x√x C.y=x√−x D.y=|x|解:∵函数y=√x3中x3≥0可得x≥0,故函数y=√x3的定义域为[0,+∞),排除CD,又y=√x3=x√x,排除B.故选:A.4.函数f(x)=√−x2+2x+3的单调递减区间是()A.(﹣∞,1]B.[1,3]C.(﹣1,3)D.[1,+∞)解:由﹣x2+2x+3≥0,解得﹣1≤x≤3,设t=﹣x2+2x+3,由二次函数的性质可知:t在x∈[﹣1,1]上单调递增,在x∈[1,3]上单调递减,又因为y=√t在定义上为增函数,由复合函数的性质可得:函数f(x)=√−x2+2x+3的单调递减区间是[1,3].故选:B.5.已知a>b>0,下列不等式中正确的是()A.a﹣1<b﹣1B.ab<b2C.1a+1<1b+1D.ca>cb解:因为a>b>0,所以a﹣1>b﹣1,A错误;因为a>b>0,所以ab>b2,B错误;因为a+1>b+1>0,所以0<1a+1<1b+1,C正确;因为1a<1b,所以c a<cb,D 错误.故选:C .6.已知函数f(x)={x +a ,x >0,|x|+1,x <0,且f (f (﹣1))=4,则a =( )A .2B .1C .0D .﹣1解:∵函数f(x)={x +a ,x >0,|x|+1,x <0,∴f (﹣1)=|﹣1|+1=2, f (f (﹣1))=2+a =4, ∴a =2. 故选:A .7.已知函数f (x )为奇函数,且对任意的x 1,x 2∈R ,当x 1<x 2时,f(x 1)−f(x 2)x 1−x 2<0,则关于x 的不等式f (x 2﹣x )<0的解集为( ) A .(0,1) B .(﹣∞,0)∪(1,+∞) C .(﹣1,0)D .(﹣∞,﹣1)∪(0,+∞)解:因为对任意的x 1,x 2∈R ,当x 1<x 2时,f(x 1)−f(x 2)x 1−x 2<0,所以f (x )在R 上单调递减, 因为f (x )为奇函数,即f (0)=0, 因为f (x 2﹣x )<0=f (0), 所以x 2﹣x >0, 解得x >1或x <0. 故选:B .8.某人分两次购买同一种物品,因价格有变动,两次购买时物品的单价分别为a 1,a 2且a 1≠a 2.若他每次购买数量一定,其平均价格为b 1;若他每次购买的费用一定,其平均价格为b 2,则( ) A .b 1<b 2 B .b 1>b 2C .b 1=b 2D .b 1,b 2不能比较大小解:设每次购买数量为x ,平均价格为b 1=a 1x+a 2x 2x=a 1+a 22, 设每次购买的费用为y ,平均价格为b 2=2y y a 1+ya 2=2a 1a2a 1+a 2,∵a 1≠a 2,∴(a 1+a 2)2>4a 1a 2⇒a 1+a 22>2a 1a 2a 1+a 2⇒b 1>b 2.故选:B .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.下列函数值域为[1,+∞)的是( ) A .y =x +1 B .y =x 2+2x +2 C .y =1−x1+xD .y =x −1x +1(x ≥1)解:y =x +1的值域为R ,A 错误;y =x 2+2x +2=(x +1)2+1≥1,B 符合题意; y =1−x1+x =−x−1x+1=−1+2x+1≠−1,C 不符合题意; 当x ≥1时,y =x −1x +1单调递增,故y ≥1,D 符合题意. 故选:BD .10.已知关于x 的不等式ax 2+bx +c <0的解集为{x |x <﹣4或x >3},则( ) A .a >0B .12a +c =0C .a +b +c >0D .不等式ax−b ax−c≤0的解集为{x |﹣12<x ≤1}解:已知关于x 的不等式ax 2+bx +c <0的解集为{x |x <﹣4或x >3}, 可得﹣4,3是方程ax 2+bx +c =0的两个根,且a <0,则{−ba =−4+3c a =−4×3,即b =a ,c =﹣12a ,所以c +12a =0,故A 错误,B 正确;因为1∉{x |x <﹣4或x >3},所以a ×12+b ×1+c >0,即a +b +c >0,故C 正确; 又不等式ax−b ax−c≤0等价于{(ax −b)(ax −c)≤0ax −c ≠0,即{(ax −a)(ax +12a)≤0ax +12a ≠0,即{(x −1)(x +12)≤0x ≠−12,解得﹣12<x ≤1,故D 正确. 故选:BCD .11.若a >0,b >0,a +b =1,则( )A .ab ≤14B .1a+1b≥4C .|a −12|+|b −14|≤14D .a 2+b ≥34解:因为a +b =1≥2√ab ,解得ab ≤14,当且仅当a =b =12时,等号成立,故A 正确;由1a+1b=(a +b)(1a+1b)=2+b a+a b≥2+2√b a ⋅ab=4,当且仅当a =b =12时,等号成立,可得B 正确;当a =15,b =45时,|a −12|+|b −14|=1720>14,故|a −12|+|b −14|≤14不成立,故C 错误;根据题意,可得a 2+b =a 2−a +1=(a −12)2+34≥34,当且仅当a =b =12时,a 2+b 的最小值为34,故D 正确. 故选:ABD .12.对于任意实数x ,函数f (x )满足:当n −12<x ≤n +12(n ∈Z)时,f (x )=x ﹣n ,则( ) A .f (2023)=0B .f (x )的值域为(−12,12]C .f (x )在区间(−12,52]上单调递增D .f (x )的图象关于点(k ,0)(k ∈Z )对称解:由题意得f (x )={⋯x +1,−32<x ≤−12x ,−12<x ≤12x −1,12<x ≤32,x −2,32<x ≤52⋯,其大致图象如图所示,故f (2023)=f (2022)=f (2021)=…=f (0)=0,A 正确; 由函数的图象可知,函数的值域为(−−12,12],B 正确; 根据函数图象可知,f (x )在区间(−12,52]上不单调,C 错误; 根据函数的图象可知,f (x )的图象关于(k 2,0)对称,D 错误.故选:AB .三、填空题:本题共4小题,每小题5分,共20分. 13.已知集合M ={x ,x +2,2},若0∈M ,则x = ﹣2 . 解:集合M ={x ,x +2,2},若0∈M ,则x =0或x +2=0, 所以x =0或x =﹣2,当x =0时,x +2=2,不满足元素的互异性,舍去, 当x =﹣2时,集合M ={﹣2,0,2},符合题意, 综上所述,x =﹣2. 故答案为:﹣2.14.已知函数y =f (x )的定义域为[﹣2,5],则函数y =f(2x−1)x−1的定义域为 {x |−12≤x ≤3且x ≠1} . 解:数y =f (x )的定义域为[﹣2,5],则{−2≤2x −1≤5x −1≠0,解得−12≤x ≤3且x ≠1,故函数y 的定义域为{x |−12≤x ≤3且x ≠1}. 故答案为:{x |−12≤x ≤3且x ≠1}.15.已知f (x ),g (x )是分别定义在R 上的奇函数和偶函数,且f (x )﹣g (x )=x 3+x 2+1,则f (1)+g (2)= ﹣4 .解:因为f (x ),g (x )分别是定义在R 上的奇函数和偶函数, 且f (x )﹣g (x )=x 3+x 2+1,①所以f (﹣x )﹣g (﹣x )=(﹣x )3+(﹣x )2+1=﹣x 3+x 2+1,即﹣f (x )﹣g (x )=﹣x 3+x 2+1,变形可得:f (x )+g (x )=x 3﹣x 2﹣1,② 由①②解得:f (x )=x 3,g (x )=﹣x 2﹣1, 则f (1)=1,g (2)=﹣5, 故f (1)+g (2)=﹣4. 故答案为:﹣4.16.已知函数f(x)={|x −1|,0≤x <2,2(x −3)2−1,x ≥2,则函数y =f(f(x))−12的零点个数为 7 .解:令f (x )=t ,则有y =f(f(x))−12=f (t )−12, 令f (t )−12=0,得f (t )=12,当0≤t <2时,由|t ﹣1|=12,解得t 1=12或t 2=32;当t ≥2时,由2(t ﹣3)2﹣1=12,解得t 3=3−√32,t 4=3+√32, 作出y =f (x )的图象,如图所示:由此可得当f (x )=12时,有4个根(y =f (x )的图象与y =12的图象有4个交点); 当f (x )=32时,有1根(y =f (x )的图象与y =32的图象有1交点); 当f (x )=3−√32时,有1根(y =f (x )的图象与y =3−√32的图象有1交点); 当f (x )=3+√32时,有1根(y =f (x )的图象与y =3+√32的图象有1交点);所以一共有4+1+1+1=7个零点. 故答案为:7.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)设全集U =R ,集合A ={x |1<x <4},B ={x |m ﹣1≤x ≤m +1}. (1)当m =4时,求A ∪B ,A ∩(∁U B );(2)若“x ∈A ”是“x ∈B ”的必要条件,求实数m 的取值范围.解:(1)m =4时,A ={x |1<x <4},B ={x |m ﹣1≤x ≤m +1}={x |3≤x ≤5}, 则∁U B ={x |x >5或x <3},A ∪B ={x |1<x ≤5},A ∩(∁U B )={x |1<x <3}; (2)若“x ∈A ”是“x ∈B ”的必要条件, 则B ⊆A ,则{m −1>1m +1<4,解得:2<m <3,即实数a 的取值范围是(2,3).18.(12分)已知f (x )是定义在R 上的偶函数,当x ≤0时,f (x )=x 2+2x . (1)求函数f (x )的解析式;(2)在给出的坐标系中画出f (x )的图象,并写出f (x )的单调增区间.解:(1)设x>0,则﹣x<0,所以f(﹣x)=x2﹣2x,因为f(x)是定义在R上的偶函数,所以f(﹣x)=f(x),所以当x>0 时,f(x)=f(﹣x)=x2﹣2x,综合可得:f(x)={x2+2x,x≤0 x2−2x,x>0;(2)根据题意,由(1)的结论,f(x)={x2+2x,x≤0 x2−2x,x>0,其图象为:该函数的单调递增区间为(﹣1,0),(1,+∞).19.(12分)已知函数f(x)=ax2+(a﹣2)x+14(a∈R).(1)若关于x的不等式f(x)≥0的解集是实数集R,求a的取值范围;(2)当a<0时,解关于x的不等式f(x)−94≤0.解:(1)若关于x的不等式f(x)≥0的解集是实数集R,即ax2+(a−2)x+14≥0在实数集R上恒成立,当a =0时,x ≤18,不符合题意;当a ≠0时,要使关于x 的不等式f (x )≥0的解集是实数集R , 则要满足{a >0(a −2)2−4a ×14≤0,解得1≤a ≤4, 综上可得,实数l 的取值范围是{a |1≤a ≤4}.(2)由题意f(x)−94≤0 可变为ax 2+(a ﹣2)x ﹣2≤0, 可得ax 2+(a ﹣2)x ﹣2=(ax ﹣2)(x +1),当a <0时,方程(ax ﹣2)(x +1)=0的两根为−1,2a, ①当a <﹣2时,因为−1<2a ,解不等式得x ≤﹣1或x ≥2a ; ②当a =﹣2时,因为−1=2a ,此时不等式的解集为R ; ③当﹣2<a <0时,因为−1>2a,解不等式得x ≤2a或x ≥﹣1; 综上所述,不等式的解集为:当﹣2<a <0时,不等式的解集为{x|x ≤2a 或≥−1}; 当a =﹣2时,不等式的解集为R ;当a <﹣2时,不等式的解集为{x|x ≤−1或x ≥2a}.20.(12分)为改善生态环境,某企业对生产过程中产生的污水进行处理.已知该企业污水日处理量为x 百吨(70≤x ≤120),日处理污水的总成本y 元与x 百吨之间的函数关系可近似地表示为y =12x 2+40x +5000.(1)该企业日污水处理量为多少百吨时,平均成本最低?(平均成本=yx )(2)若该企业每处理1百吨污水获收益100元,为使该企业可持续发展,政府决定对该企业污水处理进行财政补贴,补贴方式有两种方案:方案一:每日进行定额财政补贴,金额为4200元;方案二:根据日处理量进行财政补贴,处理x 百吨获得金额为40x +1700元.如果你是企业的决策者,为了获得每日最大利润,你会选择哪个方案进行补贴?并说明原因. 解:(1)∵y =12x 2+40x +5000, ∴yx =x 2+5000x+40,又x ∈[70,120],则y x=x 2+5000x+40≥2√x 2⋅5000x +40=140,当且仅当x 2=5000x,即x =100百吨时,平均成本最低;(2)选择方案一:设每日获利为y 1,∴y 1=100x ﹣(12x 2+40x +5000)+4200=−12x 2+60x ﹣800=−12(x ﹣60)2+1000,∵x ∈[70,120],∴当x =70百吨时,获得最大利润为950元; 选择方案二:设每日获利为y 2,则y 2=100x +40x +1700﹣(12x 2+40x +5000)=−12x 2+100x ﹣3300=−12(x ﹣100)2+1700,∵x ∈[70,120],∴当x =100百吨时,获得最大利润为1700元, 又1700>950,故选择方案二进行补贴.21.(12分)已知函数f (x )对于任意实数x ,y ∈R ,都有f (x +y )+2=f (x )+f (y ),且f (2)=4. (1)求f (1)的值;(2)令g (x )=f (x )﹣2,求证:函数g (x )为奇函数;(3)求f (﹣2023)+f (﹣2022)+…+f (﹣1)+f (0)+f (1)+…+f (2022)+f (2023)的值. 解:(1)∵对于任意实数x ,y ∈R ,都有f (x +y )+2=f (x )+f (y ),且f (2)=4. ∴f (1+1)+2=f (1)+f (1),∴4+2=2f (1),∴f (1)=3; (2)证明:∵f (0+0)+2=f (0)+f (0),∴f (0)=2,又x ∈R ,∴g (﹣x )+g (x )=f (﹣x )﹣2+f (x )﹣2=f (﹣x )+f (x )﹣4=f (﹣x +x )+2﹣4=f (0)﹣2=0, ∴g (x )为奇函数;(3)由(2)知g (﹣x )+g (x )=0,f (x )=g (x )+2, ∴f (﹣x )+f (x )=4,又f (0)=2,∴f (﹣2023)+f (﹣2022)+…+f (﹣1)+f (0)+f (1)+…+f (2022)+f (2023) =2023×4+2=8094.22.(12分)已知函数f (x ),g (x )满足g (x )=f (x )+a 2f(x)(a >0).(1)设f (x )=x ,求证:函数g (x )在区间(0,a )上为减函数,在区间(a ,+∞)上为增函数; (2)设f (x )=√1−x1+x .①当a =1时,求g (x )的最小值;②若对任意实数r ,s ,t ∈[−35,35],|g (r )﹣g (s )|<g (t )恒成立,求实数a 的取值范围.解:(1)证明:由题意,可得g(x)=x +a 2x ,令0<x 1<x 2,则g(x 2)−g(x 1)=x 2+a 2x 2−(x 1+a 2x 1)=(x 2−x 1)+a 2⋅x 1−x 2x 1x 2=(x 2−x 1)(1−a 2x 1x 2)=(x 2−x 1)x 1x 2−a 2x 1x 2,当0<x 1<x 2<a 时,x 2﹣x 1>0,x 1x 2>0且x 1x 2−a 2<0, 故g (x 2)﹣g (x 1)<0,故g (x )在区间(0,a )上为减函数; 当x 2>x 1>a 时,x 2﹣x 1>0,x 1x 2>0且x 1x 2−a 2>0,所以g (x 2)﹣g (x 1)>0,所以g (x )在区间(a ,+∞)上为增函数. (2)①令1−x 1+x>0⇔(1+x)(1−x)>0,解得﹣1<x <1,由g(x)=f(x)+a 2f(x)中f (x )可知, f(x)=√1−x 1+x 的定义域为(﹣1,1),且f(x)=√21+x−1, 因为x ∈(﹣1,1],所以x +1∈(0,2],所以2x+1−1∈(0,+∞),所以f (x )∈(0,+∞),令t =f (x ),则p(t)=t +1t, 所以p(t)=t +1t≥2,当且仅当t =1时取等号, 所以g (x )min =g (0)=2,②因为|g (r )﹣g (s )|<g (t )恒成立,所以g (x )max ﹣g (x )min <g (x )min ,所以g (x )max <2g (x )min , 由①可知,x ∈[−35,35]时,f(x)∈[12,2], 令t =f(x)∈[12,2],令ℎ(t)=t +a 2t, 由(1)知,h (t )在(0,a )上为减函数,在(a ,+∞)上为增函数, 所以当a ≥2时,h (t )在[12,2]上为减函数, 所以g(x)max =ℎ(t)max =ℎ(12)=12+2a 2,g(x)min =ℎ(t)min =ℎ(2)=2+a 22, 所以12+2a 2<2(2+a 22),所以−√142<a <√142,与a ≥2矛盾,当12<a <2时,h (t )在[12,a]上为减函数,h (t )在[a ,2]上为增函数,所以{ℎ(12)<2ℎ(a)ℎ(2)<2ℎ(a),所以{12+2a 2<4a 2+a 22<4a,解得4−2√3<a <2+√32,当a≤12时,h(t)在[12,2]上为增函数,所以2+a22<2(12+2a2),所以a2>27,所以a>√147或a<−√147,由a≤12,得a<−√147,又a>0,所以a∈∅,综上,a的取值范围为{a|4−2√3<a<2+√32}.。
高一上期中数学试卷(有答案)高一(上)期中数学试卷一、选择题(共12小题,每小题5分,满分60分)1.已知集合M={1,2,3,4},N={-2,2},下列结论成立的是()A.N⊆MB.M∪N=MC.M∩N=ND.M∩N={2}2.已知集合U=R,P={x|x^2-4x-5≤0},Q={x|x≥1},则P∩(∁UQ)()A.{x|-1≤x<5}B.{x|1<x<5}C.{x|1≤x<5}D.{x|-1≤x<1}3.下列函数中表示同一函数的是()A.y=2x-1B.y=2(x-1)C.y=2x-2D.y=2(x-2)4.已知f(x)=,则f(3)为()与y=()4B.y=•D.y=与y=与y=A.3B.4C.1D.25.函数f(x)=2x+x-2的零点所在的一个区间是()A.(-2,-1)B.(-1,∞)C.(-∞,1)D.(1,2)6.函数g(x)=2015x+m图象不过第二象限,则m的取值范围是()A.m≤-1B.m<-1C.m≤-2015D.m<-20157.设a=log0.50.9,b=log1.10.9,c=1.10.9,则a,b,c的大小关系为()A.a<b<cB.b<a<cC.b<c<aD.a<c<b8.()A.(-∞,2]B.(-∞,+∞)C.[2,+∞)D.[0,2]9.一高为H,满缸水量为V的鱼缸截面如图所示,其底部破了一个小洞,缸中水从洞中流出,若鱼缸水深为h时水的体积为v,则函数v=f(h)的大致图象可能是图中四个选项中的()A。
B。
C。
D。
10.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(-∞,+∞)(x1≠x2),有且f(x1)f(x2)≥0,且对于任意的x∈[0,+∞),有f(x)f(x+1)≥0,则不等式<的解集是()A.(-∞,-2)∪(2,+∞)B.(-∞,-2)∪(1,2)C.(-2,1)∪(2,+∞) D.(-2,1)∪(1,2)11.已知实数a≠0,函数,则f(1-a)=f(1+a),则a的值为()A.1B.2C.-1D.-212.设奇函数f(x)在[-1,1]上是增函数,且f(-1)=-1,若对所有的x∈[-1,1]及任意的a∈[-1,1]都满足f(x)≤t^2-2at+1,则t的取值范围是()A.[-2,2]B.{t|t≤-1或|t|≥1}C.[-∞,∞)D.{t|t≤-2或t≥2或t=0}二、填空题(共4小题,每小题5分,满分20分)13.函数y=|x-a|的图象关于直线x=2对称,则a=2.根据函数$f(x)\geqslant 2$,而且$-x^2-2x+3=-(x+1)^2+4\leqslant 4$,从而求得函数的值域。
解:因为函数$f(x)\geqslant 2$,而且$-x^2-2x+3=-(x^2+2x-3)=-(x+1)^2+4\leqslant 4$,所以$2\leqslant f(x)\leqslant 4$,故选D。
鱼缸的底部破了一个小洞,水深$h$时水的体积为$v$,则函数$v=f(h)$的大致图象可能是图中四个选项中的()。
解:水深$h$越大,水的体积$v$就越大,故函数$v=f(h)$是个增函数,一开始增长越来越快,后来增长越来越慢,图象是先凹后凸的。
由图得水深$h$越大,水的体积$v$就越大,故函数$v=f(h)$是个增函数。
据四个选项提供的信息,当$h\in[0,H]$,我们可将水“流出”设想成“流入”,这样每当$h$增加一个单位增量$\Delta h$时,根据鱼缸形状可知,函数$v$的变化,开始其增量越来越大,但经过中截面后则增量越来越小,故$v$关于$h$的函数图象是先凹后凸的,曲线上的点的切线斜率先是逐渐变大,后又逐渐变小,故选B。
定义在R上的偶函数$f(x)$满足:对任意的$x_1,x_2\in(-\infty,+\infty)$($x_1\neq x_2$),有$f(x_1)f(x)-2$,即$-x^2+4x-3>f(x)-2$,即$x^2-4x+3<f(x)$,即$x<-2$或$1<x<2$,故不等式的解集为$(-\infty,-2)\cup(1,2)$,故选B。
因此$f(x)$在R上不是单调函数,不符条件。
综合得到$a<2$,故实数$a$的取值范围是$(-\infty。
2)$。
点评】本题考查的知识点是函数的性质及应用,其中根据已知分析出函数$f(x)$不是单调函数,是解答的关键。
三、解答题(共6小题,满分70分)17.(1)若$x\log_3 2=1$,试求$4x+4x$的值;2)计算:$(-2)-(-9.6)-3+(1.5)^2-(\frac{1}{4})^2$。
考点】有理数指数幂的化简求值;根式与分数指数幂的互化及其化简运算。
分析】(1)由已知得$x=\log_2 3$,由此利用对数换底公式能求出$4x+4x$。
2)利用有理数指数幂性质、运算法则求解。
解答】解:(1)因为$x\log_3 2=1$,所以$x=\log_2 3$。
因此$4x+4x=4\cdot \log_2 3+4\cdot \log_2 3=8\cdot \log_2 3=3$。
2)$(-2)-(-9.6)-3+(1.5)^2-(\frac{1}{4})^2=-2+9.6-3+2.25-\frac{1}{16}=2.85$。
点评】本题考查对数式、指数式化简求值,是基础题,解题时要认真审题,注意对数换底公式、有理数指数幂性质、运算法则的合理运用。
18.已知集合$M=\{x|x^2-3x\leq 10\}$,$N=\{x|a+1\leqx\leq 2a+1\}$。
1)若$a=2$,求$M\cap (\overline{RN})$;2)若$M\cup N=M$,求实数$a$的取值范围。
考点】并集及其运算;交、并、补集的混合运算。
分析】(Ⅰ)$a=2$时,$M=\{x|-2\leq x\leq 5\}$,$N=\{3\leq x\leq 5\}$,由此能求出$M\cap (\overline{RN})$。
Ⅱ)由$M\cup N=M$,___,由此能求出实数$a$的取值范围。
解答】(本小题满分8分)解:(Ⅰ)$a=2$时,$M=\{x|-2\leq x\leq 5\}$,$N=\{3\leq x\leq 5\}$。
overline{RN}=\{x|x5\}$。
所以$M\cap (\overline{RN})=\{x|-2\leq x<3\}$。
Ⅱ)因为$M\cup N=M$,所以$N\subset M$。
①$a+1>2a+1$,解得$a<0$;②$-a\leq a\leq 2$,解得$0\leq a\leq 2$。
所以$0\leq a<2$。
点评】本题考查交集、实集的应用,考查实数的取值范围的求法,是基础题。
19.已知函数$f(x)$是定义域在R上的奇函数,当$x>0$时,$f(x)=x^2-2x$。
1)求出函数$f(x)$在R上的解析式;2)写出函数的单调区间。
考点】函数解析式的求解及常用方法;函数奇偶性的性质。
分析】(1)利用函数奇偶性质,将定义域拓展到整个实数集上,然后利用已知条件求解解析式。
2)求出函数的导函数,分析其符号,得到单调区间。
解答】(本小题满分12分)解:(1)因为$f(x)$是奇函数,所以$f(-x)=-f(x)$,对于$x<0$的情况,$f(x)=-f(-x)$,所以$f(x)$是偶函数。
因此$f(x)=\begin{cases}x^2-2x。
& x>0 \\x)^2-2(-x)。
& x<0end{cases}=\begin{cases}x^2-2x。
& x>0 \\x^2+2x。
& x<0end{cases}$。
综上所述,$f(x)=|x^2-2x|$。
2)求导得$f'(x)=2|x-1|\cdot \text{sgn}(x-1)$,其中$\text{sgn}(x-1)$表示$x-1$的符号。
当$x<1$时,$f'(x)=-2(x-1)$,所以$f(x)$在$(-\infty。
1)$上单调递减;当$1<x$时,$f'(x)=2(x-1)$,所以$f(x)$在$(1.\infty)$上单调递增。
综上所述,$f(x)$的单调区间为$(-\infty。
1)$和$(1.\infty)$。
点评】本题考查函数的奇偶性质、导数的求解及单调性分析,是基础题。
定义在$D$上的函数$f(x)$,如果满足对任意$x\in D$,存在常数$M>0$,都有$|f(x)|\leq M$成立,则称$f(x)$是$D$上的有界函数,其中$M$称为函数$f(x)$的上界。
已知函数$f(x)=1+x+ax^2$。
1)当$a=-1$时,求函数$f(x)$在$(-\infty,+\infty)$上的值域,判断函数$f(x)$在$(-\infty,+\infty)$上是否为有界函数,并说明理由;2)若函数$f(x)$在$x\in[1,4]$上是以3为上界的有界函数,求实数$a$的取值范围。
解:(1)当$a=-1$时,函数表达式为$f(x)=1+x-x^2$,可得$f(x)$在$(-\infty,+\infty)$上是单调增函数,它的值域为$(-\infty,1)$,从而$|f(x)|$的取值范围是$[0,+\infty)$,因此不存在常数$M>0$,使$|f(x)|\leq M$成立,故$f(x)$不是$(-\infty,+\infty)$上的有界函数。
2)函数$f(x)$在$x\in[1,4]$上是以3为上界的有界函数,即$-3\leq f(x)\leq 3$在$[1,4]$上恒成立,代入函数表达式并化简整理,得$-3\leq ax^2+x+1\leq 3$。
为求出$a$的取值范围,我们需要分别求出$ax^2+x+1$在$[1,4]$上的最大值和最小值。
令$t=\frac{x-2.5}{1.5}$,则$t\in[-1,1]$,有$ax^2+x+1=a(t+2.5)^2-4a+1$。
因为$|f(x)|\leq 3$,所以$|ax^2+x+1|\leq 3$,即$|a(t+2.5)^2-4a+1|\leq 3$。
因为$(t+2.5)^2\geq 0$,所以$|a(t+2.5)^2-4a+1|=|a|(t+2.5)^2+4|a|-1$。
于是我们得到了一个关于$t$的不等式$|a|(t+2.5)^2+4|a|-1\leq 3$,将其化简得到$|a|(t+2.5)^2\leq 4$。
因为$(t+2.5)^2\geq 0$,所以$|a|(t+2.5)^2\geq 0$,因此$|a|\leq \frac{4}{(t+2.5)^2}$。