2018-2019学年河南省新乡市高一上学期期中考试数学试题
- 格式:doc
- 大小:574.86 KB
- 文档页数:12
一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A ={x|y =1x },B ={y|y =1x },C ={(x ,y)|y =1x },下列结论正确的是( ) A .A =BB .A =CC .B =CD .A =B =C【解答】解:A ={x |x ≠0},B ={y |y ≠0},C 表示曲线y =1x 上的点形成的集合; ∴A =B . 故选:A .2.(5分)已知集合A ={1,2},B ={2,2k },若B ⊆A ,则实数k 的值为( ) A .1或2B .12C .1D .2【解答】解:∵集合A ={1,2},B ={2,2k},B ⊆A , ∴由集合元素的互异性及子集的概念可知2k =1,解得实数k =2. 故选:D .3.(5分)下列各组函数中,表示同一函数的是( ) A .f (x )=2lgx ,g (x )=lgx 2 B .f(x)=1(x ≠0),g(x)=x|x| C .f (x )=x ,g (x )=10lgxD .f(x)=2x ,g(x)=√22x【解答】解:A .f (x )=2lgx ,g (x )=lgx 2=2lg |x |,解析式不同,不是同一函数; B .f (x )=1(x ≠0},g(x)=x|x|={1x >0−1x <0,解析式不同,不是同一函数;C .f (x )=x 的定义域为R ,g (x )=10lgx 的定义域为(0,+∞),定义域不同,不是同一函数;D .f (x )=2x 的定义域为R ,g(x)=√22x =2x 的定义域为R ,定义域和解析式都相同,是同一函数. 故选:D .4.(5分)某班共50名同学都选择了课外兴趣小组,其中选择音乐的有25人,选择体育的有20人,音乐、体育两个小组都没有选的有18人,则这个班同时选择音乐和体育的人数为( )A.15B.14C.13D.8【解答】解:如图,设音乐和体育小组都选的人数为x人则只选择音乐的有(25﹣x)人,只选择体育小组的有(20﹣x)人,由此得(25﹣x)+x+(20﹣x)+18=50,解得x=13,∴音乐和体育都选的学生有13人,故选:C.5.(5分)定于集合A,B的一种运算“*”:A*B={x|x=x1﹣x2,x1∈A,x2∈B}.若P={1,2,3,4},Q={1,2},则P*Q中的所有元素之和为()A.5B.4C.3D.2【解答】解:P*Q={x|x=x1﹣x2,x1∈P,x2∈Q}={﹣1,0,1,2,3},P*Q中的所有元素之和为5.故选:A.6.(5分)若2a=0.5,b=2.70.3,c=0.32.7,则a,b,c的大小关系是()A.a<b<c B.c<b<a C.c<a<b D.a<c<b【解答】解:∵由2a=0.5可得a=log20.5=﹣1,b=2.70.3>2.70=1,0.30=1>c=0.32.7>0,∴a<c<b.故选:D.7.(5分)已知2x=3y=a,且1x+1y=2,则a的值为()A.√6B.6C.±√6D.36【解答】解:∵2x=3y=a,∴xlg2=ylg3=lga,∴1x=lg2lga,1y =lg3lga,∴2=1x +1y =lg2lga +lg3lga =lg6lga , ∴lga =12lg 6=lg √6, 解得a =√6. 故选:A .8.(5分)函数f(x)=2x −1x 的零点所在的区间是( ) A .(0,12)B .(34,1)C .(12,34)D .(1,2)【解答】解:由函数f(x)=2x −1x的在R 上是增函数,f (12)=1√2−2<0,f (34)=234−43>212−34>0,且f (12)f (34)<0,可得函数在区间(12,34)上有唯一零点.故选:C .9.(5分)已知函数f(x)={x 2,x <0−x 2,x ≥0,则不等式f (x +1)+f (3﹣2x )<0的解集为( )A .(4,+∞)B .(﹣∞,4)C .(−∞,23) D .(23,+∞)【解答】解:函数f(x)={x 2,x <0−x 2,x ≥0,是奇函数,在R 上是减函数,不等式f (x +1)+f (3﹣2x )<0,可得f (x +1)<﹣f (3﹣2x )=f (2x ﹣3), 解得:x +1>2x ﹣3,可得x <4,所以不等式f (x +1)+f (3﹣2x )<0的解集{x |x <4}. 故选:B .10.(5分)已知f (x )是定义在R 上的单调函数,若f [f (x )﹣e x ]=1,则f (e )=( ) A .e eB .eC .1D .0【解答】解:根据题意,f (x )是定义在R 上的单调函数,若f [f (x )﹣e x ]=1, 则f (x )﹣e x 为常数,设f (x )﹣e x =t ,则f (x )=e x +t , 又由f [f (x )﹣e x ]=1,即f (t )=1,则有e t +t =1, 分析可得:t =0, 则f (x )=e x ,则f (e )=e e , 故选:A .11.(5分)已知幂函数f (x )=(m ﹣1)x n 的图象过点(2,2√2),设a =f (m ),b =f (n ),c =f (lnn ),则( ) A .c <b <aB .c <a <bC .b <c <aD .a <b <c【解答】解:∵幂函数f (x )=(m ﹣1)x n 的图象过点(2,2√2), ∴{m −1=12n =2√2,解得m =2,n =32, ∴f (x )=x 32, ∴f (x )=x 32在(0,+∞)是增函数, 0<ln 32<1,∴f (2)>f (32)>f (ln 32),∴a >b >c .即c <b <a . 故选:A .12.(5分)已知函数f(x)={|log 2(x +1)|,−1<x ≤2−x 2+4x −3,x >2,若关于x 的方程f (x )﹣t =0有3个不同的实数根,则实数t 的取值范围是( ) A .[0,1]B .(0,1)C .[0,log 23]D .(0,log 23)【解答】解:方程f (x )﹣t =0有3个不同的实数根,画出y =f (x )的函数图象以及y =t 中的图象,|log 23|>|log 22|=1, t ∈(0,1), 故选:B .二、填空题:本大题共4个小题,每小题5分,共20分.13.(5分)设集合A ={x |x <1},B ={x |x <5},那么(∁R A )∩B = [1,5) . 【解答】解:∵∁R A ={x |x ≥1},∴(∁R A )∩B ={x |1≤x <5}. 故答案为:[1,5). 14.(5分)函数y =1ln(4−x)+√3x −9的定义域是 [2,3)∪(3,4) .【解答】解:要使函数y =1ln(4−x)+√3x −9有意义,则{4−x >04−x ≠13x −9≥0;解得2≤x <4,且x ≠3;∴该函数定义域为[2,3)∪(3,4). 故答案为:[2,3)∪(3,4).15.(5分)函数f(x)=log 12(x 2−x −6)在定义域(﹣∞,﹣2)∪(3,+∞)上的增区间是 (﹣∞,﹣2) .【解答】解:根据题意,设t =x 2﹣x ﹣6,则y =log 12t ,函数t =x 2﹣x ﹣6在(﹣∞,﹣2)上为减函数,在(3,+∞)上为增函数, 而y =log 12t 为减函数,则函数f (x )的递增区间为(﹣∞,﹣2); 故答案为:(﹣∞,﹣2).16.(5分)函数f (x )是定义在R 上的偶函数,且在(0,+∞)上递增,若f (1)=0,f (0)<0,则不等式xf (x ﹣1)<0的解集是 (﹣∞,0)∪(0,2) . 【解答】解:根据题意,f (x )在(0,+∞)上递增,且f (1)=0,f (0)<0, 则在[0,1)上,f (x )<0,在(1,+∞)上,f (x )>0, 又由函数f (x )为偶函数,则在区间(﹣1,0]上,f (x )<0,在区间(﹣∞,﹣1)上,f (x )>0, xf (x ﹣1)<0⇔{x <0f(x −1)>0或{x >0f(x −1)<0,分析可得:x <0或0<x <2,即不等式的解集为(﹣∞,0)∪(0,2); 故答案为:(﹣∞,0)∪(0,2).三、解答题:本大题共6个小题,共70分.17.(10分)计算:(1)(338)−19+(√2×√33)6−(−0.9)0−√(23)23; (2)13lg125+2lg √2+log 5(log 28)×log 35.【解答】解:(1)(338)−19+(√2×√33)6−(−0.9)0−√(23)23 =(32)−13+(212+313)6﹣1﹣(23)13=(23)13+72﹣1﹣(23)13=71.(2)13lg125+2lg √2+log 5(log 28)×log 35=lg 5+lg 2+log 53×log 35 =lg 10+lg3lg5×lg5lg3 =1+1=2.18.(12分)已知函数f(x)=√log 12(1−12x)的定义域为集合A ,函数g(x)=(12)x−1(−1≤x ≤1)的值域为集合B . (1)求A ∩B ;(2)设集合C ={x |a ≤x ≤3a ﹣2},若C ∩A =C ,求实数a 的取值范围. 【解答】解:(1)由log 12(1−12x)≥0得,0<1−12x ≤1;解得0≤x <2; ∴A =[0,2); ∵﹣1≤x ≤1; ∴﹣2≤x ﹣1≤0; ∴1≤(12)x−1≤4; ∴B =[1,4]; ∴A ∩B =[1,2); (2)∵C ∩A =C ; ∴C ⊆A ;∴①C =∅时,a >3a ﹣2;∴a <1;②C ≠∅时,则{a ≥13a −2<2;解得1≤a <43;综上,实数a 的取值范围是(−∞,43).19.(12分)已知函数f (x )=x +ln (1+x )﹣ln (1﹣x ). (1)求f (x )的定义域,并直接写出f (x )的单调性; (2)用定义证明函数f (x )的单调性. 【解答】解:(1)由题意得1+x >0且1﹣x >0, 解得:﹣1<x <1,故函数的定义域是(﹣1,1), 函数f (x )在(﹣1,1)递增;(2)证明:在定义域(﹣1,1)内任取x 1,x 2,且x 1<x 2, 则f (x 1)﹣f (x 2)=x 1﹣x 2+ln(1+x 1)(1−x 2)(1−x 1)(1+x 2),由于﹣1<x 1<x 2<1,故0<1+x 1<1+x 2, 故0<1+x 11+x 2<1,同理0<1−x21−x 1<1,故0<1+x11+x 2•1−x 21−x 1<1, 故ln(1+x 1)(1−x 2)(1−x 1)(1+x 2)<0,由于x 1﹣x 2<0,故f (x 1)﹣f (x 2)<0,即f (x 1)<f (x 2), 故函数f (x )为(﹣1,1)上的增函数.20.(12分)已知二次函数f (x )=x 2+(2a ﹣1)x +1﹣a .(1)证明:对于任意的a ∈R ,g (x )=f (x )﹣1必有两个不同的零点;(2)是否存在实数a 的值,使得y =f (x )在区间(﹣1,0)及(0,2)内各有一个零点?若存在,求出实数a 的取值范围;若不存在,请说明理由. 【解答】解:(1)令g (x )=0,则f (x )=1, 即x 2+(2a ﹣1)x ﹣a =0,∵△=(2a ﹣1)2+4a =4a 2+1>0对任意的a ∈R 恒成立, 故x 2+(2a ﹣1)x ﹣a =0必有2个不相等的实数根,从而方程f (x )=1必有2个不相等的实数根,故对于任意的a ∈R ,g (x )=f (x )﹣1必有2个不同的零点; (2)不存在,理由如下:由题意,要使y =f (x )在区间(﹣1,0)以及(0,2)内各有1个零点,只需{f(−1)>0f(0)<0f(2)>0即{3−3a >01−a <03a +3>0,故{a <1a >1a >−1,无解,故不存在实数a 的值,使得y =f (x )在区间(﹣1,0)及(0,2)内各有一个零点. 21.(12分)某工厂生产甲、乙两种产品所得的利润分别为P 和Q (万元),它们与投入资金m (万元)的关系为:P =320m +30,Q =40+3√m .今将300万资金投入生产甲、乙两种产品,并要求对甲、乙两种产品的投入资金都不低于75万元. (1)设对乙种产品投入资金x (万元),求总利润y (万元)关于x 的函数; (2)如何分配投入资金,才能使总利润最大?并求出最大总利润.【解答】解:(1)根据题意,对乙种产品投资x (万元),对甲种产品投资(300﹣x )(万元), 那么总利润y =320(300﹣x )+30+40+3√x =−320x +3√x +115, 由{x ≥75300−x ≥75,解得75≤x ≤225, 所以y =−320x +3√x +1154,其定义域为[75,225], (2)令t =√x ,因为x ∈[75,225],故t ∈[5√3,15], 则y =−320t 2+3t +115=−320(t ﹣10)2+130, 所以当t =10时,即x =100时,y max =130,答:当甲产品投入200万元,乙产品投入100万元时,总利润最大为130万元 22.(12分)已知函数f(x)=1−22x +1. (1)判断函数奇偶性; (2)求函数f (x )的值域;(3)当x ∈(0,2]时,mf (x )+2+2x ≥0恒成立,求实数m 的取值范围. 注:函数y =x +ax (a >0)在(0,a ]上单调递减,在(√a ,+∞)上单调递增.【解答】解:函数f(x)=1−22x +1.其定义域为R ;f (﹣x )=1−22−x +1=1−212x+1=1−2⋅2x 1+2x =1+2x −2⋅2x 1+2x =−(2x+1)+21+2x=﹣(1−2x)=﹣f (x ), ∴f (x )是奇函数; (2)由函数f (x )=y =1−22x+1, 可得21−y=2x +1,即2x =21−y −1 ∵2x >0, ∴21−y −1>0,即1+y 1−y>0解得:﹣1<y <1∴f (x )的值域(﹣1,1).(3)当x ∈(0,2]时,mf (x )+2+2x ≥0恒成立, 即(1−22x+1)m +2+2x ≥0恒成立, 可得(2x ﹣1)m +(2+2x )(2x +1)≥0; ∵x ∈(0,2]; ∴2x ﹣1>0则m ≥−(2+2x)(2x+1)2x −1,即﹣m ≤(2+2x)(22+1)2x+1; 令2x ﹣1=t ,(0,3];那么y =(2+2x)(2x+1)2x −1=(3+t)(t+2)t =t +6t +5≥2√6+5;当且仅当t =√6时取等号. ∴﹣m ≤2√6+5;可得实数m 的取值范围[−2√6−5,+∞).。
人教A 版数学高二弧度制精选试卷练习(含答案) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是 ( ) A .1 B .2 C .3 D .4【来源】黑龙江省鹤岗市第一中学2018-2019学年高一12月月考数学(理)试题【答案】B 2.已知扇形的面积为,扇形圆心角的弧度数是,则扇形的周长为( ) A . B . C . D .【来源】同步君人教A 版必修4第一章1.1.2弧度制【答案】C3.扇形圆心角为3π,半径为a ,则扇形内切圆的圆面积与扇形面积之比为( ) A .1:3B .2:3C .4:3D .4:9【来源】2012人教A 版高中数学必修四1.1任意角和弧度制练习题(二)(带解析)【答案】B4.已知扇形的圆心角为2弧度,弧长为4cm , 则这个扇形的面积是( ) A .21cm B .22cm C .24cm D .24cm π【来源】陕西省渭南市临渭区2018—2019学年高一第二学期期末数学试题【答案】C5.若扇形的面积为38π、半径为1,则扇形的圆心角为( ) A .32π B .34π C .38π D .316π 【来源】浙江省杭州第二中学三角函数 单元测试题【答案】B 6.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( ) A .3π B .3π- C .23π D .23π-【来源】浙江省台州市2019-2020学年高一上学期期末数学试题【答案】B7.实践课上小华制作了一副弓箭,如图所示的是弓形,弓臂BAC 是圆弧形,A 是弧BAC 的中点,D 是弦BC 的中点,测得10AD =,60BC =(单位:cm ),设弧AB 所对的圆心角为θ(单位:弧度),则弧BAC 的长为( )A .30θB .40θC .100θD .120θ【来源】安徽省池州市2019-2020学年高一上学期期末数学试题【答案】C8.已知扇形AOB 的半径为r ,弧长为l ,且212l r =-,若扇形AOB 的面积为8,则该扇形的圆心角的弧度数是( )A .14B .12或2C .1D .14或1 【来源】广西贵港市桂平市2019-2020学年高一上学期期末数学试题【答案】D9.已知扇形的圆心角为150︒,弧长为()5rad π,则扇形的半径为( )A .7B .6C .5D .4【来源】安徽省六安市六安二中、霍邱一中、金寨一中2018-2019学年高二下学期期末联考数学(文)试题【答案】B10.已知扇形AOB ∆的周长为4,当扇形的面积取得最大值时,扇形的弦长AB 等于( )A .2B .sin1C .2sin1D .2cos1【来源】湖北省宜昌市一中、恩施高中2018-2019学年高一上学期末联考数学试题【答案】C11.“圆材埋壁”是《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,学会一寸,锯道长一尺,问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知道大小,用锯取锯它,锯口深一寸,锯道长一尺,问这块圆柱形木材的直径是多少?现有圆柱形木材一部分埋在墙壁中,截面如图所示,已知弦1AB =尺,弓形高1CD =寸,则阴影部分面积约为(注: 3.14π≈,5sin 22.513︒≈,1尺=10寸)( )A .6.33平方寸B .6.35平方寸C .6.37平方寸D .6.39平方寸【来源】山东省潍坊市2018-2019学年高一下学期期中考试数学试题【答案】A12.已知扇形OAB 的面积为1,周长为4,则弦AB 的长度为( ) A .2 B .2/sin 1 C .2sin 1 D .sin 2【来源】黑龙江省部分重点高中2019-2020学年高一上学期期中联考数学试题【答案】C13.已知扇形OAB 的面积为4,圆心角为2弧度,则»AB 的长为( ) A .2 B .4 C .2π D .4π【来源】江苏省南京市2019-2020学年高一上学期期末数学试题【答案】B14.已知α 为第三象限角,则2α所在的象限是( ). A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限【来源】四川省南充高级中学2016-2017学年高一4月检测考试数学试题【答案】D15.若扇形的面积为216cm ,圆心角为2rad ,则该扇形的弧长为( )cm . A .4 B .8 C .12 D .16【来源】江苏省盐城市大丰区新丰中学2019-2020学年高一上学期期末数学试题【答案】B16.周长为6,圆心角弧度为1的扇形面积等于( )A .1B .32πC .D .2【来源】河北省邯郸市魏县第五中学2019-2020学年高一上学期第二次月考数学试题【答案】D17.已知一个扇形弧长为6,扇形圆心角为2rad ,则扇形的面积为 ( )A .2B .3C .6D .9【来源】2013-2014学年辽宁省实验中学分校高二下学期期末考试文科数学试卷(带解析)【答案】D18.集合{|,}42k k k Z ππαπαπ+≤≤+∈中角所表示的范围(阴影部分)是( ) A . B . C .D .【来源】2015高考数学理一轮配套特训:3-1任意角弧度制及任意角的三角函数(带解析)【答案】C19.已知⊙O 的半径为1,A ,B 为圆上两点,且劣弧AB 的长为1,则弦AB 与劣弧AB 所围成图形的面积为( )A .1122-sin 1B .1122-cos 1C .1122-sin 12D .1122-cos 12【来源】河北省衡水中学2019-2020学年高三第一次联合考试数学文科试卷【答案】A20.已知一个扇形的圆心角为56π,半径为3.则它的弧长为( ) A .53π B .23π C .52π D .2π 【来源】河南省新乡市2018-2019学年高一下学期期末数学试题【答案】C21.中国传统扇文化有着极其深厚的底蕴. 一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为12时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为( )A .(3π-B .1)πC .1)πD .2)π【来源】吉林省长春市2019-2020学年上学期高三数学(理)试题【答案】A22.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就,其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦⨯矢+矢⨯矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与其实际面积之间存在误差,现有圆心角为23π,弦长为实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米(其中3π≈ 1.73≈)A .14B .16C .18D .20【来源】上海市实验学校2018-2019学年高一下学期期末数学试题【答案】B23.已知某扇形的面积为22.5cm ,若该扇形的半径r ,弧长l 满足27cm r l +=,则该扇形圆心角大小的弧度数是()A .45B .5C .12D .45或5 【来源】安徽省阜阳市太和县2019-2020学年高三上学期10月质量诊断考试数学(文)试题【答案】D24.已知一个扇形的圆心角为3弧度,半径为4,则这个扇形的面积等于( ). A .48 B .24 C .12 D .6【来源】湖南师范大学附属中学2016-2017学年高一下学期期中考试数学试题【答案】B25.已知扇形的圆心角23απ=,所对的弦长为 ) A .43π B .53π C .73π D .83π 【来源】河南省新乡市辉县市一中2018-2019高一下学期第一阶段考试数学试题【答案】D26.如果2弧度的圆心角所对的弦长为4,那么这个圆心所对的弧长为( ) A .2 B .2sin1 C .2sin1 D .4sin1【来源】黑龙江省大兴安岭漠河一中2019-2020学年高一上学期11月月考数学试题【答案】D27.若α是第一象限角,则下列各角中属于第四象限角的是( )A .90α︒-B .90α︒+C .360α︒-D .180α︒+【来源】福建省厦门双十中学2017-2018学年高一下学期第二次月考数学试题【答案】C28.已知扇形的半径为2,面积为4,则这个扇形圆心角的弧度数为( )A B .2 C . D .【来源】河南省南阳市2016—2017学年下期高一期终质量评估数学试题【答案】B二、填空题29.已知大小为3π的圆心角所对的弦长为2,则这个圆心角所夹扇形的面积为______. 【来源】安徽省马鞍山市第二中学2018-2019学年高一下学期开学考试数学试题【答案】23π. 30.135-=o ________弧度,它是第________象限角.【来源】浙江省杭州市七县市2019-2020学年高一上学期期末数学试题【答案】34π- 三 31.设扇形的半径长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是【来源】2011-2012学年安徽省亳州一中高一下学期期中考试数学试卷(带解析)【答案】32.在北纬60o 圈上有甲、乙两地,若它们在纬度圈上的弧长等于2R π(R 为地球半径),则这两地间的球面距离为_______ . 【来源】上海市浦东新区川沙中学2018-2019学年高二下学期期末数学试题 【答案】3R π 33.已知一个扇形的弧长等于其所在圆半径的2倍,则该扇形圆心角的弧度数为________,若该扇形的半径为1,则该扇形的面积为________.【来源】浙江省宁波市2019-2020学年高一上学期期末数学试题【答案】2 134.设O 为坐标原点,若直线l :102y -=与曲线τ0y =相交于A 、B 点,则扇形AOB 的面积为______.【来源】上海市普陀区2016届高三上学期12月调研(文科)数学试题 【答案】3π 35.已知扇形的圆心角为12π,面积为6π,则该扇形的弧长为_______; 【来源】福建省漳州市2019-2020学年学年高一上学期期末数学试题 【答案】6π 36.在半径为5的圆中,5π的圆心角所对的扇形的面积为_______. 【来源】福建省福州市八县一中2019-2020学年高一上学期期末联考数学试题 【答案】52π37.已知集合M ={(x ,y )|x ﹣3≤y ≤x ﹣1},N ={P |PA PB ,A (﹣1,0),B (1,0)},则表示M ∩N 的图形面积为__.【来源】上海市复兴高级中学2015-2016学年高二上学期期末数学试题【答案】4338.圆心角为2弧度的扇形的周长为3,则此扇形的面积为 _____ .【来源】山东省泰安市2019届高三上学期期中考试数学(文)试题 【答案】91639.已知圆心角是2弧度的扇形面积为216cm ,则扇形的周长为________【来源】上海市向明中学2018-2019学年高三上学期第一次月考数学试题【答案】16cm40.扇形的圆心角为3π,其内切圆的面积1S 与扇形的面积2S 的比值12S S =______. 【来源】上海市七宝中学2015-2016学年高一下学期期中数学试题 【答案】2341.已知扇形的半径为6,圆心角为3π,则扇形的面积为__________. 【来源】江苏省苏州市2019届高三上学期期中调研考试数学试题【答案】6π42.若扇形的圆心角120α=o ,弦长12AB cm =,则弧长l =__________ cm .【来源】黑龙江省齐齐哈尔八中2018届高三8月月考数学(文)试卷43.已知扇形的周长为8cm ,圆心角为2弧度,则该扇形的半径是______cm ,面积是______2cm .【来源】浙江省杭州市西湖高级中学2019-2020学年高一上学期12月月考数学试题【答案】2 444.已知扇形的弧长是半径的4倍,扇形的面积为8,则该扇形的半径为_________【来源】江西省宜春市上高县第二中学2019-2020学年高一上学期第三次月考数学(理)试题【答案】2.45.已知点P(tan α,cos α)在第三象限,则角α的终边在第________象限.【来源】[同步]2014年湘教版必修二 3.1 弧度制与任意角练习卷1(带解析)【答案】二三、解答题46.已知角920α=-︒.(Ⅰ)把角α写成2k πβ+(02,k Z βπ≤<∈)的形式,并确定角α所在的象限;(Ⅱ)若角γ与α的终边相同,且(4,3)γππ∈--,求角γ.【来源】安徽省合肥市巢湖市2019-2020学年高一上学期期末数学试题【答案】(Ⅰ)α=8(3)29ππ-⨯+,第二象限角;(Ⅱ)289πγ=- 47.已知一扇形的圆心角为α,半径为R ,弧长为l .(1)若60α=︒,10cm R =,求扇形的弧长l ;(2)若扇形周长为20cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?【来源】山东省济南市外国语学校三箭分校2018-2019学年高一下学期期中数学试题【答案】(1)()10cm 3π(2)2α= 48.已知一扇形的圆心角为60α=o ,所在圆的半径为6cm ,求扇形的周长及该弧所在的弓形的面积.【来源】江西省南昌市新建一中2019-2020学年高一上学期期末(共建部)数学试题【答案】2π+12,6π﹣49.已知一扇形的周长为4,当它的半径与圆心角取何值时,扇形的面积最大?最大值是多少?【来源】宁夏大学附中2019-2020学年高一上学期第一次月考数学试题【答案】半径为1,圆心角为2,扇形的面积最大,最大值是2.50.已知扇形的圆心角为α(0α>),半径为R .(1)若60α=o ,10cm R =,求圆心角α所对的弧长;(2)若扇形的周长是8cm ,面积是24cm ,求α和R .【来源】安徽省阜阳市颍上二中2019-2020学年高一上学期第二次段考数学试题【答案】(1)10cm 3π(2)2α=,2cm R =。
原阳2023-2024学年上学期高一年级12月月考数学试卷(答案在最后)总分150分时长120分钟命题人审核人一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合U =R ,集合{}1M x x =<,11242xN x ⎧⎫⎪⎪⎛⎫=<<⎨⎬⎪⎝⎭⎪⎪⎩⎭,则{}2x x ≥=()A.()U M N ðB.U N Mð C.()U M N ð D.U M N⋃ð2.已知21log 3a =,32b -=,ln 23c =,则a ,b ,c 的大小关系为()A.a b c<< B.b a c<< C.b<c<aD.a c b<<3.命题2:210p ax x ++=有实数根,若p ⌝是假命题,则实数a 的取值范围是()A.{|1}a a <B.{|1}a a ≤ C.{|1}a a > D.以上都不对4.若规定a b ad bc cd=-,则不等式0213x x<<的解集是()A .(1,1)-B.(C.D.(1)-⋃5.在今年的全国政协、人大两会上,代表们呼吁政府切实关心老百姓看病贵的问题,国家决定对某药品分两次降价,假设平均每次降价的百分率为x .已知该药品的原价是m 元,降价后的价格是y 元,则y 与x 的函数关系是()A.y =m (1-x )2B.y =m (1+x )2C.y =2m (1-x )D.y =2m (1+x )6.已知7log 2a =,0.7log 0.2b =,0.20.7c =,则a ,b ,c 的大小关系为A.a c b<< B.a b c<< C.b<c<aD.c<a<b7.某食品加工厂2021年获利20万元,经调整食品结构,开发新产品,计划从2022年开始每年比上一年获利增加20%,问从哪一年开始这家加工厂年获利超过60万元(lg 20.3010≈,lg30.4771≈)()A.2026年B.2027年C.2028年D.2029年8.定义在()0,∞+上的函数()f x 满足:()()112212x f x x f x x x --<0,且(2)4f =,则不等式8()0f x x->的解集为()A.()2,∞+ B.()0,2 C.()0,4 D.()4,+∞二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.已知函数()2f x x =的值域为[]0,4,则()f x 的定义域可以是()A.[]0,2 B.[]2,1- C.[]1,2 D.{}2,0,2-10.已知正实数a ,b 满足42a b +=,则()A.14ab ≤B.2164a b +≥ C.1192a b +≥D.4+≥11.(多选)已知函数()221f x x x =-++的定义域为()2,3-,则函数()f x 的单调递增区间是()A.(),1-∞- B.()3,1-- C.()0,1 D.()1,312.设()33,0log ,0x x f x x x ⎧≤⎪=⎨>⎪⎩,若()0f x a -=有三个不同的实数根,则实数a 的取值可以是()A.12B.1C.1-D.2三、填空题:本题共4小题,每小题5分,共20分,16题第一个空2分,第二个空3分.13.已知奇函数f (x )在区间[3,6]上是增函数,且在区间[3,6]上的最大值为8,最小值为-1,则f (6)+f (-3)的值为________.14.若关于x 的不等式2210ax ax +-<的解集为R ,则实数a 的取值范围是__________.15.若正数x ,y 满足40x y xy +-=,则3x y+的最大值为________.16.设函数()()11,022,0xx f x f x x ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭⎪->⎩,()log (1)a g x x =-,(其中1a >),(1)()2021f =________;(2)若函数()f x 与()g x 的图象有3个交点,则实数a 的取值范围为________.四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.求下列各式的值.(1)411231322(0.25)(2)[(2)]1)2---⨯-+-;(2)82715lglg lg12.5log 9log 828-+-⋅.18.(1)已知集合{}2120|A x x ax b =++=,{}20|B x x ax b =-+=满足()R {2}A B ⋂=ð,()R {4}A B = ð,求实数a ,b 的值;(2)已知集合{}121|A x a x a =-<<+,函数2lg()y x x =-的定义域为B ,若A B ⋂=∅,求实数a 的取值范围.19.已知函数14()2x x f x m +=--.(1)当0m =时,求函数()f x 的零点;(2)若()f x 有两个零点,求实数m 的取值范围.20.某化工厂每一天中污水污染指数()f x 与时刻x (时)的函数关系为25()log (1)21f x x a a =+-++,[0,24]x ∈,其中a 为污水治理调节参数,且()0,1a ∈.(1)若12a =,求一天中哪个时刻污水污染指数最低;(2)规定每天中()f x 的最大值作为当天的污水污染指数,要使该厂每天的污水污染指数不超过3,则调节参数a 应控制在什么范围内?21.(1)对任意11x -≤≤,函数()2442y x a x a =+-+-的值恒大于0,求实数a 的取值范围;(2)不等式()228x y y x y λ+≥+对于任意的,R x y ∈恒成立,求实数λ的取值范围.22.已知函数()2e ,e ,x x x x m f x x x m ⎧--≤=⎨+>⎩和()2ln ,01ln ,1x x x g x x x x --<≤⎧=⎨+≥⎩有相同的最小值,(e 为自然对数的底数,且e 2.71828= )(1)求m ;(2)证明:存在直线y b =与函数()y f x =,()y g x =恰好共有三个不同的交点;(3)若(2)中三个交点的横坐标分别为1x ,2x ,3x ()123x x x <<,求1232x x x ++的值.原阳2023-2024学年上学期高一年级12月月考数学试卷总分150分时长120分钟命题人审核人一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合U =R ,集合{}1M x x =<,11242xN x ⎧⎫⎪⎪⎛⎫=<<⎨⎬⎪⎝⎭⎪⎪⎩⎭,则{}2x x ≥=()A.()U M N ðB.U N Mð C.()U M N ð D.U M N⋃ð【答案】A 【解析】【分析】解指数不等式化简集合N ,再利用集合的交并补运算逐项判断即可.【详解】依题意,21111{|()()(}{|12}222x N x x x -=<<=-<<,而{}1M x x =<,对于A ,{|2}M N x x ⋃=<,因此(){|2}U M N x x =≥ ð,A 是;对于B ,{|1}U M x x =≥ð,因此(){|1}U N M x x =>- ð,B 不是;对于C ,{|11}M N x x ⋂=-<<,因此(){|1U M N x x =≤- ð或1}x ≥,C 不是;对于D ,{|1U N x x =≤-ð或2}x ≥,因此(){|1U M N x x =< ð或2}x ≥,D 不是.故选:A 2.已知21log 3a =,32b -=,ln 23c =,则a ,b ,c 的大小关系为()A.a b c <<B.b a c<< C.b<c<aD.a c b<<【答案】A 【解析】【分析】根据指数函数、对数函数的性质判断即可.【详解】解:因为221log log 103a =<=,300221-<<=,即01b <<,ln20331c =>=,所以a b c <<.故选:A3.命题2:210p ax x ++=有实数根,若p ⌝是假命题,则实数a 的取值范围是()A.{|1}a a <B.{|1}a a ≤ C.{|1}a a > D.以上都不对【答案】B 【解析】【分析】p ⌝是假命题,则p 为真命题,即2210ax x ++=有实数根,分类讨论0a =与0a ≠时的情况即可.【详解】当0a =时,即210x +=有实数根,解得12x =,故符合要求;当0a ≠时,即有440a ∆=-≥,解得1a ≤且0a ≠;综上所述,1a ≤.故选:B.4.若规定a b ad bc cd=-,则不等式0213x x<<的解集是()A.(1,1)-B.(C.D.(1)-⋃【答案】D 【解析】【分析】由题意化简0213x x <<,直接求解即可.【详解】因为a b ad bc cd=-,所以2133x xx =-,所以2032x <-<,即213x <<,解得1x <<或1x <<-,故选:D5.在今年的全国政协、人大两会上,代表们呼吁政府切实关心老百姓看病贵的问题,国家决定对某药品分两次降价,假设平均每次降价的百分率为x .已知该药品的原价是m 元,降价后的价格是y 元,则y 与x 的函数关系是()A.y =m (1-x )2B.y =m (1+x )2C.y =2m (1-x )D.y =2m (1+x )【答案】A 【解析】【分析】根据指数函数模型列式求解.【详解】第一次降价后价格为(1)m x -,第二次降价后价格变为2(1)(1)(1)y m x x m x =--=-.故选:A .【点睛】本题考查指数函数模型的应用,平行增长率问题.属于基础题.6.已知7log 2a =,0.7log 0.2b =,0.20.7c =,则a ,b ,c 的大小关系为A.a c b << B.a b c<< C.b<c<aD.c<a<b【答案】A 【解析】【分析】771log 2log 2<=,0.70.7log 0.2log 0.71>=,0.20.70.71<<,再比较,,a b c 的大小.【详解】71log 22a =<,0.70.7log 0.2log 0.71b =>=,0.20.70.71c <=<,a c b <<,故选A.【点睛】本题考查了指对数比较大小,属于简单题型,同底的对数,指数可利用单调性比较大小,同指数不同底数,按照幂函数的单调性比较大小,或是和中间值比较大小.7.某食品加工厂2021年获利20万元,经调整食品结构,开发新产品,计划从2022年开始每年比上一年获利增加20%,问从哪一年开始这家加工厂年获利超过60万元(lg 20.3010≈,lg30.4771≈)()A.2026年B.2027年C.2028年D.2029年【答案】C 【解析】【分析】依据题意设出解析式,再用对数的相关知识求解即可.【详解】设第n 年获利y 元,则=20 1.2n y n ⨯,是正整数,2022年是第一年,故201.260n ⨯>,解得 1.2lg 3lg 3log 3== 6.03lg1.2lg 32lg 21n >≈+-故7n ≥,即从2028年开始这家加工厂年获利超过60万元.故选:C8.定义在()0,∞+上的函数()f x 满足:()()112212x f x x f x x x --<0,且(2)4f =,则不等式8()0f x x->的解集为()A.()2,∞+ B.()0,2 C.()0,4 D.()4,+∞【答案】B 【解析】【分析】根据()()112212x f x x f x x x --<0,得到()()g x xf x =在()0,∞+上递减,然后由(2)4f =,得到()28=g ,将不等式8()0f x x->转化为()(2)g x g >求解.【详解】因为定义在()0,∞+上的函数()f x 满足:()()112212x f x x f x x x --<0,所以()()g x xf x =在()0,∞+上递减,因为(2)4f =,所以()28=g ,因为不等式8()0f x x->,所以()80xf x x->,所以()80xf x ->,所以()8xf x >,即()(2)g x g >,所以02x <<,故选:B【点睛】本题主要考查函数单调性的应用,还考查了运算求解的能力,属于中档题.二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.已知函数()2f x x =的值域为[]0,4,则()f x 的定义域可以是()A.[]0,2 B.[]2,1- C.[]1,2 D.{}2,0,2-【答案】AB 【解析】【分析】根据2y x =的图象求得正确答案.【详解】画出2y x =的图象如下图所示,由24x =解得2x =±,()2f x x =的图象是函数2y x =的图象的一部分,依题意,()2f x x =的值域为[]0,4,由图可知,()f x 的定义域可以是[]0,2、[]2,1-.故选:AB10.已知正实数a ,b 满足42a b +=,则()A.14ab ≤B.2164a b +≥ C.1192a b +≥ D.4+≥【答案】ABC 【解析】【分析】利用基本不等式可得A,B,D 正误,利用1的妙用可得C 的正误.【详解】对于A ,因为42a b ≤+=,所以14ab ≤,当且仅当41a b ==,即11,4a b ==时,取到等号,故A 正确;对于B ,2164a b +≥==,当且仅当41a b ==,即11,4a b ==时,取到等号,故B 正确;对于C ,()1111114194552222a b a b a b a b b a ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当2a b =,即21,33a b ==时,取到等号,故C 正确;对于D,244a b +=++,2+≤,当且仅当41a b ==,即11,4a b ==时,取到等号,故D 错误.故选:ABC .11.(多选)已知函数()221f x x x =-++的定义域为()2,3-,则函数()f x 的单调递增区间是()A.(),1-∞- B.()3,1-- C.()0,1 D.()1,3【答案】BC 【解析】【分析】根据题意求出()f x 的定义域,将()f x 的解析式中绝对值符号去掉,结合二次函数的图象与性质即可判断.【详解】因为函数()221f x x x =-++的定义域为()2,3-,对称轴为直线1x =,开口向下,所以函数()f x 满足23x -<<,所以33x -<<.又()22221,03,2121,30,x x x f x x x x x x ⎧-++≤<=-++=⎨--+-<<⎩且221y x x =--+图象的对称轴为直线=1x -,所以由二次函数的图象与性质可知,函数()f x 的单调递增区间是()3,1--和()0,1.故选BC.【点睛】本题主要考查含绝对值的二次函数的单调性问题,注意数形结合思想的应用,属于提升题.12.设()33,0log ,0xx f x x x ⎧≤⎪=⎨>⎪⎩,若()0f x a -=有三个不同的实数根,则实数a 的取值可以是()A.12B.1C.1-D.2【答案】AB 【解析】【分析】先作出函数的图像,()0f x a -=有三个不同的实数根,化为函数33(0)()log (0)xx f x xx ⎧≤⎪=⎨>⎪⎩与直线y a =有三个交点,结合图像,即可得出结果.【详解】解:作出函数33(0)()log (0)xx f x xx ⎧≤⎪=⎨>⎪⎩图像如下:又()0f x a -=有三个不同的实数根,所以函数33(0)()log (0)xx f x xx ⎧≤⎪=⎨>⎪⎩与直线y a =有三个交点,由图像可得:01a <≤.故选:AB三、填空题:本题共4小题,每小题5分,共20分,16题第一个空2分,第二个空3分.13.已知奇函数f (x )在区间[3,6]上是增函数,且在区间[3,6]上的最大值为8,最小值为-1,则f (6)+f (-3)的值为________.【答案】9【解析】【详解】由已知得,f (6)=8,f (3)=-1,因为f (x )是奇函数,所以f (6)+f (-3)=f (6)-f (3)=8-(-1)=9.答案:9.14.若关于x 的不等式2210ax ax +-<的解集为R ,则实数a 的取值范围是__________.【答案】(]1,0-【解析】【分析】分两种情况0a =和0a ≠,可求出实数a 的取值范围.【详解】 关于x 的不等式2210ax ax +-<的解集为R .当0a =时,原不等式为1<0-,该不等式在R 上恒成立;当0a ≠时,则有2Δ440a a a <⎧⎨=+<⎩,解得10a -<<.综上所述,实数a 的取值范围是(]1,0-.故答案为:(]1,0-15.若正数x ,y 满足40x y xy +-=,则3x y+的最大值为________.【答案】13【解析】【分析】先利用基本不等式中“1”的妙用求得x y +的取值范围,从而求得3x y +的最大值.【详解】因为正数x ,y 满足40x y xy +-=,所以4x y xy +=,即141y x+=,则()14455549x y x y x y y x y x ⎛⎫+=++=++≥+=+= ⎪⎝⎭,当且仅当4x y y x =且141y x+=,即6,3x y ==时取等号,此时x y +取得最小值9,则3x y +的最大值为13.故答案为:1316.设函数()()11,022,0xx f x f x x ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭⎪->⎩,()log (1)a g x x =-,(其中1a >),(1)()2021f =________;(2)若函数()f x 与()g x 的图象有3个交点,则实数a 的取值范围为________.【答案】①.1②.【解析】【分析】根据题意,推得()2021(1)f f =-,即可求得()2021f 的值,作出函数()y f x =和()y g x =的图象,结合log (41)3a -=和log (61)3a -=,结合图象,即可求得a 的取值范围.【详解】由题意,函数()()11,022,0xx f x f x x ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭⎪->⎩,所以()()()()112021201920171(1)()112f f f f f -=====-=-= ;当02x <≤时,则220x -<-≤,可得()()212(12x f x f x -=-=-;当24x <≤时,则022x <-≤,可得()()412()12x f x f x -=-=-;当46x <≤时,则224x <-≤,可得()()612(12x f x f x -=-=-;当68x <≤时,则426x <-≤,可得()()812(12x f x f x -=-=-,画出函数()y f x =和()y g x =的图象,如图所示,由log (41)3a -=,可得a =log (61)3a -=,可得=a ,由图象可知,若两个函数的图象有3a <≤,所以实数a 的取值范围为.故答案为:1;.四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.求下列各式的值.(1)411231322(0.25)(2)[(2)]1)2---⨯-+-;(2)82715lglg lg12.5log 9log 828-+-⋅.【答案】(1)1252-(2)13【解析】【分析】(1)根据指数幂的运算法则和运算性质,准确化简、运算,即可求解;(2)根据对数的运算法则和对数的换底公式,准确化简、运算,即可求解.【小问1详解】解:根据指数幂的运算法则和运算性质,可得:4112313221125(0.25)(2)[(2)]1)2416(1)22---⨯-+-=-⨯+--.【小问2详解】解:由对数的运算法则和对数的运算性质,可得:1827151525lg 9lg8lg lg lg12.5log 9log 8lg lg lg 28282lg8lg 27-⎛⎫-+-⋅=++-⋅ ⎪⎝⎭18252lg 3221lg()lg1012523lg 3333=⨯⨯-=-=-=.18.(1)已知集合{}2120|A x x ax b =++=,{}20|B x x ax b =-+=满足()R {2}A B ⋂=ð,()R {4}A B = ð,求实数a ,b 的值;(2)已知集合{}121|A x a x a =-<<+,函数2lg()y x x =-的定义域为B ,若A B ⋂=∅,求实数a 的取值范围.【答案】(1)812,77a b ==-;(2)[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦ 【解析】【分析】(1)根据题目条件得到2,4B A ∈∈,从而得到方程组,求出实数a ,b 的值;(2)先根据对数函数的定义域得到{}|01B x x =<<,分A =∅与A ≠∅两种情况,得到不等式,求出实数a 的取值范围.【详解】(1)()R {2}A B ⋂=ð,(){}R 4A B ⋂=ð,故2,4B A ∈∈,故164120420a b a b ++=⎧⎨-+=⎩,解得87127a b ⎧=⎪⎪⎨⎪=-⎪⎩;(2)由题意得20x x ->,解得01x <<,故{}|01B x x =<<,A B ⋂=∅,当A =∅时,121a a -≥+,解得2a ≤-,当A ≠∅时,需满足12111a a a -<+⎧⎨-≥⎩或121210a a a -<+⎧⎨+≤⎩,解得2a ≥或122a -<≤-,综上,实数a 的取值范围是[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦ .19.已知函数14()2x x f x m +=--.(1)当0m =时,求函数()f x 的零点;(2)若()f x 有两个零点,求实数m 的取值范围.【答案】(1)1(2)(1,0)-【解析】【分析】(1)m=0代入解析式直接求解即可;(2)转化为方程220t t m --=在()0,+∞上有两解,利用二次函数根的分布求解即可【详解】(1)0m =时,()()21422x x xf x +=-=-()22222x x x ⋅=-,令()0f x =可得22x =,即1x =.()f x ∴的零点是1.(2)令2x t =,显然0t >,则()22f x t t m =--.()f x 有两个零点,且2x t =为单调函数,∴方程220t t m --=在()0,+∞上有两解,0440120m m m ->⎧⎪∴+>⎨⎪--<⎩,解得:10m -<<.m ∴的取值范围是()1,0-.【点睛】本题考查函数零点,二次函数零点问题,熟记二次函数的性质是关键,是中档题20.某化工厂每一天中污水污染指数()f x 与时刻x (时)的函数关系为25()log (1)21f x x a a =+-++,[0,24]x ∈,其中a 为污水治理调节参数,且()0,1a ∈.(1)若12a =,求一天中哪个时刻污水污染指数最低;(2)规定每天中()f x 的最大值作为当天的污水污染指数,要使该厂每天的污水污染指数不超过3,则调节参数a 应控制在什么范围内?【答案】(1)一天中早上4点该厂的污水污染指数最低(2)调节参数a 应控制在2(0,]3内.【解析】【分析】(1)12a =时,令()251log 102x +-=,解得x 即可得出;(2)利用换元法()25log 1t x =+,再利用函数的单调性即可得出.【小问1详解】因为12a =,()()251log 1222f x x =+-+≥.当()2f x =时,()251log 102x +-=,即121255x +==,解得4x =.所以一天中早上4点该厂的污水污染指数最低.【小问2详解】设()25log 1t x =+,则当024x ≤≤时,01t ≤≤.设()[]21,0,1g t t a a t =-++∈,则()31,01,1t a t a g t t a a t -++≤≤⎧=⎨++<≤⎩,()g t 在[]0,a 上是减函数,在[],1a 上是增函数,则()()(){}max max 0,1f x g g =,因为()()031,12g a g a =+=+,则有()()0313123g a g a ⎧=+≤⎪⎨=+≤⎪⎩,解得23a ≤,又()0,1a ∈,故调节参数a 应控制在20,3⎛⎤ ⎥⎝⎦内.21.(1)对任意11x -≤≤,函数()2442y x a x a =+-+-的值恒大于0,求实数a 的取值范围;(2)不等式()228x y y x y λ+≥+对于任意的,R x y ∈恒成立,求实数λ的取值范围.【答案】(1)1a <(2){|84}λλ-≤≤【解析】【分析】(1)化简后分离参数,求出函数的最小值即可得解;(2)转化为二次不等式恒成立,利用判别式建立不等式求解即可.【详解】(1)由题意,当11x -≤≤时,()24420x a x a +-+->恒成立,则2(2)44x a x x ->-+-,因为11x -≤≤,所以224444222x x x x a x x x-+--+<==---,所以min (2)a x <-,由2y x =-单调递减,知当1x =时,min (2)1x -=,即1a <.(2)因为()228x y y x y λ+≥+对于任意的,R x y ∈成立,所以()2280x y y x y λ+-+≥对于任意的,R x y ∈成立.即()2280x yx y λλ-+-≥恒成立,由二次不等式的性质可得,()222224843(2)0y y y λλλλ∆=+-=+-≤,所以4)80()(λλ+-≤,解得84λ-≤≤.故实数入的取值范围为{|84}λλ-≤≤.22.已知函数()2e ,e ,x x x x m f x x x m ⎧--≤=⎨+>⎩和()2ln ,01ln ,1x x x g x x x x --<≤⎧=⎨+≥⎩有相同的最小值,(e 为自然对数的底数,且e 2.71828= )(1)求m ;(2)证明:存在直线y b =与函数()y f x =,()y g x =恰好共有三个不同的交点;(3)若(2)中三个交点的横坐标分别为1x ,2x ,3x ()123x x x <<,求1232x x x ++的值.【答案】(1)0.(2)见解析;(3)2.【解析】【分析】(1)根据()f x ,()g x 单调性求出最小值,两个最小值相等求出m 的值.(2)根据函数单调性与图像判断并证明即可.(3)根据三个交点处函数值相等,再由函数式的结构得到三个交点的横坐标分别为1x ,2x ,3x 之间的关系,转化为2x 即可求解.【小问1详解】由()2e ,e ,x x x x m f x x x m⎧--≤=⎨+>⎩,(],x m ∈-∞时()01e x f x '=-<-,(),x m ∈+∞时()e 10x f x '=+>则()f x 在(],m -∞单调递减,在(),m +∞单调递增,所以()f x 最小值()()min 2e mm f x f m ==--;()2ln ,01ln ,1x x x g x x x x --<≤⎧=⎨+≥⎩(]0,1x ∈时,()110g x x '=--<,()1,x ∈+∞时,()110g x x'=+>所以()g x 在(]0,1单调递减,在()1,+∞单调递增,所以()g x 最小值()()min 11g x g ==;()()min min 2e 1m f x m g x =--==,即2e 1e 10m m m m --=⇒+-=令()=e 1m q m m +-,()=e 10m q m '+>所以()=e 1m q m m +-在定义域上单调递增,因为0(0)e 10q =-=,所以e 10m m +-=解得0m =.【小问2详解】由(1)知0m =,即()2e ,0e ,0x x x x f x x x ⎧--≤=⎨+>⎩;因为()()min min 1f x g x ==,所以当1b >时,考虑()f x b =与()g x b =解的个数,根据()f x ,()g x 单调性作图如下:易知x →-∞时,()f x →+∞;x →+∞时,()f x →+∞;0x +→时,()g x ∞→+;x →+∞时,()g x ∞→+;则()f x b =在区间(),0∞-与()0,∞+各有一个根,()g x b =在区间()0,1与()1,+∞各有一个根,要证:存在直线y b =与函数()y f x =,()y g x =恰好共有三个不同的交点,即证:()()f x g x =在()0,1上有交点.当()0,1x ∈时,令()()()()e 2ln e ln 22x xh x f x g x x x x x x =-=+---=++-1()e 20x h x x'=++>,所以()h x 在()0,1上单调递增,(1)e>0h =,31e 3312(e 320e e h =-+-<,所以存在()00,1x ∈,使()00()f x g x =,即()()f x g x =在()0,1上有交点,得证.所以存在直线y b =与函数()y f x =,()y g x =恰好共有三个不同的交点.【小问3详解】如图y b =与函数()y f x =,()y g x =恰好共有三个不同的交点,三个交点的横坐标分别为1x ,2x ,3x ,()123x x x <<,则有121222332e e 2ln ln x x x x x x x x --+=+==--,因为112ln 122122e 2ln 2e 2eln x x x x x x x x ----⇒--=-=-而()2e x f x x =--单调递减,所以12ln x x =,因为322ln 23323e ln e eln x x x x x x x x +=+⇒+=+,而()e x f x x =+单调递增,所以23ln x x =,又因为2222222e 2ln e ln 22x x x x x x x +=--⇒++=.所以212322e 222ln x x x x x x ++=++=.【点睛】本题考查了导数的应用,利用导数求函数的单调性,函数的零点,利用同构去解决三个交点横坐标之间的数量关系.。
河南省新乡市河南师范大学附属中学联考2024-2025学年九年级上学期11月期中数学试题一、单选题1.下列图形中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .2.已知O 的半径为5,圆心O 到直线l 的距离为4,则直线l 与O 的位置关系是()A .相交B .相切C .相离D .无法确定3.一元二次方程2430x x -+=经过配方变形为2(2)x k -=,则k 的值是()A .3-B .7-C .1D .74.如图,、、A B C 为圆O 上的三点,78AOB ∠=︒,则ACB ∠的度数是()A .35︒B .36︒C .37︒D .39︒5.关于二次函数()219y x =+-,下列说法正确的是()A .图象的对称轴在y 轴的右侧B .图象的顶点坐标为()1,9-C .与x 轴交于点()2,0-和()4,0D .当1x <-时,y 随着x 的增大而减小6.如图,△ODC 是由△OAB 绕点O 顺时针旋转40°后得到的图形,若点D 恰好落在AB 上,且∠AOC =105°,则∠C 的度数是()A .55°B .45°C .42°D .40°7.若关于x 的一元二次方程20x x k +-=有两个实数根,则k 的取值范围是()A .14k >-B .14k ≥-C .14k <-D .14k ≤-8.如图,已知⊙O 的半径为5,弦AB 的长为8,P 是AB 的延长线上一点,BP =2,则OP 等于()A .B .C .D .9.已知二次函数22y mx mx =-(m 为常数),当12x -≤≤时,函数值y 的最小值为2-,则m 的值是()A .2-或23B .2-或32C .2或23-D .2或32-10.如图1,动点P 从菱形ABCD 的点A 出发,沿边AB BC →匀速运动,运动到点C 时停止.设点P 的运动路程为x ,PO 的长为y ,y 与x 的函数图象如图2所示,当点P 运动到BC 中点时,PO 的长为()A .2B .3CD .二、填空题11.把抛物线2y x =先向右平移1个单位再向上平移1个单位,所得到抛物线的解析式为.12.某种植物的主干长出若干个分支,每个支干又长出同样个数的小分支,主干、支干、小分支的总数是241,设每个支干长出小分支的个数是x ,则可列方程为.13.如图,在ABC 中,1310AB AC BC ===,,以A 为直径的O 交BC 于点D ,O 的切线D 交AC 于点E ,则D 的长为.14.汽车刹车后行驶的距离s 与行驶时间t 的函数关系是2156s t t =-,汽车从刹车到停下来所用时间是.15.如图,在Rt ABC △中,90,2ACB CA CB ∠=︒==,线段CD 绕点C 在平面内旋转,过点B 作AD 的垂线,交射线AD 于点E .若1CD =,则AE 的最小值为.三、解答题16.计算:(1)2870x x -+=(2)()()221221x x +=+17.如图,在方格纸中,A 、B 、P 是三个格点(网格线的交点叫做格点).(1)请用无刻度直尺作图:过点P 画A 的垂线,垂足为点C ;(2)在(1)的条件下,画出PBC △绕点P 旋转180︒后的图形PB C '' ,并写出C '的坐标.18.如图,在四边形ABCD 中,90A C ∠=∠=︒.(1)作图:请用无刻度直尺和圆规作O ,使得O 经过点A 、B 、D 三点;(2)判断O 是否经过点C ?请说明理由.19.小明爸爸经营的水果店出售一种优质热带水果,正在上初三的小明发现这种水果每月的销售量y (千克)与销售单价x (元)之间存在着一次函数关系:10500y x =-+.已知这种水果的进价是每千克20元.请解决下列问题:(1)如果每月这种水果的利润为2000元,那么销售单价应定为多少元?(2)当销售单价为多少元时,每月可获得最大利润?最大利润是多少元?20.牂牁江“佘月郎山,西陵晚渡”的风景描绘中有半个月亮挂在山上,月亮之上有个“齐天大圣”守护洞口的传说.真实情况是老王山上有个月亮洞,洞顶上经常有猴子爬来爬去,下图是月亮洞的截面示意图.(1)科考队测量出月亮洞的洞宽CD 约是28m ,洞高AB 约是12m ,通过计算截面所在圆的半径可以解释月亮洞像半个月亮,求半径OC 的长(结果精确到0.1m );(2)若162COD ∠=︒,点M 在 CD 上,求CMD ∠的度数,并用数学知识解释为什么“齐天大圣”点M 在洞顶 CD上巡视时总能看清洞口CD 的情况.21.已知抛物线2()1y x h =--.(1)当1x ≤时,y 随着x 的增大而减小,求h 的最小值;(2)已知A 、B 两点在x 轴上,A 点坐标为()3,0,B 点坐标为()5,0,若抛物线与线段AB 只有一个公共点,求h 的取值范围.22.如图,一小球M 从斜坡OA 上的O 点处抛出,球的抛出路线是抛物线的一部分,建立如图所示的平面直角坐标系,斜坡可以用一次函数13y x =刻画.若小球到达的最高的点坐标为(6,12),解答下列问题:(1)求抛物线的表达式;(2)在斜坡OA 上的B 点有一棵树,B 点的横坐标为3,树高为7,小球M 能否飞过这棵树?通过计算说明理由;(3)求小球M 在飞行的过程中离斜坡OA 的最大高度.23.在ABC V 中,90C ∠=︒,AC BC >,D 是AB 的中点.E 是直线AC 上一动点,连接DE .过点D 作⊥DF DE ,交直线BC 于点F ,连接EF .(1)如图1,当E 是线段AC 的中点时,则线段AE EF BF ,,之间的数量关系为________.(2)如图2,当点E 在线段AC 上时,用等式表示线段AE EF BF ,,之间的数量关系,并证明.(3)若6,8,3BC AC AE ===.请直接写出线段BF 的长.。
河南省新乡市高一上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)集合,,则=()A . {0}B . {1}C . {0,1}D . {-1,0,1}2. (2分) (2020高一上·天津月考) 已知函数,,则函数的值域为()A .B .C .D .3. (2分) (2019高一上·玉溪期中) 已知幂函数在上是减函数,则实数()A . 1B . 2C . 1或2D .4. (2分)函数是()A . 奇函数B . 偶函数C . 既是奇函数又是偶函数D . 非奇非偶函数5. (2分) (2018高一上·遵义月考) 设则()A .B .C .D .6. (2分)下列函数中,既是奇函数又在定义域上是增函数的为()A .B .C .D .7. (2分)下列函数是同一函数的是()A . f(x)= ,g(x)=x﹣1B . f(u)= ,g(v)=C . f(x)=1,g(x)=x0D . f(x)=x,g(x)=8. (2分) (2018高一上·广东期中) 设 ,则()A .B .C .D .9. (2分) (2019高一上·牡丹江月考) 已知,那么()A .B .C .D .10. (2分)(2018·内江模拟) 函数的图象大致是()A .B .C .D .11. (2分) (2019高一上·西湖月考) 已知,则方程根的个数为()A . 1个B . 2个C . 3个D . 1个或2个或3根12. (2分) (2018高三上·北京月考) 在实数集R中定义一种运算“*”,,为唯一确定的实数,且具有性质:(1)对任意,;(2)对任意, .关于函数的性质,有如下说法:①函数的最小值为3;②函数为偶函数;③函数的单调递增区间为 .其中正确说法的序号为()A . ①B . ①②C . ①②③D . ②③二、填空题 (共4题;共4分)13. (1分) (2016高二下·黄骅期中) 不等式(|3x﹣1|﹣1)•(sinx﹣2)>0的解集是________.14. (1分)已知a>0且b>0,函数g(x)=2x ,且g(a)•g(b)=2,则ab的最大值是________.15. (1分) (2019高一上·峨山期中) 已知,则________16. (1分) (2020高三上·浦东期末) 若函数存在零点,则实数的取值范围是________三、解答题 (共6题;共60分)17. (10分)(1).(2)已知α∈(0,π),,求tanα.18. (5分) (2020高一上·台州期末) 设集合, .(1)求;(2)设集合,若,求实数a的取值范围.19. (10分)某市出租车的现行计价标准是:路程在2 km以内(含2 km)按起步价8元收取,超过2 km后的路程按1.9 元/km收取,但超过10 km后的路程需加收50%的返空费(即单价为1.9×(1+50%)=2.85(元/km)).(1)将某乘客搭乘一次出租车的费用f(x)(单位:元)表示为行程x(0<x≤60,单位:km)的分段函数;(2)某乘客的行程为16 km,他准备先乘一辆出租车行驶8 km后,再换乘另一辆出租车完成余下行程,请问:他这样做是否比只乘一辆出租车完成全部行程更省钱?(现实中要计等待时间且最终付费取整数,本题在计算时都不予考虑)20. (10分) (2017高一上·潮州期末) 已知二次函数g(x)=mx2﹣2mx+n+1(m>0)在区间[0,3]上有最大值4,最小值0.(1)求函数g(x)的解析式;(2)设f(x)= .若f(2x)﹣k•2x≤0在x∈[﹣3,3]时恒成立,求k的取值范围.21. (10分) (2019高一上·长春期中) 设,为奇函数.(1)求的值;(2)若对任意恒有成立,求实数的取值范围.22. (15分) (2017高一上·广东月考) 已知函数是定义域为上的奇函数,且(1)求的解析式;(2)用定义证明:在上是增函数;(3)若实数满足,求实数的范围.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共60分)17-1、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、22-3、第11 页共11 页。
2018-2019学年河南省驻马店市泌阳县八年级第一学期期中数学试卷一、选择题(共10小题).1.四个数0,1,,中,无理数的是()A.B.1C.D.02.下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=13.数轴上表示1﹣的点到原点的距离是()A.1﹣B.﹣1C.1+D.4.若(x﹣1)2=(x+7)(x﹣7),则的平方根是()A.5B.±5C.D.±5.如图所示,将四张全等的长方形硬纸片围成一个正方形,根据图形阴影部分面积的关系,可以直观地得到一个关于a、b的恒等式为()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=(a+b)2﹣4ab D.a2+ab=a(a+b)6.举反例说明“x>﹣5,则x2>25”是假命题,下列正确的是()A.4>﹣5,而42<25B.6>﹣5,则62>25C.7>﹣5,则72>25D.8>﹣5,则82>257.小明在抄分解因式的题目时,不小心漏抄了x的指数,他只知道该数为不大于10的正整数,并且能利用平方差公式分解因式,他抄在作业本上的式子是x□﹣4y2(“□”表示漏抄的指数),则这个指数可能的结果共有()A.2种B.3种C.4种D.5种8.如图,在△ABC中,∠A=36°,∠C=72°,点D在AC上,BC=BD,DE∥BC交AB 于点E,则图中等腰三角形共有()A.3个B.4个C.5个D.6个9.如图,已知∠1=∠2,AC=AD,从①AB=AE,②BC=ED,③∠B=∠E,④∠C=∠D.这四个条件中再选一个使△ABC≌△AED,符合条件的有()A.1个B.2个C.3个D.4个10.任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p ×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=.例如18可以分解成1×18,2×9,3×6这三种,这时就有F(18)==.给出下列关于F(n)的说法:(1)F(2)=;(2)F(24)=;(3)F(27)=3;(4)若n是一个完全平方数,则F(n)=1.其中正确说法的个数是()A.1B.2C.3D.4二、填空题(每小题3分,共21分)11.已知2m=4n﹣1,27n=3m﹣1,则n﹣m=.12.计算:已知:a+b=3,ab=1,则a2+b2=.13.若x2+kx+81是完全平方式,则k的值应是.14.等腰三角形的周长是50cm,一条边长是12cm,则另两边长是.15.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定,则[+]的值为.16.如图,在△ABC中,AB=AC,D,E,F分别在BC,AC,AB上的点,且BF=CD,BD=CE,∠FDE=α,则∠A的度数是度.(用含α的代数式表示)17.定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi (a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i)+(3﹣5i)=(2+3)+(1﹣5)i=5﹣4i;(1+i)×(2﹣i)=1×2﹣i+2×i﹣i2=2+(﹣1+2)i+1=3+i;根据以上信息,下列各式:①i3=1;②i4=1;③(1+i)×(3﹣4i)=﹣1﹣i;④i+i2+i3+i4+…+i2019=﹣1,其中正确的是(填上所有正确答案的序号).三、解答题(共69分)18.(16分)计算:(1)++;(2)|1﹣|+|﹣|+|2﹣|;(3)(3x﹣2y)(y﹣3x)﹣(2x﹣y)(3x+y);(4)2(2x﹣1)(2x+1)﹣5x(﹣x+3y)﹣(x﹣2y)2.19.分解因式:(1)a2b﹣b3;(2)﹣(x2+2)2+6(x2+2)﹣920.已知:a+b=4(1)求代数式(a+1)(b+1)﹣ab值;(2)若代数式a2﹣2ab+b2+2a+2b的值等于17,求a﹣b的值.21.先观察下列等式,再回答下列问题:①;②③(1)请你根据上面三个等式提供的信息,猜想的结果,并验证;(2)请你按照上面各等式反映的规律,用含n的等式表示(n为正整数).22.如图,线段AC交BD于O,点E,F在线段AC上,△DFO≌△BEO,且AF=CE,连接AB、CD,求证:AB=CD.23.发现任意五个连续整数的平方和是5的倍数.验证(1)(﹣1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.延伸任意三个连续整数的平方和被3除的余数是几呢?请写出理由.24.如图1,AC=BC,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数(直接写出结果);(3)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图2,判断△CPQ的形状,并加以证明.参考答案一、选择题(每小题3分,共30分)1.四个数0,1,,中,无理数的是()A.B.1C.D.0【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:0,1是整数,属于有理数;是分数,属于有理数;无理数有,共1个.故选:B.2.下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=1【分析】分别根据幂的乘方、同类项概念、同底数幂相乘及合并同类项法则逐一计算即可判断.解:A、(﹣x2)3=﹣x6,此选项错误;B、x2、x3不是同类项,不能合并,此选项错误;C、x3•x4=x7,此选项正确;D、2x3﹣x3=x3,此选项错误;故选:C.3.数轴上表示1﹣的点到原点的距离是()A.1﹣B.﹣1C.1+D.【分析】根据绝对值的定义即可得出答案.解:∵在数轴上,一个数的绝对值指的是这个数到原点的距离,∴表示1﹣的点到原点的距离为|1﹣|=,故选:B.4.若(x﹣1)2=(x+7)(x﹣7),则的平方根是()A.5B.±5C.D.±【分析】先利用完全平方公式与平方差公式把已知条件展开,求出x的值,然后再求出的值,最后求平方根即可.解:∵(x﹣1)2=(x+7)(x﹣7),∴x2﹣2x+1=x2﹣49,解得x=25,∴==5,∴的平方根是±.故选:D.5.如图所示,将四张全等的长方形硬纸片围成一个正方形,根据图形阴影部分面积的关系,可以直观地得到一个关于a、b的恒等式为()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=(a+b)2﹣4ab D.a2+ab=a(a+b)【分析】用两种方法正确的表示出阴影部分的面积,再根据图形阴影部分面积的关系,即可直观地得到一个关于a、b的恒等式.解:方法一阴影部分的面积为:(a﹣b)2,方法二阴影部分的面积为:(a+b)2﹣4ab,所以根据图形阴影部分面积的关系,可以直观地得到一个关于a、b的恒等式为(a﹣b)2=(a+b)2﹣4ab.故选:C.6.举反例说明“x>﹣5,则x2>25”是假命题,下列正确的是()A.4>﹣5,而42<25B.6>﹣5,则62>25C.7>﹣5,则72>25D.8>﹣5,则82>25【分析】要说明一个命题是假命题可以举个反例来说明,且反例要求符合原命题的条件,但结论却与原命题不一致.解:当4>﹣5,而42<25,则“x>﹣5,则x2>25”是假命题,故选:A.7.小明在抄分解因式的题目时,不小心漏抄了x的指数,他只知道该数为不大于10的正整数,并且能利用平方差公式分解因式,他抄在作业本上的式子是x□﹣4y2(“□”表示漏抄的指数),则这个指数可能的结果共有()A.2种B.3种C.4种D.5种【分析】能利用平方差公式分解因式,说明漏掉的是平方项的指数,只能是偶数,又只知道该数为不大于10的正整数,则该指数可能是2、4、6、8、10五个数.解:该指数可能是2、4、6、8、10五个数.故选:D.8.如图,在△ABC中,∠A=36°,∠C=72°,点D在AC上,BC=BD,DE∥BC交AB 于点E,则图中等腰三角形共有()A.3个B.4个C.5个D.6个【分析】由在△ABC中,∠A=36°,∠C=72°°,BD平分∠ABC,DE∥BC,可求得∠ABD=∠EDB=∠DBC=∠A=36°,∠BDC=∠ABC=∠C=72°,∠AED=∠ADE,即可得△ABC,△ABD,△EBD,△BCD,△AED是等腰三角形.解:在△ABC中,∠A=36°,∠C=72°,∴∠ABC=∠C==72°,∴△ABC是等腰三角形,∴∠DBC=36°,∴∠ABD=∠DBC=36°,∴BD平分∠ABC,∴∠ABD=∠DBC=36°,∵DE∥BC,∴∠EDB=∠DBC=36°,∴∠ABD=∠EDB=∠A,∴AD=BD,EB=ED,即△ABD和△EBD是等腰三角形,∵∠BDC=180°﹣∠DBC﹣∠C=72°,∴∠BDC=∠C,∴BD=BC,即△BCD是等腰三角形,∵DE∥BC,∴∠AED=∠ABC,∠ADE=∠C,∴∠AED=∠ADE,∴AE=AD,即△AED是等腰三角形.∴图中共有5个等腰三角形.故选:C.9.如图,已知∠1=∠2,AC=AD,从①AB=AE,②BC=ED,③∠B=∠E,④∠C=∠D.这四个条件中再选一个使△ABC≌△AED,符合条件的有()A.1个B.2个C.3个D.4个【分析】由∠1=∠2,可得∠BAC=∠EAD,又由于AC=AD,根据三角形全等的判定方法,可加一角或已知角的另一边.解:已知∠1=∠2,AC=AD,由∠1=∠2可知∠BAC=∠EAD,加①AB=AE,就可以用SAS判定△ABC≌△AED;加③∠B=∠E,就可以用AAS判定△ABC≌△AED;加④∠C=∠D,就可以用ASA判定△ABC≌△AED;加②BC=ED只是具备SSA,不能判定三角形全等,其中能使△ABC≌△AED的条件有:①③④.故选:C.10.任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p ×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=.例如18可以分解成1×18,2×9,3×6这三种,这时就有F(18)==.给出下列关于F(n)的说法:(1)F(2)=;(2)F(24)=;(3)F(27)=3;(4)若n是一个完全平方数,则F(n)=1.其中正确说法的个数是()A.1B.2C.3D.4【分析】把2,24,27,n分解为两个正整数的积的形式,找到相差最少的两个数,让较小的数除以较大的数,看结果是否与所给结果相同.解:∵2=1×2,∴F(2)=是正确的;∵24=1×24=2×12=3×8=4×6,这几种分解中4和6的差的绝对值最小,∴F(24)==,故(2)是错误的;∵27=1×27=3×9,其中3和9的绝对值较小,又3<9,∴F(27)=,故(3)是错误的;∵n是一个完全平方数,∴n能分解成两个相等的数,则F(n)=1,故(4)是正确的.∴正确的有(1),(4).故选:B.二、填空题(每小题3分,共21分)11.已知2m=4n﹣1,27n=3m﹣1,则n﹣m=5.【分析】直接利用幂的乘方运算法则将原式变形进而得出m,n的值即可.解:∵2m=4n﹣1,27n=3m﹣1,∴2m=22n﹣2,33n=3m﹣1,故,解得:,故n﹣m=5.故答案为:5.12.计算:已知:a+b=3,ab=1,则a2+b2=7.【分析】将所求式子利用完全平方公式变形后,把a+b与ab的值代入即可求出值.解:∵a+b=3,ab=1,∴a2+b2=(a+b)2﹣2ab=32﹣2=9﹣2=7.故答案为:713.若x2+kx+81是完全平方式,则k的值应是±18.【分析】利用完全平方公式的结构特征判断即可确定出k的值.解:∵x2+kx+81是完全平方式,∴k=±18.故答案为:±18.14.等腰三角形的周长是50cm,一条边长是12cm,则另两边长是19cm、19cm.【分析】题中只给出了三角形的周长和一边长,没有指出它是底边还是腰,所以应该分两种情况进行分析.解:该三角形是等腰三角形,当底边长为12cm时,其它两条边为(50﹣12)÷2=19(cm),即三边长分别为12cm、19cm、19cm,能组成三角形.当腰长为12cm时,底边长为50﹣2×12=26(cm),即三边长分别为12cm,12cm,26cm,不能组成三角形.综上,另两边长是19cm、19cm.故答案为:19cm、19cm.15.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定,则[+]的值为3.【分析】估算出+的取值范围可以得到答案.解:∵3<+<4,∴[+]的值为3.故答案为:3.16.如图,在△ABC中,AB=AC,D,E,F分别在BC,AC,AB上的点,且BF=CD,BD=CE,∠FDE=α,则∠A的度数是180°﹣2α度.(用含α的代数式表示)【分析】根据已知条件可推出BDF≌△CDE,从而可知∠EDC=∠FDB,则∠EDF=∠B.解:∵AB=AC,∴∠B=∠C,在△BDF和△CED中,,∴△BDF≌△CDE(SAS)∴∠EDC=∠DFB∴∠EDF=∠B=(180°﹣∠A)÷2=90°﹣∠A,∵∠FDE=α,∴∠A=180°﹣2α,故答案为:180°﹣2α17.定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi (a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i)+(3﹣5i)=(2+3)+(1﹣5)i=5﹣4i;(1+i)×(2﹣i)=1×2﹣i+2×i﹣i2=2+(﹣1+2)i+1=3+i;根据以上信息,下列各式:①i3=1;②i4=1;③(1+i)×(3﹣4i)=﹣1﹣i;④i+i2+i3+i4+…+i2019=﹣1,其中正确的是②④(填上所有正确答案的序号).【分析】①将i3表示成i2•i即可;②将i4表示成i2•i2即可;③利用多项式乘以多项式的法则计算即可;④利用式子的规律即依次每四项的和为0进行计算即可.解:①∵i3=i2•i,i2=﹣1,∴i3=﹣i.∴①不正确;②∵i4=i2•i2,i2=﹣1,∴i4=1×1=1.∴②正确;③∵(1+i)×(3﹣4i)=3﹣4i+3i﹣4i2=7﹣i,∴③不正确;④∵i+i2+i3+i4=i﹣1﹣i=1=0,∴i5+i6+i7+i8=i4(i+i2+i3+i4)=0.∴i+i2+i3+i4+…+i2019=i2017+i2018+i2019=i2016(i+i2+i3)=i﹣1+i=﹣1,∴④正确.综上,正确的是:②④.故答案为:②④.三、解答题(共69分)18.(16分)计算:(1)++;(2)|1﹣|+|﹣|+|2﹣|;(3)(3x﹣2y)(y﹣3x)﹣(2x﹣y)(3x+y);(4)2(2x﹣1)(2x+1)﹣5x(﹣x+3y)﹣(x﹣2y)2.【分析】(1)先计算算术平方根、立方根,再计算加减即可;(2)先根据绝对值的性质去绝对值符号,再计算加减即可;(3)先计算多项式乘多项式,再去括号、合并同类项即可;(4)先利用平方差公式和完全平方公式及单项式乘多项式法则计算,再去括号、合并同类项即可.解:(1)原式=0.5+0.5+2=3;(2)原式=﹣1+﹣+2﹣=1;(3)原式=3xy﹣9x2﹣2y2+6xy﹣(6x2+2xy﹣3xy﹣y2)=3xy﹣9x2﹣2y2+6xy﹣6x2﹣2xy+3xy+y2=10xy﹣15x2﹣y2;(4)原式=2(4x2﹣1)+5x2﹣15xy﹣(x2﹣4xy+4y2)=8x2﹣2+5x2﹣15xy﹣x2+4xy﹣4y2=12x2﹣11xy﹣4y2﹣2.19.分解因式:(1)a2b﹣b3;(2)﹣(x2+2)2+6(x2+2)﹣9【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式整理后,利用完全平方公式分解即可.解:(1)原式=b(a2﹣b2)=b(a+b)(a﹣b);(2)原式=﹣[(x2+2)2﹣6(x2+2)+9]=﹣(x2﹣1)2=﹣(x+1)2(x﹣1)2.20.已知:a+b=4(1)求代数式(a+1)(b+1)﹣ab值;(2)若代数式a2﹣2ab+b2+2a+2b的值等于17,求a﹣b的值.【分析】(1)将原式展开、合并同类项化简得a+b+1,再代入计算可得;(2)由原式=(a﹣b)2+2(a+b)可得(a﹣b)2+2×4=17,据此进一步计算可得.解:(1)原式=ab+a+b+1﹣ab=a+b+1,当a+b=4时,原式=4+1=5;(2)∵a2﹣2ab+b2+2a+2b=(a﹣b)2+2(a+b),∴(a﹣b)2+2×4=17,∴(a﹣b)2=9,则a﹣b=3或﹣3.21.先观察下列等式,再回答下列问题:①;②③(1)请你根据上面三个等式提供的信息,猜想的结果,并验证;(2)请你按照上面各等式反映的规律,用含n的等式表示(n为正整数).【分析】(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.解:(1),验证:====,∵,∴;(2)==(n为整数)22.如图,线段AC交BD于O,点E,F在线段AC上,△DFO≌△BEO,且AF=CE,连接AB、CD,求证:AB=CD.【分析】先由△BEO≌△DFO,即可得出OF=OE,DO=BO,进而得到AO=CO,再证明△ABO≌△CDO,即可得到AB=CD.【解答】证明:∵△BEO≌△DFO,∴OF=OE,DO=BO,又∵AF=CE,∴AO=CO,在△ABO和△CDO中,,∴△ABO≌△CDO(SAS),∴AB=CD.23.发现任意五个连续整数的平方和是5的倍数.验证(1)(﹣1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.延伸任意三个连续整数的平方和被3除的余数是几呢?请写出理由.【分析】验证(1)计算(﹣1)2+02+12+22+32的结果,再将结果除以5即可;(2)用含n的代数式分别表示出其余的4个整数,再将它们的平方相加,化简得出它们的平方和,再证明是5的倍数;延伸:设三个连续整数的中间一个为n,用含n的代数式分别表示出其余的2个整数,再将它们相加,化简得出三个连续整数的平方和,再除以3得到余数.解:发现任意五个连续整数的平方和是5的倍数.验证(1)(﹣1)2+02+12+22+32=1+0+1+4+9=15,15÷5=3,即(﹣1)2+02+12+22+32的结果是5的3倍;(2)设五个连续整数的中间一个为n,则其余的4个整数分别是n﹣2,n﹣1,n+1,n+2,它们的平方和为:(n﹣2)2+(n﹣1)2+n2+(n+1)2+(n+2)2=n2﹣4n+4+n2﹣2n+1+n2+n2+2n+1+n2+4n+4=5n2+10,∵5n2+10=5(n2+2),又n是整数,∴n2+2是整数,∴五个连续整数的平方和是5的倍数;延伸设三个连续整数的中间一个为n,则其余的2个整数是n﹣1,n+1,它们的平方和为:(n﹣1)2+n2+(n+1)2=n2﹣2n+1+n2+n2+2n+1=3n2+2,∵n是整数,∴n2是整数,∴任意三个连续整数的平方和被3除的余数是2.24.如图1,AC=BC,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数(直接写出结果);(3)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图2,判断△CPQ的形状,并加以证明.【分析】(1)由CA=CB,CD=CE,∠ACB=∠DCE=α,利用SAS即可判定△ACD≌△BCE;(2)根据△ACD≌△BCE,得出∠CAD=∠CBE,再根据∠AFC=∠BFH,即可得到∠AMB=∠ACB=α;(3)先根据SAS判定△ACP≌△BCQ,再根据全等三角形的性质,得出CP=CQ,∠ACP =∠BCQ,最后根据∠ACB=90°即可得到∠PCQ=90°,进而得到△PCQ为等腰直角三角形.解:(1)如图1,∵∠ACB=∠DCE=α,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴BE=AD;(2)如图1,∵△ACD≌△BCE,∴∠CAD=∠CBE,∵△ABC中,∠BAC+∠ABC=180°﹣α,∴∠BAM+∠ABM=180°﹣α,∴△ABM中,∠AMB=180°﹣(180°﹣α)=α;(3)△CPQ为等腰直角三角形.证明:如图2,由(1)可得,BE=AD,∵AD,BE的中点分别为点P、Q,∴AP=BQ,∵△ACD≌△BCE,∴∠CAP=∠CBQ,在△ACP和△BCQ中,,∴△ACP≌△BCQ(SAS),∴CP=CQ,且∠ACP=∠BCQ,又∵∠ACP+∠PCB=90°,∴∠BCQ+∠PCB=90°,∴∠PCQ=90°,∴△CPQ为等腰直角三角形.。
2018-2019学年度第一学期期中质量检测七年级数学试题一 选择题:每小题3分,共8小题,共24分。
1.-3的相反数是( )A.3B.-3C.31 D.-312.如图所示的花瓶中,( )的表面,可以看作由所给的平面图形绕虚线旋转一周形成的。
3.根据国家旅游局数据中心综合测算,2016年国庆期间,全国累计旅游收入达四千八百亿元,四千八百亿元用科学记数法表示是( )A.4800×108B.48×1010 D.4.8×103 D.4.8×1011 4.一个六棱柱模型如图所示,底面边长都是5cm ,侧棱长为4cm ,这个六棱柱的所有侧面的面积之和是( )A.20cm 2B.60cm 2C.120cm 2D.240cm 25.下列各数:0,2-,-(-2),-32,21-,其中非负数有( )个.A.4B.3C.2D.16.一辆汽车a 秒行驶6m 米,则它2分钟行驶( ).A.3m 米 B.am 10米 C.am 20米 D.am 120米7.下列说法正确的有()①-43表示3个-4相乘;②一个有理数和它的相反数的积必为负数;③数轴上表示2和-2的点到原点的距离相等;④若a2=b2,则a=b.A.1个B.2个C.3个D.4个8.两堆棋子,将第一堆的3个棋子移动到第二堆之后,现在第二堆的棋子数是第一堆棋子的3倍,设第一堆原有m个棋子,则第二堆的棋子原有()个。
A.3mB.3m-3C.33m D.3m-12二填空题:每小题3分,共8小题,共24分。
9.如果收入50元记作+50元,那么支出35元记作.10.将一个长方体截去一角边长一个如图的新几何体,这个新几何体有个面,条棱,个顶点.11.某市2011年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高℃.12.请写出一个只含有字母x、y的三次二项式:.13.图1和图2中所有的正方形都全等。
将图1的正方形放在图2中的(从①②③④⑤中选填)位置,所组成的图形能够围成正方体。
河南省新乡市原阳县第一高级中学2023-2024学年高一上学期1月月考数学试题学校:___________姓名:___________班级:___________考号:___________()R{2}A B Ç=ð,()R{4}A B =I ð,求实数a ,b 的值;(2)已知集合{}121|A x a x a =-<<+,函数2lg()y x x =-的定义域为B ,若A B Ç=Æ,求实数a 的取值范围.19.已知函数[]2+(2)2,5,5f x x x x a =+Î-.(1)当1a =-时,求函数()f x 的最大值和最小值;(2)若函数()f x 在区间[]5,5-上是单调函数,求a 的取值范围.20.已知函数()||(R)f x x m x x =-Î.(1)若()40f =,当[2x Î,5],求()f x 的值域;(2)判断函数()f x 的奇偶性,并证明;(3)设实数m 1³,若不等式2()m f x -£对任意的[1x Î,3]恒成立,求实数m 的取值范围.21.已知集合12{|(,,,),{,1},1,2,,}(2)n n iS X X x x x x k i n n ==Î=³L L .对于1212(,,,),(,,,)n n n A a a a B b b b S ==ÎL L ,定义:A 与B 的差为1122(||,||,||)n n A B a b a b a b -=---L ;A与B之间的距离为1(,)||ni i i d A B a b ==-å.(1)当2,5k n ==时,设(1,2,1,1,2),(2,1,1,2,1)A B ==,求,(,)A B d A B -;(2)若对于任意的,,n A B C S Î,有n A B S -Î,求k 的值并证明:(,)(,)d A C B C d A B --=.22.已知函数()2e ,e ,x xx x m f x x x mì--£=í+>î和()2ln ,01ln ,1x x x g x x x x --<£ì=í+³î有相同的最小值,(e 为自然对数的底数,且e 2.71828=L )(1)求m ;(2)证明:存在直线y b =与函数()y f x =,()y g x =恰好共有三个不同的交点;(3)若(2)中三个交点的横坐标分别为1x ,2x ,3x ()123x x x <<,求1232x x x ++的值.易知x ®-¥时,()f x ®+¥0+®时,()g x ¥®+;x ®则()f x b =在区间(),0¥-与()x b =在区间()0,1与(1,+¥要证:存在直线y b =与函数所以存在()00,1x Î,使()00()f x g x =,即()()f x g x =在()0,1上有交点,得证.所以存在直线y b =与函数()y f x =,()y g x =恰好共有三个不同的交点.(3)如图y b =与函数()y f x =,()y g x =恰好共有三个不同的交点,三个交点的横坐标分别为1x ,2x ,3x ,()123x x x <<,则有121222332e e 2ln ln x x x x x x x x --+=+==--,因为112ln 122122e 2ln 2e 2e ln x x x x x x x x ----Þ--=-=-而()2e x f x x =--单调递减,所以12ln x x =,因为322ln 23323e ln e e ln x x x x x x x x +=+Þ+=+,而()e x f x x =+单调递增,所以23ln x x =,又因为2222222e 2ln e ln 22x x x x x x x +=--Þ++=.所以212322e 222ln x x x x x x ++=++=.【点睛】本题考查了导数的应用,利用导数求函数的单调性,函数的零点,利用同构去解决三个交点横坐标之间的数量关系.答案第161页,共22页。
人教A 版数学高二弧度制精选试卷练习(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知扇形的周长是5cm ,面积是322cm ,则扇形的中心角的弧度数是( ) A .3B .43C .433或 D .2【来源】江西省九江第一中学2016-2017学年高一下学期期中考试数学(文)试题 【答案】C2.已知扇形的周长为8cm ,圆心角为2,则扇形的面积为( ) A .1B .2C .4D .5【来源】四川省双流中学2017-2018学年高一1月月考数学试题 【答案】C3.《掷铁饼者》 取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为4π米,肩宽约为8π米,“弓”所在圆的半径约为1.25米,你估测一下掷铁饼者双手之间的距离约为( )1.732≈≈)A .1.012米B .1.768米C .2.043米D .2.945米【来源】安徽省五校(怀远一中、蒙城一中、淮南一中、颍上一中、淮南一中、涡阳一中)2019-2020学年高三联考数学(理)试题 【答案】B4.已知扇形的周长为4,圆心角所对的弧长为2,则这个扇形的面积是( ) A .2B .1C .sin 2D .sin1【来源】福建省泉州市南安侨光中学2019-2020学年高一上学期第二次阶段考试数学试题 【答案】B5.已知α是第三象限角,且cos cos22αα=-,则2α是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角【来源】2012人教A 版高中数学必修四1.2任意角的三角函数练习题 【答案】B6.如图,2弧度的圆心角所对的弦长为2,这个圆心角所对应的扇形面积是( )A .1sin1B .21sin 1C .21cos 1D .tan1【来源】广西河池市高级中学2017-2018学年高一下学期第二次月考数学试题 【答案】B7.半径为10cm ,面积为2100cm 的扇形中,弧所对的圆心角为( ) A .2 radB .2︒C .2π radD .10 rad【来源】第一章滚动习题(一) 【答案】A8.若一扇形的圆心角为72︒,半径为20cm ,则扇形的面积为( ). A .240πcmB .280πcmC .240cmD .280cm【来源】陕西省西安市长安区第一中学2016-2017学年高一下学期第一次月考数学试题 【答案】D9.如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为1S ,正八边形外侧八个扇形(阴影部分)面积之和为2S ,则12S S =( )A .34B .35C .23D .1【来源】广西省南宁市马山县金伦中学、武鸣县华侨中学等四校2017-2018学年高一10月月考数学试题. 【答案】B10.在-360°到0°内与角1250°终边相同的角是( ) . A .170° B .190° C .-190°D .-170°【来源】2012人教A 版高中数学必修四1.1任意角和弧度制练习题(一)(带解析) 【答案】C11.下列各角中,终边相同的角是 ( ) A .23π和240o B .5π-和314oC .79π-和299π D .3和3o【来源】新疆伊西哈拉镇中学2018-2019学年高一上学期第二次月考数学试题 【答案】C12.已知2弧度的圆心角所对的弧长为2,则这个圆心角所对的弦长是( ) A .sin 2B .2sin 2C .sin1D .2sin1【来源】广东省东莞市2018-2019学年高一第二学期期末教学质量检查数学试题 【答案】D13,弧长是半径的3π倍,则扇形的面积等于( ) A .223cm πB .26cm πC .243cm πD .23cm π【来源】河北省隆华存瑞中学(存瑞部)2018-2019学年高一上学期第二次数学试题 【答案】D14.如图所示,用两种方案将一块顶角为120︒,腰长为2的等腰三角形钢板OAB 裁剪成扇形,设方案一、二扇形的面积分别为12S , S ,周长分别为12,l l ,则( )A .12S S =,12l l >B .12S S =,12l l <C .12S S >,12l l =D .12S S <,12l l =【来源】浙江省省丽水市2018-2019学年高一下学期期末数学试题 【答案】A15.已知sin sin αβ>,那么下列命题成立的是( ) A .若,αβ是第一象限角,则cos cos αβ> B .若,αβ是第二象限角,则tan tan αβ> C .若,αβ是第三象限角,则cos cos αβ> D .若,αβ是第四象限角,则tan tan αβ>【来源】正定中学2010高三下学期第一次考试(数学文) 【答案】D16.半径为1cm ,中心角为150°的角所对的弧长为( )cm . A .23B .23π C .56D .56π 【来源】宁夏石嘴山市第三中学2018-2019学年高一5月月考数学试题 【答案】D 17.设5sin 7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c <<B .a c b <<C .b c a <<D .b a c <<【来源】2008年高考天津卷文科数学试题 【答案】D18.扇形的中心角为120o )A .πB .45πC D 2【来源】辽宁省大连市第八中学2016-2017学年高一下学期期中考试数学试题【答案】A19.若扇形的周长为8,圆心角为2rad ,则该扇形的面积为( ) A .2B .4C .8D .16【来源】河南省洛阳市2018-2019学年高一下学期期中考试数学试卷 【答案】B20.-300° 化为弧度是( ) A .-43πB .-53πC .-54πD .-76π【来源】2014-2015学年山东省宁阳四中高一下学期期中学分认定考试数学试卷(带解析) 【答案】B21.一个扇形的面积为3π,弧长为2π,则这个扇形的圆心角为( ) A .3π B .4π C .6π D .23π 【来源】湖北省荆门市2017-2018学年高一(上)期末数学试题 【答案】D22.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为23π,弦长为的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米.(其中3π≈,1.73≈)A .15B .16C .17D .18【来源】湖北省2018届高三5月冲刺数学(理)试题 【答案】B23.下列各式不正确的是( ) A .-210°=76π-B .405°=49πC .335°=2312πD .705°=4712π【来源】河南信阳市息县第一高级中学、第二高级中学、息县高中2018-2019学年高一下学期期中联考数学(文)试题 【答案】C24.下列函数中,最小正周期为π2的是( )A .y =sin (2x −π3)B .y =tan (2x −π3)C .y =cos (2x +π6) D .y =tan (4x +π6)【来源】20102011年山西省汾阳中学高一3月月考数学试卷 【答案】B25.已知扇形的周长为12cm ,圆心角为4rad ,则此扇形的弧长为 ( ) A .4cmB .6cmC .8cmD .10cm【来源】江西省玉山县一中2018-2019学年高一(重点班)下学期第一次月考数学(理)试卷 【答案】C二、填空题26.已知扇形的圆心角18πα=,扇形的面积为π,则该扇形的弧长的值是______.【来源】上海市黄浦区2018-2019学年高一下学期期末数学试题 【答案】3π 27.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的底面半径为_______ . 【来源】上海市浦东新区川沙中学2018-2019学年高二下学期期末数学试题 【答案】128.一个扇形的弧长与面积的数值都是5,则这个扇形中心角的弧度数为__________. 【来源】河南省灵宝市实验高中2017-2018学年高一下学期第一次月考考数学试题 【答案】5229.已知圆锥的侧面展开图是一个扇形,若此扇形的圆心角为65π、面积为15π,则该圆锥的体积为________.【来源】上海市杨浦区2019-2020学年高三上学期期中质量调研数学试题 【答案】12π30.圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示 ,正方形的顶点A 和点P 重合)沿着圆周顺时针滚动,经过若干次滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为 .【来源】2015届山东省日照市高三3月模拟考试理科数学试卷(带解析)31.已知扇形的圆心角为1弧度,扇形半径为2,则此扇形的面积为______. 【来源】上海市复兴高级中学2018-2019学年高一下学期3月份质量检测数学试题 【答案】232.一个球夹在120°的二面角内,且与二面角的两个面都相切,两切点在球面上的最短距离为π,则这个球的半径为_______ .【来源】上海市七宝中学2017-2018学年高二下学期期中数学试题 【答案】333.用半径为,面积为cm 2的扇形铁皮制作一个无盖的圆锥形容器(衔接部分忽略不计), 则该容器盛满水时的体积是 .【来源】2012届江苏省泗阳中学高三上学期第一次调研考试数学试卷(实验班) 【答案】31000cm 3π34.《九章算术》是体现我国古代数学成就的杰出著作,其中(方田)章给出的计算弧田面积的经验公式为:弧田面积12=(弦⨯矢+矢2),弧田(如图阴影部分)由圆弧及其所对的弦围成,公式中“弦”指圆弧所对弦的长,“矢”等于半径长与圆心到弦的距离之差,现有弧长为43π米,半径等于2米的弧田,则弧所对的弦AB 的长是_____米,按照上述经验公式计算得到的弧田面积是___________平方米.【来源】山东省济南市2018-2019学年高一下学期期末学习质量评估数学试题【答案】1235.设扇形的半径长为2cm ,面积为24cm ,则扇形的圆心角的弧度数是 【来源】2013-2014学年山东济南商河弘德中学高一下学期第二次月考数学试卷(带解析) 【答案】236.已知一个圆锥的展开图如图所示,其中扇形的圆心角为120o ,弧长为2π,底面圆的半径为1,则该圆锥的体积为__________.【来源】2018年春高考数学(文)二轮专题复习训练:专题三 立体几何【答案】337.现用一半径为10cm ,面积为280cm π的扇形铁皮制作一个无盖的圆锥形容器(假定衔接部分及铁皮厚度忽略不计,且无损耗),则该容器的容积为__________3cm . 【来源】江苏省苏州市2018届高三调研测试(三)数学试题 【答案】128π38.已知扇形的周长为6,圆心角为1,则扇形的半径为___;扇形的面积为____. 【来源】浙江省宁波市镇海区镇海中学2018-2019学年高一上学期期中数学试题 【答案】2 2 39.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所在半径的大小无关; ④若sin sin αβ=,则α与β的终边相同;⑤若cos 0θ<,则θ是第二或第三象限的角. 其中正确的命题是______.(填序号)【来源】江苏省南通市启东中学2018-2019学年高二5月月考数学(文)试题 【答案】③40.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是________. 【来源】广东省中山市第一中学2016-2017学年高一下学期第一次段考(3月)数学(理)试题 【答案】2三、解答题41.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求其圆心角的大小.(2)求该扇形的面积取得最大时,圆心角的大小和弦长AB .【来源】2015-2016学年四川省雅安市天全中学高一11月月考数学试卷(带解析) 【答案】(1)或;(2);.42.已知一扇形的中心角是120︒,所在圆的半径是10cm ,求: (1)扇形的弧长; (2)该弧所在的弓形的面积【来源】福建省福州市平潭县新世纪学校2019-2020学年高一上学期第二次月考数学试题【答案】(1)203π;(2)1003π-43.某公司拟设计一个扇环形状的花坛(如图所示),该扇环是由以点O 为圆心的两个同心圆弧和延长后通过点AD 的两条线段围成.设圆弧AB 、CD 所在圆的半径分别为()f x 、R 米,圆心角为θ(弧度).(1)若3πθ=,13r =,26=r ,求花坛的面积;(2)设计时需要考虑花坛边缘(实线部分)的装饰问题,已知直线部分的装饰费用为60元/米,弧线部分的装饰费用为90元/米,预算费用总计1200元,问线段AD 的长度为多少时,花坛的面积最大?【来源】江苏省泰州市泰州中学2019~2020学年高一上学期期中数学试题 【答案】(1)292m π(2)当线段AD 的长为5米时,花坛的面积最大44.已知一个扇形的周长为30厘米,求扇形面积S 的最大值,并求此时扇形的半径和圆心角的弧度数.【来源】上海市华东师范大学第二附属中学2018-2019学年高一上学期期末数学试题 【答案】()2rad α= 152r =45.如图所示为圆柱形大型储油罐固定在U 型槽上的横截面图,已知图中ABCD 为等腰梯形(AB ∥DC ),支点A 与B 相距8m ,罐底最低点到地面CD 距离为1m ,设油罐横截面圆心为O ,半径为5m ,56D ∠=︒,求:U 型槽的横截面(阴影部分)的面积.(参考数据:sin530.8︒≈,tan56 1.5︒≈,3π≈,结果保留整数)【来源】上海市闵行区七宝中学2019-2020学年高一上学期9月月考数学试题 【答案】202m46.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地…”某教师根据这首词的思想设计如下图形,已知CE l ⊥,DF l ⊥,CB CD =,AD BC ⊥,5DF =,2BE =,AD =则在扇形BCD 中随机取一点求此点取自阴影部分的概率.【来源】山西省阳泉市2018-2019学年高一第一学期期末考试试题数学试题【答案】1)4(P A π=-47.某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由试卷第11页,总11页 扇形OAD 挖去扇形OBC 后构成的).已知10, (0<<10)OA=OB =x x ,线段BA 、CD与弧BC 、弧AD 的长度之和为30米,圆心角为θ弧度.(1)求θ关于x 的函数解析式;(2)记铭牌的截面面积为y ,试问x 取何值时,y 的值最大?并求出最大值.【来源】上海市黄浦区2018届高三4月模拟(二模)数学试题【答案】(1)210(010)10x x x θ+=<<+;(2)当52x =米时铭牌的面积最大,且最大面积为2254平方米. 48.已知一扇形的圆心角为()0αα>,所在圆的半径为R .(1)若90,10R cm α==o ,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长是一定值()0C C >,当α为多少弧度时,该扇形有最大面积?【来源】2019高考备考一轮复习精品资料 专题十五 任意角和弧度制及任意角的三角函数 教学案【答案】(1)2550π-;(2)见解析49.已知在半径为10的圆O 中,弦AB 的长为10.(1)求弦AB 所对的圆心角α(0<α<π)的大小;(2)求圆心角α所在的扇形弧长l 及弧所在的弓形的面积S .【来源】(人教A 版必修四)1.1.2弧度制(第一课时)同步练习02【答案】(1)π3(2)10π3;50(π3−√32) 50.已知在半径为6的圆O 中,弦AB 的长为6,(1)求弦AB 所对圆心角α的大小;(2)求α所在的扇形的弧长l 以及扇形的面积S.【来源】江西省玉山县一中2018-2019学年高一(重点班)下学期第一次月考数学(文)试卷【答案】(1)3π ;(2)2l π= ,6S π=。
河南省新乡市第十中学2024-2025学年八年级上学期11月期中数学试题一、单选题1.下列图标是第十九届杭州亚运会上常见的运动图标,其中是轴对称图形的是()A .B .C .D .2.2024年年初,山西省最长的跨黄河大桥−−临猗黄河大桥完成合龙任务,如图,这是桥身的一部分,桥身采用三角形钢结构架,这其中蕴含的数学道理是()A .两点确定一条直线B .三角形的稳定性C .垂线段最短D .三角形两边之和大于第三边3.如图所示,为估计池塘两岸A ,B 间的距离,小明在池塘一侧选取一点P ,测得6m PA =,5m PB =,那么A ,B 之间的距离不可能是()A .6mB .8mC .10mD .12m4.工人师傅常用直角尺平分一个角,做法如下:如图所示,在AOB ∠的边OA ,OB 上分别取OM ON =,移动直角尺,使直角尺两边相同的刻度分别与M ,N 重合(即CM CN =).此时过直角尺顶点C 的射线OC 即是AOB ∠的平分线.这种做法的道理是()A .HLB .SSSC .SASD .ASA5.将一副三角板按照如图方式摆放,点C B E 、、共线,63FEB ∠=︒,则EDB ∠的度数为()A .12︒B .15︒C .18︒D .22︒6.如图,点D 为ABC V 中BC 边的中点,点E 为AD 的中点,设ABE S m =△,CDE S n =△,下面结论正确的是()A .m n>B .m n <C .m n =D .m 、n 大小关系无法确定7.一个多边形的每个外角都等于72°,则这个多边形的内角和为()A .180°B .720°C .540°D .360°8.已知,如图1,Rt ABC △.画一个Rt A B C ''' ,图2、图3分别是甲、乙两同学的画图过程.下列说法错误的是()A .甲同学作图判定Rt Rt ABC ABC '''△≌△的依据是HLB .甲同学第二步作图时,用圆规截取的长度是线段AC 的长C .乙同学作图判定Rt Rt A B C ABC '''△≌△的依据是SASD .乙同学第一步作图时,用圆规截取的长度是线段AC 的长9.如图所示,在△ABC 中,∠ACB =90°,∠B =15°,DE 垂直平分AB ,交BC 于点E ,AC =3cm ,则BE 等于().A .6cmB .5cmC .4cmD .3cm10.如图,在直角△ABC 中,∠BAC =90°,AB =3,M 是边BC 上的点,连接AM .如果将△ABM 沿直线AM 翻折后,点B 恰好在边AC 的中点处,那么点M 到AC 的距离是()A .1.5B .2C .2.5D .3二、填空题11.等腰三角形的一个内角为110︒,则其顶角的度数为12.如果点P (2,b )和点Q (a,-3)关于x 轴对称,则a+b 的值是.13.学习全等三角形的判定后,小明编了这样一个题目:“已知:如图,AB CD =,AC BD =,12∠=∠,求证:ABC DCB △≌△.”老师说他的已知条件给多了,那么可以去掉的一个已知条件是:.14.在ABC V 中,10AB =,8AC =,则BC 边上的中线AD 的取值范围是15.如图,60AOB ∠=︒,C 是BO 延长线上一点,12cm OC =,动点M 从点C 出发沿射线CB以2cm /s 的速度移动,动点N 从点O 出发沿射线OA 以1cm /s 的速度移动,如果点M 、N 同时出发,设运动的时间为s t ,那么当t =s 时,MON △是等腰三角形.三、解答题16.△ABC 在平面直角坐标系中的位置如图所示.(1)画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)将△ABC 向右平移6个单位,作出平移后的△A 2B 2C 2,并写出△A 2B 2C 2各顶点的坐标;(3)观察△A 1B 1C 1和△A 2B 2C 2,它们是否关于某条直线对称?若是,请在图上画出这条对称轴.17.如图,在ABC V 中,AD 是BC 边上的高,CE 平分ACB ∠,若20,50CAD B ︒∠=∠=︒,求BEC ∠的度数.18.已知:如图,AB DE ∥,AB DE =,AF DC =.求证:B E ∠=∠.19.如图,在ABC V 中,已知AB AC =,若12AB =,MBC △的周长是20.(1)求作:AB 的垂直平分线交AB 于点N ,交AC 于点M ,连接MB .(保留作图痕迹,不写作法)(2)①求BC 的长度;②若点P 为直线MN 上一点,请直接写出PBC △周长的最小值是______.20.如图在△ABC 中,AB=AC=9,∠BAC=120°,AD 是△ABC 的中线,AE 是∠BAD 的角平分线,DF ∥AB 交AE 的延长线于点F ,求DF 的长.21.已知定理“在直角三角形中,如果一个锐角等于30︒,那么它所对的直角边等于斜边的一半,”下面是小明同学证明定理时使用的两种添加辅助线的方法,选择其中一种,完成证明.已知:如图1,在ABC V 中,9030,∠=︒∠=︒C A .求证:12BC AB =,方法一:如图2,延长BC 到点D ,使得CD BC =,连接AD .方法二:如图3,在线段AB 上取一点D ,使得BD BC =,连接C .22.如图,在ABC V 和ADE V 中,AB AC =,AD AE =,90BAC DAE ∠=∠=︒.(1)当点D 在AC 上时,如图①,线段BD CE ,有怎样的数量关系和位置关系?写出结论并说明理由;(2)将图①中的ADE V 的位置改变一下,如图②,其他条件不变,则线段BD CE ,又有怎样的数量关系和位置关系?请说明理由.23.(1)如图①.已知:在ABC V 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .则线段DE 、BD 与CE 之间的数量关系是______;(2)如图②,将(1)中的条件改为:在ABC V 中,AB AC =,D ,A ,E 三点都在直线m 上,并且有BDA AEC BAC α∠=∠=∠=,其中α为任意锐角或钝角.请问:(1)中的结论是还否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图③,D ,E 是D ,A ,E 三点所在直线m 上的两动点(D ,A ,E 三点互不重合),点F 为BAC ∠平分线上的一点,且ABF △和ACF △均为等边三角形,连接BD 、CE .若BDA AEC BAC ∠=∠=∠,试判断DEF 的形状,并说明理由.。
2024-2025学年高二上期10月月考数学试卷考生须知:1.本卷共4页满分150分,考试时间120分钟.2.答题前,在答题卷指定区域填写班级、姓名、考场号、座位号及准考证号并填涂相应数字.3.所有答案必须写在答题纸上,写在试卷上无效.4.考试结束后,只需上交答题纸.选择题部分一、选择题;本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.的倾斜角是( )A. B. C.D.2.已知平面的法向量为,平面的法向量为,若,则k 等于( )A. 4B. -4C. 5D. 3.若双曲线离心率为2,过点,则该双曲线的方程为( )A. B. C. D. 4.若圆:与圆:相切,则( )A .9B .10C .11D .9或115.如图,一束光线从出发,经直线反射后又经过点,则光线从A 到B 走过的路程为()AB .CD .6.如图,棱长为1的正方体,中M ,N 点,分别是线段,的中点,记E 是线段的中点,则点E 到面的距离为()10y --=3π-6π-6π3πα(1,2,2)a =-β(2,4,)b k =-- αβ⊥5-2222:1x y C a b-=2221x y -=2213y x -=22531x y -=22126x y -=1C ()()22121x y ++-=2C ()()22256x y r -++=r =()1,0A 10x y ++=()6,5B -1111ABCD A B C D -1BB 1DD 1MC 1ANBA.BCD .7.已知,,动点P 满足,则点P 的轨迹与圆相交的弦长等于()A .BCD8.棱长为2的菱形ABCD 中,,将沿对角线BD 翻折,使A 到P 的位置,得到三棱锥,在翻折过程中,下列结论正确的是( )A .三棱锥B .C .存在某个位置,使得D .存在某个位置,使得面BCD二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.9.以下四个命题正确的有()A .直线与直线B .直线l 过定点,点和到直线l 距离相等,则直线l 的方程为C .点到直线D .已知,则“直线与直线垂直”是“”的必要不充分条件10.下列说法正确的是()A .在四面体OABC 中,若,则A ,B ,C ,G 四点共面B .若G 是四面体OABC 的底面三角形ABC 的重心,则C .已知平行六面体的棱长均为1,且,则2313()2,0A -()2,0B PAPB=224x y +=60BAD ∠=︒ABD △P BCD -P BCD -CD PC⊥CD PB⊥CP ⊥220x y +-=2410x y ++=()0,1-()3,4A --()6,3B 330x y -++=()1,210x y +-=a R ∈210ax y +-=()120a x ay a +-+=3a =151266OG OA OB OC =-++()13OG OA OB OC=++1111ABCD A B C D -1160BAD BAA DAA ∠=∠=∠=︒对角线D .若向量,则称为在基底下的坐标,已知向量在单位正交基底下的坐标为,则向量在基底下的坐标为11“黄金椭圆”,在椭圆中,,,,分别是椭圆的左、右顶点和上、下顶点,,是椭圆的左、右焦点,P 是椭圆上的动点,则下列选项中,能使椭圆是“黄金椭圆”的有()A .轴且B .C .四边形的内切圆过D .非选择题部分三、填空题,本题共3小题,每小题5分,共15分12.已知椭圆C :,则椭圆的短轴长为______.13.已知,过定点M 的动直线与过定点N 的动直线相交于点P ,则的最大值是______.14.已知一张纸上画有半径为4的圆O ,在圆O 内有一个定点A ,且,折叠纸片,使圆上某一点刚好与A 点重合,这样的每一种折法,都留下一条直线折痕,当取遍圆上所有点时,所有折痕与的交点形成的曲线记为C .则曲线C 上的点到点O 的最大距离为______.四、解答题;本题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤.15.(本小题13分)如图,在正方体中,E 为的中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.1AC =p mx n y k z =++ (),,m n k p {},,x y z p{},,a b c ()1,2,3p {},,a b a b c -+ 13,,322⎛⎫- ⎪⎝⎭()222210x y a b a b+=>>1A 2A 1B 2B 1F 2F 1PF x ⊥21//PO A B 2121122F F A F A F =1122A B A B 1F 2212A B F B ⊥2221x y +=a R ∈310ax y a --+=310x ay a +--=PM PN 2OA =A 'A 'OA '1111ABCD A B C D -1BB 1A C ⊥11AB D 1CC 1AD E16.(本小题15分)圆C 过点和,圆心C 在直线上.(1)求圆C 的标准方程(2)直线l 经过点,且被圆C 所截得的弦长为4,求直线l 的方程17.(本小题15分)已知O 为坐标原点,是椭圆C:的左焦点,点P 是椭圆的上顶点,以点P 为圆心且过的圆恰好与直线相切.(1)求椭圆C 的方程(2)斜率为1的直线l 交椭圆C 于A ,B两点,求面积的最大值18.(本小题17分)如图,在四棱锥中,平面平面ABCD ,,,BD 是的平分线,且,二面角的大小为60°.(1)若E 是棱PC 的中点,求证:平面PAD(2)求平面PAB 与平面PCD 所成的二面角的夹角的余弦值19.(本小题17分)已知圆O 的方程为,与x 轴的正半轴交于点N ,过点作直线与圆O交于A 、B 两点.(1)若坐标原点O 到直线AB 的距离为1,求直线AB 的方程;(2)如图所示,已知点P(-4,0), 一条斜率为-1的直线交圆于R ,S 两点,连接PS ,PR ,试问是否存在锐角,,使得为定值?若存在,求出该定值,若不存在,说明理由.()4,2A ()1,3B 1y x =-()1,1P -()11,0F -()222210x y a b a b+=>>1F x =AOB △P ABCD -PAD ⊥2PA AD ==4BD =AB =ADC ∠BD BC ⊥P AB D --//BE 2216x y +=()3.0M NPS ∠NPR ∠NPS NPR ∠+∠高二年级数学答案一、选择题:1.D 2.D 3.B 4.D 5.C 6.D 7.A 8.C 二、选择题;9.ACD 10.BCD 11.CD三、填空题;1213.4 14.3四、解答题;解答应写出文字说明,证明过程或演算步骤.15.解:(Ⅰ)由正方体的性质可知,面,则,又,,∴面,则同理,,∴平面(Ⅱ)解法一:以A 为原点,AD 、AB 、分别为x 、y 和z 轴建立如图所示的空间直角坐标系,设正方体的棱长为a ,则,,,,∴,,,设平面的法向量为,则,即,令,则,,∴,设直线与平面所成角为θ,则,故直线与平面所成角的正弦值为.BC ⊥11ABB A 1BC AB ⊥11AB A B ⊥1BC A B B = AB ⊥1A BC 11AB A C⊥111B D A C ⊥1111B D AB B = 1A C ⊥11AB D 1AA ()0,0,0A ()10,0,A a =()1,0,D a a 10,,2E a a ⎛⎫ ⎪⎝⎭()10,0,AA a = ()1,0,AD a a = 10,,2AE a a ⎛⎫= ⎪⎝⎭ 1AD E (),,m x y z = 10m AD m AE ⎧⋅=⎪⎨⋅=⎪⎩ ()0102a x z a y z +=⎧⎪⎨⎛⎫+= ⎪⎪⎝⎭⎩2z =2x =-1y =-()2,1,2m =--1AA 1AD E 11122sin cos ,33m AA a m AA a m AA θ⋅====⋅⋅1CC 1AD E 23解法二:设正方体的棱长为,则,,,, 由余弦定理知,∴,∴,设点到平面的距离为h ,∵,∴,∴,设直线与平面所成角为θ,则.故直线与平面所成角的正弦值为.16.(1)AB 的中垂线方程为,联立,知,则∴圆C 的标准方程是(2)若直线l 的斜率不存在,直线l :,弦长,成立若直线l 的斜率存在,设直线l :,圆心C到直线l 的距离为1,,则直线l :∴直线l :或17.(1)∴椭圆C 的方程为(2)设,,直线l :联立方程,得2a 1AD =AE =13ED a =1212222AA D S a a a =⋅⋅=△2221111cos 2AD AE ED EAD AD AE +-∠===⋅⋅1sin EAD ∠=12111sin 32EAD S AD AE EAD a =⋅⋅∠=△1A 1EAD 111A EAD E AA D V V --=221132233h a a a ⋅=⋅⋅43h a =1AA 1AD E 1423sin 23a h AA a θ===1CC 1AD E 2335y x =-351y x y x =-⎧⎨=-⎩()2,1C r =()()22215x y -+-=1x =4=()11y k x +=-134k =3744y x =-1x =3744y x =-a =1c =2212x y +=()11,A x y ()22,B x y y x m=+2212y x m x y =+⎧⎪⎨+=⎪⎩2234220x mx m ++-=∵直线l 交椭圆C 于A ,B 两点 ∴,得,∴弦长又点O 到直线l 的距离∴当,即时取得等号 ∴18.解:(1)取CD 中点F ,连接BF ,EF ∵ ∴,则而B D 是的平分线,则,从而,则,BF 不在平面PAD 内,平面PAD ,则平面PAD E ,F 分别是PC ,CD 的中点,则,EF 不在平面PAD 内,平面PAD ,则平面PAD ,又∴平面平面PAD ∴平面PAD(2)由题知,,又面面ABCD ,得面PAD 则是二面角的平面角,即,是等边三角形,如图建系,,,设平面PAB 的一个法向量为,则,得,令,则()221612220m m ∆=-->23m <1243m x x +=-212223m x x -=2ABx =-=d 1122S AB d =⋅==≤232m =m =max S =BDBC ⊥BF DF =FDB FBD∠=∠ADC ∠FDB ABD ∠=∠FBD ADB ∠=∠//BF AD AD ⊆//BF//EF PD PD ⊆//EF EF BF F= //BEF //BE BA AD ⊥PAD ⊥BA ⊥PAD ∠P AB D --60PAD ∠=︒PAD ∆(P ()1,0B -()0,1,0D ()C ()1,,n x y z =1100n AP n AB ⎧⋅=⎪⎨⋅=⎪⎩0y ⎧=⎪⎨=⎪⎩1z =()10,n =同理平面的PCD 一个法向量,设平面PAB 与平面PCD 的夹角为α则∴平面PAB 与平面PCD19.(1)若直线AB 的斜率不存在,距离为3,不符合若直线AB 的斜率存在,设直线AB :,得∴直线AB 的方程为(2)设直线RS :,,记,,联立方程,得 ∴,,∴,∴∵,都是锐角 ∴的定值.()1n =-1212cos n n n n α⋅==()3y k x =-1=k =y x =y x =y x m =-+()11,R x y ()22,S x y 111tan 4y k NPR x ==∠+222tan 4y k NPS x ==∠+2216x y y x m⎧+=⎨=-+⎩2222160x mx m -+-=12x x m +=212162m x x -=()12122y y x x m m +=-++=()()21212162m y y x m x m -=-+-+=()1212121244tan tan tan 1tan tan 144y yx x NPS NPRNPS NPR y y NPS NPR x x +++∠+∠∠+∠==-∠⋅∠-⋅++()()()12121212122484161416416x x m x x m m x x x x y y m -+-+++===+++-+NPS ∠NPR ∠0NPS NPR π<∠+∠<4πNPS NPR ∠+∠=。
2024--2025学年河南省郑州市北师大版七年级上册数学期中试卷(A )1.在-(-2)、|-1|、-|0|,-22,(-3)2,-(-4)5中正数有()A .1个B .2个C .3个D .4个2.下列各组数中,结果相等的是()A.与B.与C.与D.与3.人类已知最大的恒星是盾牌座UY,它的规模十分巨大,如果将盾牌座UY 放在太阳系的中心,它的表面将接近土星轨道,半径约等于1.43344937×109km.那么这个数的原数是()A .143344937kmB .1433449370kmC .14334493700kmD .1.43344937km4.下列选项中,两个单项式属于同类项的是()A .a 3与b 3B .-2a 2b与ba2C .x2y 与-xy2D .3x 2y 与-4x2yz5.已知整式的值为6,则整式的值为()A .0B .12C .14D .186.如图是一个正方体的表面展开图,则这个正方体是()A.B.C.D .7.如图,从边长为的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠,无缝隙),则拼成的长方形的另一边长是()A.B .C .D .68.若,则多项式的值为()A .B .5C.D .9.如图,将数轴上-6与6两点间的线段六等分,这五个等分点所对应数依次为,,,,,则下列正确的是()A.B.C.D.10.如图,一个立方体的六个面上分别标着连续的自然数,若相对两个面上所标之数的和相等,则这六个数的和为()A.69B.75C.78D.8111.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记作+0.22,那么小东跳出了3.85米,记作______.12.一个棱柱有12个顶点,所有的侧棱长的和是48cm,则每条侧棱长是____cm.13.已知多项式x|m|+(m﹣2)x﹣10是二次三项式,m为常数,则m的值为_____.14.将一个边长为a的正方形纸片[如图(1)]剪去两个小长方形,得到一个如图(2)所示的“”形图案,则这个“”形图案的周长为____.15.如果关于的多项式与多项式的次数相同,则=_________.16.计算(1)(2).17.化简,求值:,其中,.18.一个几何体由几个完全相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示该位置的小正方体的个数.(1)请画出从正面看、从左面看到的这个几何体的形状图;(2)若小正方体的棱长为1,求这个几何体的表面积.19.某种箱装水果的标准质量为每箱10千克,现抽取8箱样品进行检测,称重如下(单位:千克):10.2,9.9,9.8,10.1,9.6,10.1,9.7,10.2.为了求得这8箱样品的总质量,我们可以选取一个基准质量进行简化运算.(1)你认为选取的这个恰当的基准质量为______千克;(2)根据你选取的基准质量,用正、负数填写下表;(超过基准质量的部分记为正数,不足基准质量的部分记为负数)原质量(千克)10.29.99.810.19.610.19.710.2与基准质量的差距(千克)(3)这8箱样品的总质量是多少?20.如图,两摞完全相同的课本整齐地叠放在讲台上,请根据图中所给出的信息,回答下列问题:(1)每本课本的厚度为cm.(2)若有一摞上述规格的课本x本整齐地叠放在讲台上,请用含x的代数式表示出这摞课本的顶部距离地面的高度.(3)当时,求课本的顶部距离地面的高度.21.【问题情境】某综合实践小组计划进行废物再利用的环保小卫士活动.他们准备用废弃的宣传单制作成装垃圾的无盖纸盒.【操作探究】(1)若准备制作一个无盖的正方体纸盒,如图(1),图形经过折叠能围成一个无盖正方体纸盒.(填A,B,C,或D)(2)如图(2)是小明的设计图,把它折成一个无盖正方体纸盒后与“保”字所在面相对的面上的文字是.(3)如图(3),有一张边长为20cm的正方形废弃宣传单,小华将其四个角各剪去一个边长为4cm小正方形后,折成无盖长方体纸盒.求这个无盖长方体纸盒的底面积和容积.22.某中学准备在网上订购一批篮球和跳绳,查阅后发现篮球每个售价为120元,跳绳每根售价为25元.现有甲、乙两家网店均提供包邮服务,并提出了各自的优惠方案.甲网店:买一个篮球送一根跳绳;乙网店:篮球和跳绳都按定价的付款.已知要购买篮球40个,跳绳x根.(1)若在甲网店购买,则需付款元;若在乙网店购买,则需付款元;(用含x的代数式表示)(2)当时,在哪家网店购买较为合算?(3)当时,你认为还有更为省钱的购买方案吗?如果没有,请说明理由;如果有,请写出你的购买方案,并计算需要付款的金额.23.已知点A,B在数轴上分别表示a,b.任务要求(1)对照数轴填写下表:a 83b 404A ,B 两点间的距离48124问题探究(2)若A ,B 两点间的距离记为d ,试问d 和a ,b 有何数量关系.问题拓展(3)当x 等于多少时,的值最小,最小值是多少?(4)若点C 表示的数为x ,当点C 在什么位置时,|x-1|+|x-5|的值最小,最小值是多少?。
专题01 集合知识点一:相等集合一般地,如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,那么集合A 与集合B 相等,记作A =B.显然若两个集合相等,则它们的元素完全相同1.(安徽省安庆市五校联盟2018-2019学年高一上学期期中)下列集合中表示同一集合的是( )A .{(3,2)}M =,{(2,3)}N =B .{4,5}M =,{5,4}N =C .{}(,)1M x y x y =+=,{}1N y x y =+=D .{1,2}M =,{(1,2)}N =【答案】B 【分析】根据集合的元素是否相同判断即可. 【详解】解:A 两个集合的元素不相同,点的坐标不同, B 两个集合的元素相同,C 中M 的元素为点,N 的元素为数,D 中M 的元素为点,N 的元素为数, 故A ,C ,D 都不对. 故选:B . 2.(多选题)(广东省佛山市南海区第一中学2020-2021学年高一上学期)下列各组中的两个集合相等的有__________.A 、{}2,P x x n n Z ==∈,(){}21,Q x x n n Z ==-∈;B 、{}21,P x x n n N *==-∈,{}21,Q x x n n N *==+∈;C 、{}20P x x x =-=,()11,2nQ x x n Z ⎧⎫+-⎪⎪==∈⎨⎬⎪⎪⎩⎭. 【答案】AC 【分析】判断出A 选项中两个集合均为偶数集,可得出结论;分析出B 选项中的集合P 为正奇数集,集合Q 是从3开始的正奇数构成的集合,可得出结论;求出C 选项中的两个集合,可得出结论.【详解】对于A ,集合{}2,P x x n n Z ==∈为偶数集,集合(){}21,Q x x n n Z ==-∈也为偶数集,则P Q =;对于B ,集合{}21,P x x n n N *==-∈为正奇数集,集合{}21,Q x x n n N *==+∈是从3开始的正奇数构成的集合,则P Q ≠;对于C ,{}{}200,1P x x x =-==,对于()()112nx n Z +-=∈,若n 为奇数,则0x =;若n 为偶数,则1x =,即{}0,1Q =.P Q ∴=.故答案为:AC.3.(福建省龙岩市高级中学2020-2021学年高一上学期期中考试)已知集合{}20,1,A a =,{1,0,23}=+B a ,若A B =,则a 等于 A .1-或3 B .0或1- C .3 D .1- 【答案】C 【分析】根据两个集合相等的知识列方程,结合集合元素的互异性求得a 的值. 【详解】 由于A B =,故223a a =+,解得1a =-或3a =.当1a =-时,21a =,与集合元素互异性矛盾,故1a =-不正确.经检验可知3a =符合. 故选:C4..(多选题)(广东省广州市(广附、广外、铁一)三校2020年高一上学期期中)下列各组中M ,P 表示不同集合的是( ) A .M ={3,-1},P ={(3,-1)} B .M ={(3,1)},P ={(1,3)}C .M ={y |y =x 2+1,x ∈R},P ={x |x =t 2+1,t ∈R}D .M ={y |y =x 2-1,x ∈R},P ={(x ,y )|y =x 2-1,x ∈R} 【答案】ABD 【分析】选项A 中,M 和P 的代表元素不同,是不同的集合; 选项B 中,(3,1)与(1,3)表示不同的点,故M ≠P ; 选项C 中,解出集合M 和P .选项D 中,M 和P 的代表元素不同,是不同的集合. 【详解】选项A 中,M 是由3,-1两个元素构成的集合,而集合P 是由点(3,-1)构成的集合; 选项B 中,(3,1)与(1,3)表示不同的点,故M ≠P ;选项C 中,M ={y |y =x 2+1,x ∈R}=[)1,+∞,P ={x |x =t 2+1,t ∈R}=[)1,+∞,故M =P ;选项D 中,M 是二次函数y =x 2-1,x ∈R 的所有因变量组成的集合,而集合P 是二次函数y =x 2-1,x ∈R 图象上所有点组成的集合. 故选ABD .5.(山西省太原市2018-2019学年高一上学期期中)已知集合{,,2}A a b =,2{2,,2}B b a =,若A B =,求实数a ,b 的值.【答案】01a b =⎧⎨=⎩或1412a b ⎧=⎪⎪⎨⎪=⎪⎩. 【分析】利用集合相等的定义列出方程组,再结合集合中元素的互异性质能求出实数a ,b 的值. 【详解】解:由已知A B =,得22a ab b =⎧⎨=⎩(1)或22a b b a ⎧=⎨=⎩.(2) 解(1)得00a b =⎧⎨=⎩或01a b =⎧⎨=⎩,解(2)得00a b =⎧⎨=⎩或1412a b ⎧=⎪⎪⎨⎪=⎪⎩,又由集合中元素的互异性 得01a b =⎧⎨=⎩或1412a b ⎧=⎪⎪⎨⎪=⎪⎩.知识点二:元素与集合关系1、集合中元素的三个特性 (1)确定性;(2)互异性;(3)无序性2、(1)“属于”:如果a 是集合A 的元素,就说a 属于集合A ,记作a ∈A.(2)“不属于”:如果a 不是集合A 中的元素,就说a 不属于集合A ,记作a ∉A.1、(福建省莆田第一中学2020-2021学年高一上学期期中)设集合{}22,,A x x =,若1A ∈,则x 的值为 A .1- B .±1 C .1 D .0 【答案】A 【详解】2111A x orx ∈∴== ,若211x x =⇒= ,不满足集合元素的互异性, 故21x =, 1.x =- 故结果选A .2.(内蒙古集宁一中2018-2019学年高一上学期期中)已知集合 {}1,2,3,4,5A =,{}1,2,3B =,{}|,C z z xy x A y B ==∈∈且,则集合C 中的元素个数为A .15B .13C .11D .12 【答案】C 【分析】根据题意,确定,x y 的可能取值;再确定z xy =能取的所有值,即可得出结果. 【详解】因为{}1,2,3,4,5A =,{}1,2,3B =,{}|,C z z xy x A y B ==∈∈且, 所以x 能取的值为1,2,3,4,5;y 能取的值为1,2,3,因此z xy =能取的值为1,2,3,4,5,6,8,9,10,12,15,共11个, 所以集合C 中的元素个数为11. 故选C3.(河南省开封市2020-2021学年高一上学期五县联考期中)已知集合{}230A x x ax a =-+≤,若1A -∉,则实数a 的取值范围为______.【答案】14a >-【分析】利用元素与集合的关系知1x =-满足不等式230x ax a -+>,代入计算即得结果. 【详解】若1A -∉,则1x =-不满足不等式230x ax a -+≤,即1x =-满足不等式230x ax a -+>,故代入1x =-,有130++>a a ,得14a >-.故答案为:14a >-.4.(湖北省武汉市问津联盟2020-2021学年高一上学期期中联考)设集合2{|8150}A x x x =-+=,{|10}B x ax =-=.(1)若15a =,试判定集合A 与B 的关系;(2)若B A ⊆,求实数a 的取值集合.【答案】(1)B 是A 的真子集;(2)11{0,,}35.【分析】(1)算出A 、B 后可判断B 是A 真子集. (2)就B φ=、B φ≠分类讨论即可.(1){}{}3,5,5A B ==,∴B 是A 真子集 (2)当B φ=时,满足B A ⊆,此时0a =;当B φ≠时,集合1B a ⎧⎫=⎨⎬⎩⎭,又B A ⊆,得13a =或5,解得13a =或15综上,实数a 的取值集合为110,,35⎧⎫⎨⎬⎩⎭.知识点三:空集的特殊应用(1)空集:只有一个子集,即它本身; (2)空集是任何非空集合的真子集. ∅{0}∅{∅}或 ∅∈{∅}1.( )A .{}0B .{8xx >∣,且}5x < C .{}210x x ∈-=N∣ D .{}4x x >【答案】B【分析】根据空集的定义判断. 【详解】A 中有元素0,B 中集合没有任何元素,为空集,C 中有元素1,D 中集合,大于4的实数都是其中的元素. 故选:B .2.(河北省张家口市崇礼区第一中学2020-2021学年高一上学期期中)下列五个写法:①{0}{1,2,3}∈;②{0}∅⊆;③{0,1,2}{1,2,0}⊆;④0∈∅;⑤0∅=∅,其中错误写法的个数为 A .1 B .2 C .3 D .4 【答案】C 【分析】利用元素与集合的关系以及集合与集合之间的关系,便可得出答案. 【详解】对①:{0}是集合,{1,2,3}也是集合,所以不能用∈这个符号,故①错误. 对②:∅是空集,{0}也是集合,由于空集是任何集合的子集,故②正确.对③:{0,1,2}是集合,{1,2,0}也是集合,由于一个集合的本身也是该集合的子集,故③正确.对④:0是元素,∅是不含任何元素的空集,所以0∉∅,故④错误.对⑤:0是元素,∅是不含任何元素的空集,所以两者不能进行取交集运算,故⑤错误.3.(青海省西宁市大通县第一中学2019-2020学年高一上学期期中)关于以下集合关系表示不正确的是( ) A .∅∈{∅} B .∅∈{∅} C .∅∈N* D .∅∈N* 【答案】C 【分析】空集是任何集合的子集.根据元素与集合的关系、集合与集合的关系对选项逐一进行判断,由此得出正确选项. 【详解】对于A 选项,集合中含有一个元素空集,故空集是这个集合的元素,故A 选项正确. 空集是任何集合的子集,故B,D 两个选项正确.对于C 选项,空集不是正整数集合的元素,C 选项错误.故选C.4.(青海省西宁市海湖中学2020-2021学年高一上学期)下列关系正确的是 A .{0}∅⊆ B .{0}∅∈ C .0∈∅ D .{0}⊆∅ 【答案】A 【分析】根据空集是任何集合的子集即可判断出选项A 正确. 【详解】空集是任何集合的子集; {}0∴∅⊆正确 本题正确选项:A知识点四:子集的应用子集有下列两个性质:①自反性:任何一个集合都是它本身的子集,即A ⊆A ;②传递性:对于集合A ,B ,C ,如果A ⊆B ,且B ⊆C ,那么A ⊆C.1.(吉林省长春市十一高中2020-2021学年高一上学期)已知集合{2,3,1}A =-,集合2{3,}B m =.若B A ⊆,则实数m 的取值集合为( )A .{1}B .C .{1,1}-D .{【答案】C 【分析】根据子集关系列式可求得结果. 【详解】因为B A ⊆,所以21m =,得1m =±, 所以实数m 的取值集合为{1,1}-. 故选:C2.(江苏省淮安市淮安区2020-2021学年高一上学期期中)满足{}{}1,21,2,3,4,5A ⊆⊆的集合A 的个数为( ) A .8 B .7 C .4 D .16 【答案】A 【分析】根据已知条件可知集合A 中必有1,2,集合A 还可以有元素3,4,5,写出集合A 的所有情况即可求解. 【详解】因为集合A 满足{}{}1,21,2,3,4,5A ⊆⊆,所以集合A 中必有1,2,集合A 还可以有元素3,4,5,满足条件的集合A 有:{}1,2,{}1,2,3,{}1,2,4,{}1,2,5,{}1,2,3,4,{}1,2,3,5,{}1,2,4,5,{}1,2,3,4,5共有8个,故选:A.3.(湖北省孝感市汉川市第二中学2020-2021学年高一上学期期中)若集合M N ⊆,则下列结论正确的是 A .M N M ⋂= B .M N N ⋃=C .M M N ⊆⋂()D .()M N N ⋃⊆【答案】ABCD 【分析】根据子集的概念,结合交集、并集的知识,对选项逐一分析,由此得出正确选项. 【详解】由于M N ⊆,即M 是N 的子集,故M N M ⋂=,M N N ⋃=,从而M M N ⊆⋂(),()M N N ⋃⊆. 故选ABCD.4.(湖南省怀化市洪江市黔阳二中2020-2021学年高一上学期期中)已知集合M ,N ,P 为全集U 的子集,且满足M ∈P ∈N ,则下列结论正确的是 ( )A .U N ∈U PB .N P ∈N MC .(U P )∩M =∈D .(U M )∩N =∈ 【答案】ABC 【分析】由已知条件画出Venn 图,如图所示,然后根据图形逐个分析判断即可 【详解】因为集合M ,N ,P 为全集U 的子集,且满足M ∈P ∈N ,所以作出Venn 图,如图所示,由Venn 图,得U N ∈U P ,故A 正确; N P ∈N M ,故B 正确; (U P )∩M =∈,故C 正确; (U M )∩N ≠∈,故D 错误. 故选:ABC知识点五:交集、并集、补集的运算(1)交集的运算性质:A ∩B =B ∩A ,A ∩B ⊆A ,A ∩A =A ,A ∩∅=∅,A ∩B =A ⇔A ⊆B . (2)并集的运算性质:A ∪B =B ∪A ,A ⊆A ∪B ,A ∪A =A ,A ∪∅=A ,A ∪B =B ⇔A ⊆B .(3)全集与补集的性质∁U A ⊆U ,∁U U =∅,∁U ∅=U ,A ∪(∁U A )=U ,A ∩(∁U A )=∅,∁U (∁U A )=A .1.(陕西省商洛市商丹高新学校2019-2020学年高一上学期期中)设集合{}{}{}1,0,3,3,21,3A B a a A B =-=++=,则实数a 的值为________. 【答案】0或1 【分析】由于{}3A B ⋂=,所以可得33a +=或213a +=,从而可出a 的值【详解】解:因为{}{}{}1,0,3,3,21,3A B a a A B =-=++=所以33a +=或213a +=,所以0a =或经检验,0a =或1a =都满足题目要求,所以0a =或1a =,故答案为:0或1, 2.(浙江省杭州市高级中学2020-2021学年高一上学期期中)已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x << 【答案】C 【分析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题. 【详解】由题意得,{}{}42,23M x x N x x =-<<=-<<,则 {}22M N x x ⋂=-<<.故选C .3.(广西桂林市第十八中学2020-2021学年高一上学期期中)已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B ⋃=( ) A .{−2,3} B .{−2,2,3} C .{−2,−1,0,3} D .{−2,−1,0,2,3} 【答案】A 【分析】首先进行并集运算,然后计算补集即可. 【详解】由题意可得:{}1,0,1,2A B ⋃=-,则(){}U 2,3A B =-. 故选:A.4.(江西省南昌大学附中2020-2021年高一上学期期中)设A 、B 、U 均为非空集合,且满足A B U ⊆⊆,则下列各式中错误的是( ) A .()U C A B U = B .()()U U U C A C B C B = C .()U A C B ⋂=∅ D .()()U U C A C B U = 【答案】D 【分析】做出韦恩图,根据图形结合交集、并集、补集定义,逐项判断,即可得出结论. 【详解】A B U ⊆⊆,如下图所示,则U U C B C A ⊆, ()U C A B U =,选项A 正确,()()U U U C A C B C B =,选项B 正确, ()U A C B ⋂=∅,选项C 正确,()()U U U C A C B C A U =≠,所以选项D 错误.故选:D.5.(黑龙江省齐齐哈尔市克东一中、克山一中等五校2019-2020学年高一上学期期中联考)已知集合{}|3A x a x a =≤≤+,24{|}120B x x x =--> (1)若A B =∅,求实数a 的取值范围; (2)若A B B ⋃=,求实数a 的取值范围.【答案】(1)[]2,3-;(2){5|a a -<或6}a >.(1)求出集合{}32|{|A x a x a B x x =≤≤+=<-,或6}x >,由A B =∅,列出不等式组,能求出实数a 的取值范围.(2)由A B B ⋃=,得到A B ⊆,由此能求出实数a 的取值范围. 【详解】 解:(1)∈集合{}|3A x a x a =≤≤+,24120{|}2{|B x x x x x =-->=<-或6}x >,A B =∅,∈236a a ≥-⎧⎨+≤⎩,解得23a -≤≤∈实数a 的取值范围是[]2,3-(2)A B B A B =∴⊆,32a ∴+-<或6a >,解得5a -<或6a >. ∈实数a 的取值范围是{5|a a <-或6}a >6.(广东省华南师范大学附属中学南海实验高级中学2020-2021学年高一上学期期中)已知集合{}{}121215{}A xx B x x C x x m =-≤≤=≤-≤=>∣,∣,∣ (1)求(),R A B A B ⋃⋂;(2)若()A B C ⋃⋂≠∅,求实数m 的取值范围.【答案】(1){}13A B x x ⋃=-≤≤,(){}11R A B x x ⋂=-≤<,(2)(,3)-∞ 【分析】(1)先求出集合B ,再求B R ,然后求(),R A B A B ⋃⋂, (2)由()A B C ⋃⋂≠∅,可得答案 【详解】 解:(1)由1215x ≤-≤,得13x ≤≤,所以{}13B x x =≤≤, 所以{1R B x x =<或}3x >,因为{}12A x x =-≤≤,所以{}13A B x x ⋃=-≤≤,(){}11R A B x x ⋂=-≤< (2)因为()A B C ⋃⋂≠∅,{}C x x m =>,{}13A B x x ⋃=-≤≤, 所以3m <,所以实数m 的取值范围为(,3)-∞,1.(江苏省无锡市江阴四校2018-2019学年高二下学期期中)设集合M ={x |x =4n +1,n ∈Z },N ={x |x =2n +1,n ∈Z },则( ) A .M ≠⊂N B .N ≠⊂M C .M ∈N D .N ∈M 【答案】A 【分析】根据集合,M N 元素的特征确定正确选项. 【详解】对于集合N ,当n =2k 时,x =4k +1(k ∈Z );当n =2k -1时,x =4k -1(k ∈Z ).所以N ={x |x=4k +1或x =4k -1,k ∈Z },所以M ≠⊂N . 故选:A2、(重庆市涪陵高级中学2019-2020学年高一上学期)已知集合{}260A x x x =+-≤,{}212B x m x m =-≤≤+,若B A ⊆,则实数m 的取值范围( )A .(][),10,-∞-+∞B .[]()1,03,-+∞ C .()3,+∞D .[)1,3-【答案】B 【分析】求出集合A ,然后分B =∅和B ≠∅两种情况讨论,结合条件B A ⊆得出关于实数m 的不等式组,解出即可. 【详解】{}{}26032A x x x x x =+-≤=-≤≤.当B =∅时,则212m m ->+,得3m >,此时B A ⊆成立;当B ≠∅时,则212m m -≤+,得3m ≤,由B A ⊆,得21322m m -≥-⎧⎨+≤⎩,解得10m -≤≤,此时10m -≤≤.综上所述,实数m 的取值范围是[]()1,03,-+∞.故选:B.3.(广东省佛山市第三中学2018-2019学年高一上学期期中数学试题)已知集合{}21,A x y x y Z==+∈,{}21,B y y x x Z ==+∈,则A 、B 的关系是( )A .AB = B .A BC .BAD .A B =∅【答案】C 【分析】由题意得出Z A ⊆,而集合B Z ,由此可得出A 、B 的包含关系.【详解】由题意知,对任意的x ∈Z ,21y x Z =+∈,Z A ∴⊆.{}21,B y y x x Z ==+∈,∴集合B 是正奇数集,则BZ ,因此,BA .故选:C.4.(四川省成都市双流区棠湖中学2019-2020学年高一上学期期中)已知集合{|20}A x x =-<,{|}B x x a =<,若A B B ⋃=,则实数a 的取值范围是 A .(,2]-∞- B .[2,)-+∞ C .(,2]-∞ D .[2,)+∞ 【答案】D 【分析】先根据A B B ⋃=得到A B 、之间的关系,然后利用不等式确定a 的范围. 【详解】因为A B B ⋃=,所以A B ⊆,又因为{}{|20}|2A x x x x =-<=<,{|}B x x a =<,所以2a ≥,即[)2,a ∈+∞,故选:D.5.(上海市华东师范大学第二附属中学2016-2017年高一上学期)已知集合{}2263A x k x k =-+<<-,{}B x k x k =-<<,若AB ,则实数k 的取值范围为________.【答案】10,2⎛+ ⎝⎦【分析】由题意知B ≠∅,可得出0k >,分A =∅和A ≠∅,结合条件A B ,列出关于实数k 的不等式组,解出即可. 【详解】AB ,B ∴≠∅,则k k -<,解得0k >.当A =∅时,2326k k -≤-+,即2290k k +-≤,解得11k -≤≤-+,此时01k <≤;当A ≠∅时,2326k k ->-+,即2290k k +->,解得1k <-或1k >-此时1k >.AB ,则2263k k k k -+≥-⎧⎨-≤⎩,即2630k k k ≤⎧⎨--≤⎩,解得1122k +≤≤,1k <≤经检验,当12k +=时,A B ≠.综上所述,实数k 的取值范围是10,2⎛ ⎝⎦.故答案为:⎛ ⎝⎦.6.(重庆市第八中学2018-2019学年度高一上学期期中考试)已知集合A={x|x 2-(a -1)x -a<0,a∈R},集合B={x|2x 12x+-<0}.(1)当a=3时,求A∩B ;(2)若A∈B=R ,求实数a 的取值范围.【答案】(1)A ∩B ={x |-1<x 12-<或2<x <3};(2)()2,+∞.【分析】(1)结合不等式的解法,求出集合的等价条件,结合集合交集的定义进行求解即可.(2)结合A∈B=R ,建立不等式关系进行求解即可. 【详解】 解:(1)当a =3时,A ={x |x 2-2x -3<0}={x |-1<x <3}, B ={x |212x x+-<0}={x |x >2或x <-12}. 则A ∩B ={x |-1<x 12-<或2<x <3}.(2)A ={x |x 2-(a -1)x -a <0}={x |(x +1)(x -a )<0},B ={x |x >2或x <-12}. 若A ∈B =R ,则2a >,即实数a 的取值范围是()2,+∞.7.(北京市第十三中学2019-2020学年高一上学期期中)已知函数()f x 的定义城为A ,集合{}11B x a x a =-<<+(1)求集合A ;(2)若全集{}5U x x =≤,2a =,求u A B ;(3)若x B ∈是x A ∈的充分条件,求a 的取值范围. 【答案】(1)|34x xA;(2){}|3134UAB x x x =-<≤-≤≤或;(3)|3a a .11 【分析】(1)分母不能为0,偶次方根式的被开方数不能负值.(2)一个集合的补集是在全集而不在这个集合中的元素组成的集合,两个集合的交集是两个集合的公共元素组成的集合;(3)依题意得B 是A 的子集,即集合B 的元素都在集合A 中,由此确定a 的范围.【详解】解: (1)要使函数()f x 有意义,则4030x x -≥⎧⎨+>⎩,即34x 所以函数的定义域为|34x x .所以集合|34x x A(2)因为全集{}5U x x =≤,2a =, ,{}{}1113B x a x a x x ∴=-<<+=-<<{}|135U B x x x ∴=≤-≤≤或,{}|3134U A B x x x =-<≤-≤≤或;(3)由(1)得|34x x A ,若x B ∈是x A ∈的充分条件,即B A ⊆,①当B =∅时, B A ⊆,即11,a a -≥+0a ∴≤②当B ≠∅时, B A ⊆,11013403143a a a a a a a a -<+>⎧⎧⎪⎪-≥-⇒≤⇒<≤⎨⎨⎪⎪+≤≤⎩⎩, 综上所述: a 的取值范围为{}|3a a ≤.8.(安徽省合肥市第六中学2019-2020学年高一上学期期中)已知集合{}2320,,A x ax x x R a R =-+=∈∈.(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并求集合A ;(3)若A 中至多有一个元素,求a 的取值范围【答案】(1)9,8⎛⎫+∞ ⎪⎝⎭;(2)当0a =时,23A ⎧⎫=⎨⎬⎩⎭;当98a =时,43A ⎧⎫=⎨⎬⎩⎭;(3){}90,8⎡⎫⋃+∞⎪⎢⎣⎭. 【分析】(1)方程ax 2﹣3x +2=0无解,则0a ≠,根据判别式即可求解;(2)分a =0和a ≠0讨论即可;(3)综合(1)(2)即可得出结论.【详解】(1)若A 是空集,则方程ax 2﹣3x +2=0无解此时0,a ≠ ∆=9-8a <0即a 98> 所以a 的取值范围为9,8⎛⎫+∞ ⎪⎝⎭(2)若A 中只有一个元素则方程ax 2﹣3x +2=0有且只有一个实根当a =0时方程为一元一次方程,满足条件当a ≠0,此时∆=9﹣8a =0,解得:a 98= ∈a =0或a 98= 当0a =时,23A ⎧⎫=⎨⎬⎩⎭;当98a =时,43A ⎧⎫=⎨⎬⎩⎭(3)若A 中至多只有一个元素,则A 为空集,或有且只有一个元素由(1),(2)得满足条件的a 的取值范围是{}90,8⎡⎫⋃+∞⎪⎢⎣⎭.。
2023-2024学年河南省新乡市高一上册第一次月考数学试题一、单选题1.下列函数中在定义域上既是奇函数又是增函数的为()A .y =x +1B .y =-x 2C .y =x 3D .1y x=-【正确答案】C【分析】依据奇偶性和单调性依次判断每个选项即可.【详解】y =x +1是非奇非偶函数,y =-x 2是偶函数,y =x 3由幂函数的性质,是定义在R 上的奇函数,且为单调递增,1y x=-在在定义域为(,0)(0,)-∞+∞ ,不是定义域上的单调增函数,故选:C此题考查函数奇偶性单调性的判断,要求对奇偶性和单调性的判断方式熟练掌握,是简单题目.2.已知函数()()()2212(3)x x f x x f x ⎧≥+⎪=⎨<+⎪⎩,则()()13f f -=()A .7B .12C .18D .27【正确答案】A【分析】先求出f (1)=f (4)=42+1=17,f (3)=32+1=10,由此能求出f (1)﹣f (3)的值.【详解】∵函数f (x )()()()21232x x f x x ⎧+≥⎪=⎨+⎪⎩<,∴f (1)=f (4)=42+1=17,f (3)=32+1=10,∴f (1)﹣f (3)=17﹣10=7.故选A .本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.3.已知函数()21,0,21,0,x x f x x x ⎧-≤=⎨+>⎩已知()3f a =,则实数a 的值为A .2-或1B .2-或2C .1D .2-或2或1【正确答案】A【分析】可分别讨论当0x ≤时,213x -=,解出满足条件的x 的值.当0x >时,213x +=,解出满足条件的x 的值.【详解】当0x ≤时,213x -=,即2x =-;当0x >时,213x +=,即1x =;故选A此题考查分段函数值求参数,分别求出每个区间满足条件的x 范围即可,属于简单题目.4.下列各项中,()f x 与()g x 表示同一函数的是()A .()f x x =,()g x =B .()f x x =,()2g x =C .()f x x =,()2x g x x=D .()1f x x =-,()()()1111x x g x x x ⎧-≥⎪=⎨-<⎪⎩【正确答案】D【分析】根据函数的定义域与解析式逐项判断即可.【详解】对于A ,()g x x =,与()f x 的解析式不同,故A 错误;对于B ,()2g x =的定义域为{}0x x ≥,()f x 的定义域为R ,故B 错误;对于C ,()2x g x x=的定义域为{}0x x ≠,()f x 的定义域为R ,故C 错误;对于D ,()()()11111x x f x x x x ⎧-≥⎪=-=⎨-<⎪⎩,且()f x 与()g x 的定义域都为R ,故()f x 与()g x 表示同一函数,故D 正确.故选:D.5.设甲、乙两地的距离为a (a >0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y 和其所用的时间x 的函数图象为()A .B .C.D.【正确答案】D【详解】试题分析:根据题意,甲、乙两地的距离为a (a >0),小王骑自行车以匀速从甲地到乙地用了20min ,在乙地休息10min 后,他又以匀速从乙地返回到甲地用了30min ,那么可知先是匀速运动,图像为直线,然后再休息,路程不变,那么可知时间持续10min ,那么最后还是同样的匀速运动,直线的斜率不变可知选D.函数图像点评:主要是考查了路程与时间的函数图像的运用,属于基础题.6.已知函数()f x 为(1,1)-上的奇函数且单调递增,若(21)(1)0f x f x -+-+>,则x 的值范围是()A .(1,1)-B .(0,1)C .[1,)+∞D .[1,)-+∞【正确答案】B根据函数定义域以及函数单调性奇偶性,求解不等式即可.【详解】由题意,()f x 为(1,1)-上的奇函数且在(1,1)-单调递增,故(21)(1)0(21)(1)f x f x f x f x -+-+>⇔->-,1211,111,211,x x x x -<-<⎧⎪∴-<-<⎨⎪->-⎩解得01x <<.故选:B.本题考查利用函数奇偶性和单调性求解不等式,属基础题.7.不等式(4)3x x -<的解集为()A .{|1x x <或3}x >B .{|0x x <或4}x >C .{|13}x x <<D .{|04}x x <<【正确答案】A【分析】将不等式化为(1)(3)0x x -->,可解得结果.【详解】不等式(4)3x x -<化简为:2430x x -+>,所以(1)(3)0x x -->解得:1x <或3x >.故选:A.本题考查了一元二次不等式的解法,属于基础题.8.若0a b >>,下列不等式成立的是A .1b a<B .2a ab <C .22a b <D .11a b>【正确答案】A【详解】由不等式的性质,若0a b >>,则:1ba<,2a ab >,22a b >,11a b<.本题选择A 选项.9.已知0,0x y >>,若3xy =,则x y +的最小值为()A .3B .2C .D .1【正确答案】C【分析】直接利用基本不等式求最小值.【详解】由于0,0x y >>,3xy =,所以x y +≥=x y ==立.所以x y +的最小值为故选:C .本题考查用基本不等式求最值,基本不等式求最值时的三个条件:一正二定三相等,务必满足.10.关于x 的不等式()()21100ax a x a -++><的解集为()A .11x x a ⎧⎫<<⎨⎬⎩⎭B .1x x a ⎧>⎨⎩或}1x <C .1x x a ⎧<⎨⎩或}1x >D .11x x a ⎧⎫<<⎨⎬⎩⎭【正确答案】A根据二次不等式的求解方法求解即可.【详解】不等式()()21100ax a x a -++><可化为()()110ax x -->,则11x a<<.故选:A.本题考查含参一元二次不等式的解法,较简单.11.若不等式210x tx -+<对一切()1,2x ∈恒成立,则实数t 的取值范围为()A .2t <B .52t >C .1t ≥D .52t ≥【正确答案】D首先分离参数可得1t x x >+,然后结合对勾函数的性质求得152x x +<,从而可确定t 的取值范围.【详解】因为不等式210x tx -+<对一切()1,2x ∈恒成立,所以211x t x x x+>=+在区间(1,2)上恒成立,由对勾函数的性质可知函数1y x x=+在区间(1,2)上单调递增,且当2x =时,15222y =+=,所以152x x +<故实数t 的取值范围是52t .故选:D .方法点睛:一元二次不等式恒成立问题主要方法:(1)若实数集上恒成立,考虑判别式的符号即可;(2)若在给定区间上恒成立,则考虑运用“分离参数法”转化为求最值问题.12.若,,a b c R ∈且a b >,则下列不等式中一定成立的是()A .ac bc >B .2()0a b c ->C .11a b<D .22a b-<-【正确答案】D【分析】根据不等式的性质即可判断.【详解】对于A ,若0c ≤,则不等式不成立;对于B ,若0c =,则不等式不成立;对于C ,若,a b 均为负值,则不等式不成立;对于D ,不等号的两边同乘负值,不等号的方向改变,故正确;故选:D本题主要考查不等式的性质,需熟练掌握性质,属于基础题.13.设集合{1,2,4}A =,{1,2,3}B =,则A B ⋃=A .{3,4}B .{1,2}C .{2,3,4}D .{1,2,3,4}【正确答案】D 由并集的计算求解即可【详解】由题{}1,2,3,4A B ⋃=故选D本题考查集合的简单运算,并集的定义,是基础题14.已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B ⋃=ð()A .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}【正确答案】A【分析】首先进行并集运算,然后计算补集即可.【详解】由题意可得:{}1,0,1,2A B ⋃=-,则(){}U 2,3A B =- ð.故选:A.本题主要考查并集、补集的定义与应用,属于基础题.15.命题“x ∀∈R ,0ax b +≤”的否定是()A .x ∃∈R ,0ax b +≤B .x ∃∈R ,0ax b +>C .x ∀∈R ,0ax b +≥D .x ∀∈R ,0ax b +>【正确答案】B【分析】根据全称量词的命题为存在量词命题直接写出即可.【详解】全称量词的命题为存在量词命题,所以命题“x ∀∈R ,0ax b +≤”的否定是“x ∃∈R ,0ax b +>”.故选:B.16.已知集合是M {x |x N}=∈,则()A .0M ∈B .πM∈C MD .1M∉【正确答案】A【分析】根据自然数的定义,得到结果.【详解】集合{}0,1,2,3,M =⋅⋅⋅0M∴∈本题正确选项:A本题考查自然数的定义、元素与集合的关系,属于基础题.17.已知集合{}1,2,4A =,集合(),{|},,B x y x A y A x y =∈∈>,则集合B 中元素的个数是()A .6B .5C .4D .3【分析】根据题意求出()()(){}2,1,4,1,4,2B =,即可求出结果.【详解】集合{}1,2,4A =,集合(),{|},,B x y x A y A x y =∈∈>,∴()()(){}2,1,4,1,4,2B =,∴集合B 中元素的个数是3个.故选:D.18.已知集合{}12A x x =≤≤,集合{}B x x a =≥.若A B B ⋃=,则实数a 的取值范围是()A .1a <B .1a ≤C .2a >D .2a ≥【正确答案】B【分析】A B B ⋃=转化为A B ⊆,从而可求实数a 的取值范围.【详解】因为A B B ⋃=,所以A B ⊆.因为{}12A x x =≤≤,{}B x x a =≥,所以1a ≤.故选:B.19.已知集合{}2210A x ax x =++=,若集合A 为单元素集,则a 的取值为()A .1B .1-C .0或1D .1-或0或1【正确答案】C【分析】根据集合A 为单元素集,可得方程2210ax x ++=只有一个实根,对a 分类讨论即可求解.【详解】若集合A 为单元素集,则方程2210ax x ++=只有一个实根.当0a =,可得12x =-,满足题意;当0a ≠时,440a ∆=-=,解得1a =.故a 的取值是0或1.故选:C.20.已知函数()532f x ax bx =++,若()27f =,则()2f -=()A .-7B .-3C .3D .7【分析】利用奇函数的性质即得.【详解】设()()532g x f x ax bx =-=+,则()()53g x ax bx g x -=--=-,即()()22f x f x -=--+,故()()2243f f -=-+=-.故选:B二、解答题21.已知集合{}02A x x =<<,{}1B x x a =<<-(1)若3a =-,求()R A B ⋃ð;(2)若A B B = ,求a 的取值范围.【正确答案】(1){2x x <或3x ≥};(2)[)2-+∞,.(1)3a =-时,先计算B R ð,再进行并集运算即可;(2)先利用交集结果判断B A ⊆,再讨论B 是否空集使其满足子集关系,列式计算即得结果.【详解】(1)因为3a =-,所以{}13B x x =<<,=B R ð{1x x ≤或3x ≥},故()=⋃R A B ð{2x x <或3x ≥};(2)因为A B B = ,所以B A ⊆.若B =∅,则1a -≤,解得1a ≥-;若B ≠∅,则12a a ->⎧⎨-≤⎩,解得21a -≤<-.综上所述,a 的取值范围为[)2-+∞,.易错点睛:已知B A ⊆求参数范围时,需讨论集合B 是否是空集,因为空集是任意集合的子集,直接满足B A ⊆.22.已知0a >,0b >且2a b +=.(1)求ab 的最大值;(2)求28a b+的最小值.【正确答案】(1)1;(2)9.(1)利用基本不等式求得ab 的最大值.(2)利用基本不等式求得28a b+的最小值.【详解】(1)依题意222122a b ab +⎛⎫⎛⎫≤== ⎪ ⎪⎝⎭⎝⎭,当且仅当1a b ==时等号成立,所以ab 的最大值为1.(2)()281281281022b a a b a b a b a b ⎛⎫⎛⎫+=⋅+⋅+=++ ⎪ ⎪⎝⎭⎝⎭()1110108922⎛≥+=+= ⎝.当且仅当2824,,33b a a b a b ===时等号成立,所以28a b+的最小值为9.本小题主要考查基本不等式求最值,属于基础题.23.已知()221xf x x =+.(1)判断()f x 在[-1,1]的单调性,并用定义加以证明;(2)求函数()f x 在[-1,1]的最值.【正确答案】(1)增函数,证明见解析;(2)最大值()11f =,最小值()11f -=-.【分析】(1)利用定义法证明函数的单调性,按照设元、作差、变形、判断符号、下结论的步骤完成即可;(2)由(1)根据函数的单调性即可解答.【详解】解:(1)函数()f x 在[]1,1-上单调递增;证明:设任意的[]12,1,1x x ∈-且12x x <,()()()()()()2212211212222212122121221111x x x x x x f x f x x x x x +-+-=-++++()()()()122122122111x x x x xx --=++[]12,1,1x x ∈- 且12x x <,1211x x ∴-≤⋅<,210x x ->()()120f x f x ∴-<故函数()f x 在[]1,1-上单调递增;(2)由(1)知()f x 在[]1,1-上单调递增;所以()()2max 211111f x f ⨯===+()()()()2min 211111f x f ⨯-=-+-==-本题考查函数的单调性的证明,函数的最值,属于基础题.24.已知()f x 是定义在R 上的偶函数,且当0x ≥时,()223f x x x =+-.(1)求()f x 的解析式;(2)若()()121f m f m +<-,求实数m 的取值范围.【正确答案】(1)2223,0()23,0x x x f x x x x ⎧+-≥=⎨--<⎩;(2){0mm <∣或2}m >.【分析】(1)根据偶函数的性质进行求解即可;(2)根据偶函数的性质,结合二次函数()223f x x x =+-在0x ≥时的单调性进行求解即可.【详解】(1)当0x <时,()22()()2()323f x f x x x x x =-=-+⋅--=--,所以2223,0()23,0x x x f x x x x ⎧+-≥=⎨--<⎩;(2)当0x ≥时,()2223(1)4f x x x x =+-=+-,因此当0x ≥时,该函数单调递增,因为()f x 是定义在R 上的偶函数,且当0x ≥时,该函数单调递增,所以由()()()()121121121f m f m f m f m m m +<-⇒+<-⇒+<-,因此222(1)(21)202m m m m m +<-⇒->⇒>或0m <,所以实数m 的取值范围是{0m m <∣或2}m >.。
2022-2023学年河南省新乡市某校初一(上)期中考试数学试卷试卷考试总分:95 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 的相反数是( )A.B.C.D.2. 在有理数,,,中,最小的数是( )A.B.C.D.3. 截止到年底,过去五年我国农村贫困人口脱贫人数约为万,脱贫攻坚取得段性胜利,这里“万”用科学记数法表示为( )A.B.C.D.4. 年月抗击“新冠肺炎”居家学习期间,小华计划每天背诵个汉语成语,将超过的个数记为正数,不足的个数记为负数,某一周连续天的背诵记录如下:,,,,,则这天他共背诵汉语成语的个数是( )A.个B.个C.个D.个5. 在,,,,,,中,负分数有( )A.个B.个C.个D.个6. 下列单项式中,与是同类项的是( )−2−2−12212−40−1 2.5−4−12.52018700070007×1037×1087×1070.7×1082020365+40+5−3+253836343012−2+3.50−0.75−131234a 2b 36. 下列单项式中,与是同类项的是( )A.B.C.D.7. 有理数,在数轴上对应点的位置如图所示,下列说法中正确的是 A.B.C.D.8. 下列各式中,正确的是 A.B.C.D.9. 近似数所表示的准确数的取值范围是 A.B.C.D.10. 某公司去年月份的利润为万元,月份比月份减少,月份比月份增加了,则该公司月份的利润为( )A.万元B.万元C.万元D.万元二、 填空题 (本题共计 1 小题 ,共计5分 )11. (5分) 下面这列数是按一定的规律排列的:,,,,.则这列数的第个数________.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )12. 先画出数轴,然后在数轴上表示出下列各数,然后用“”连接起来.,,,,,a 2b 32ab 33ba 2−22a 2b 35aba b ()a >ba >1ba <−b|a |<|b |()7ab −3ab =42a +3b =5aby−2y =−yx 2x 2x 2+=a 3a 2a 52.70a ()2.695≤a <2.7052.65≤a <2.752.695<a ≤2.7052.65<a ≤2.7510a 11105%12119%12(a −5%)(a +9%)(a −5%+9%)a(1−5%+9%)a(1−5%)(1+9%)=a 112=−a 214=a 318=−a 4116⋯n =a n <−2−1−3120134.13. 把下列各数分别填入相应的集合内.,,,,,,,, .正数集合:{________…};负分数集合:{________…};非正整数集合:{________…}.14. 计算:(1)15. 先化简,再求值:,其中,. 16. 某食品厂在产品中抽出袋样品,检查其重量是否达标,超过标准的部分用正数表示,不足的部分用负数表示:这批样品的平均重量比标准重量多还是少,多或少几克?若每袋标准重量为克,则这批样品的总重量是多少?17. 计算:(1)-;(2);(3);(4);(5);(6).18. 已知多项式和的差的值与字母的取值无关,求代数式的值. 19. 小张老师在数学课上拿着,,三张硬纸片,上面分别标着,,三个数字.已知,,且三个数字各不相同.若小刚翻开纸片,发现该数字为,求代数式的值.当时,求这三个数字组成的最大三位数.−1237.8−0.012232019−150−213(1)(2)(3)−÷×5−(−102215)2(2)(−1+(−5)×[(−2+2]−(−4÷(−))2008)3)2122−(4−3xy+)+2(−3xy+2)x 2x 2y 2x 2y 2x =13y =−220(1)(2)600(+9)−(+11)+(−5)−+(1−0.5)÷4×[1−(−3]12)3+ax−y+b x 2b −3x+6y−3x 2x −a 2b 2A B C a b c abc =0a +b +c =3(1)B 0−1−(2−4ac)+a 212c 2(2)a −c =1参考答案与试题解析2022-2023学年河南省新乡市某校初一(上)期中考试数学试卷试卷一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】C【考点】相反数【解析】本题考查相反数的定义.【解答】解:∵,∴的相反数是.故选.2.【答案】A【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答3.【答案】C【考点】科学记数法--表示较大的数【解析】此题暂无解析【解答】解:科学记数法是一种记数的方法:把一个数表示成与的次幂相乘的形式(为整数);则万.故选.−2+2=0−22C a 10n 1≤|a|<10,n 7000=7000×=7.0×104107C【考点】正数和负数的识别有理数的混合运算【解析】根据总成语数=天数据记录结果的和,即可求解.【解答】解:由题意得,(个),∴这天他共背诵汉语成语个.故选.5.【答案】B【考点】有理数的概念及分类【解析】据分母不为的数是分数,可得分数,再根据小于的分数是负分数,可得负分数.【解答】在,,,,,,中,负分数有,,共有个,6.【答案】C【考点】同类项的概念单项式【解析】依据同类项的定义:所含字母相同,相同字母的次数相同,据此判断即可.【解答】、字母的次数不相同,不是同类项,故本选项不符合题意;、字母的次数不相同,不是同类项,故本选项不符合题意;、有相同的字母,相同字母的指数相等,是同类项,故本选项符合题意;、相同字母的次数不相同,不是同类项,故本选项不符合题意;7.【答案】5+6×5+4+0+5+(−3)+2+5×6=38538A 1012−2+3.50−0.75−13−0.7−132A a B b C D【解析】根据有理数、、在数轴上的位置求出,,从而判断出选项的对错.【解答】解:由题图可知,,,故,,,.故选.8.【答案】C【考点】合并同类项【解析】依据同类项的定义和合并同类项法则判断即可.【解答】解:、,故错误;、不是同类项,不能合并,故错误;、正确;、不是同类项,不能合并,故错误.故选.9.【答案】A【考点】近似数和有效数字【解析】根据近似数的精确度进行求解即可.【解答】解:近似数所表示的准确值的取值范围是.故选.10.【答案】D【考点】列代数式a b −2<a <−13<b <4−2<a <−13<b <4a <b a <1ba >−b |a|<|b|D A 7ab −3ab =4ab B C D C 2.70a 2.695≤a <2.705A【解析】此题暂无解析【解答】解:由题意可得月份利润为万元,则月份利润为万元.故选.二、 填空题 (本题共计 1 小题 ,共计5分 )11.【答案】【考点】规律型:数字的变化类【解析】观察这列数找到,这列数奇数个时是正数,偶数个时是负数,分子都是1,分母按2的次方来排列来求解.【解答】解:,,,,......从中可以看出,这列数奇数个时是正数,偶数个时是负数,分子都是,分母按的次方来排列,所以第个数是.故答案为:.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )12.【答案】解:如图所示:数轴上的点表示的数右边的总比左边的大,可得:.【考点】有理数大小比较数轴【解析】此题暂无解析【解答】解:如图所示:11a(1−5%)12a(1−5%)(1+9%)D (−1)n+112n∵=a 112=−a 214=a 318=−a 411612n =(−1a n )n+112n (−1)n+112n −3<−2<−1<0<<41213数轴上的点表示的数右边的总比左边的大,可得:.13.【答案】,,,,,,【考点】有理数的概念及分类【解析】有理数包括整数和分数,整数包括正整数、、负整数,分数包括正分数和负分数,根据以上内容判断即可.有理数包括整数和分数,整数包括正整数、、负整数,分数包括正分数和负分数,根据以上内容判断即可.有理数包括整数和分数,整数包括正整数、、负整数,分数包括正分数和负分数,根据以上内容判断即可.【解答】解:正数集合:,故答案为:,,,.负分数集合:.故答案为:,,.非正整数集合:.故答案为:,.14.【答案】解:(1)原式;(2)原式.【考点】有理数的混合运算【解析】(1)先算乘方,再算乘除,最后算减法;(2)先算乘方,再算括号里面的运算,再算乘除,最后算加减.【解答】解:(1)原式;(2)原式−3<−2<−1<0<<4121337.82232019−12−0.01−213−150000(1){3,7.8,2,2019}2337.82232019(2){−,−0.01,−2}1213−12−0.01−213(3){−15,0}−150=−4×5×5−100=−100−100=−200=1+(−5)×(−8+2)−16×(−2)=1+(−5)×(−6)+32=1+30+32=63=−4×5×5−100=−100−100=−200=1+(−5)×(−8+2)−16×(−2)=1+(−5)×(−6)+32.15.【答案】解:原式,当,时,原式.【考点】整式的加减——化简求值【解析】原式去括号合并得到最简结果,把与的值代入计算即可求出值.【解答】解:原式,当,时,原式.16.【答案】解:由题意知:,,∴这批样品的平均重量比标准重量多克.,∴这批样品的总重量是克.【考点】正数和负数的识别有理数的混合运算【解析】此题暂无解析【解答】解:由题意知:,,∴这批样品的平均重量比标准重量多克.,∴这批样品的总重量是克.17.【答案】-=.==1+30+32=63=2−4+3xy−+2−6xy+4x 2x 2y 2x 2y 2=−3xy+3y 2x =13y =−2=2+12=14x y =2−4+3xy−+2−6xy+4x 2x 2y 2x 2y 2=−3xy+3y 2x =13y =−2=2+12=14(1)(−4)×2+(−2)×5+(−1)×1+0×6+3×3+4×2+7×1=5(g)=0.25(g)5200.25(2)(600+0.25)×20=12005(g)12005(1)(−4)×2+(−2)×5+(−1)×1+0×6+3×3+4×2+7×1=5(g)=0.25(g)5200.25(2)(600+0.25)×20=12005(g)12005(+9)−(+11)+(−5)−2−5=.=.=)=-.=))==.===.【考点】有理数的混合运算【解析】(1)根据有理数加法的运算方法,求出算式的值是多少即可.(2)从左向右依次计算,求出算式的值是多少即可.(3)观察算式的特征,只有乘除法,而且最后乘,所以算式的结果是.(4)从左向右依次计算,求出算式的值是多少即可.(5)首先计算乘方和小括号里面的运算,然后计算乘法、除法,最后计算减法,求出算式的值是多少即可.(6)首先计算乘方和括号里面的运算,然后计算括号外面的乘法、除法,最后计算加法,求出算式的值是多少即可.【解答】-=.==.=.=)=-.=))==.===.18.【答案】解:−70×(−16−12×(−×(−16−610−+(1−0.5)÷4×[1−(−3]12)3−1+÷4×28−1+3.52.500(+9)−(+11)+(−5)−2−5−70×(−16−12×(−×(−16−610−+(1−0.5)÷4×[1−(−3]12)3−1+÷4×28−1+3.52.5+ax−y+b −(b −3x+6y−3)x 2x 2=+ax−y+b −b +3x−6y+322.∵的值与字母的取值无关,∴,,解得,,∴.【考点】整式的加减列代数式求值【解析】无【解答】解:.∵的值与字母的取值无关,∴,,解得,,∴.19.【答案】解:纸片表示的数是,,即,,将代入,得:原式.,且三个数字各不相同,三个数必有一个为,当时,,,(不合题意,舍去);当时,,,当时,,,,.综上所述,它们组成的最大三位数是.【考点】列代数式求值列代数式求值方法的优势【解析】【解答】解:纸片表示的数是,=+ax−y+b −b +3x−6y+3x 2x 2=(1−b)+(a +3)x−7y+b +3x 2(1−b)+(a +3)x−7y+b +3x 2x 1−b =0a +3=0a =−3b =1−=−=9−1=8a 2b 2(−3)212+ax−y+b −(b −3x+6y−3)x 2x 2=+ax−y+b −b +3x−6y+3x 2x 2=(1−b)+(a +3)x−7y+b +3x 2(1−b)+(a +3)x−7y+b +3x 2x 1−b =0a +3=0a =−3b =1−=−=9−1=8a 2b 2(−3)212(1)∵B b 0∴a +0+c =3a +c =3∴−1−(2−4ac)+a 212c 2=−1−1+2ac +a 2c 2=+2ac +−2a 2c 2=(a +c −2)2a +c =3=−2=732(2)∵abc =0∴0a =0∵a +b +c =3a −c =1∴c =−1b =0∵a +b +c =3a −c =1∴{a +c =3,a −c =1,∴{a =2,c =1;c =0∵a +b +c =3a −c =1∴a =1b =2210(1)∵B b 0,即,,将代入,得:原式.,且三个数字各不相同,三个数必有一个为,当时,,,(不合题意,舍去);当时,,,当时,,,,.综上所述,它们组成的最大三位数是.∴a +0+c =3a +c =3∴−1−(2−4ac)+a 212c 2=−1−1+2ac +a 2c 2=+2ac +−2a 2c 2=(a +c −2)2a +c =3=−2=732(2)∵abc =0∴0a =0∵a +b +c =3a −c =1∴c =−1b =0∵a +b +c =3a −c =1∴{a +c =3,a −c =1,∴{a =2,c =1;c =0∵a +b +c =3a −c =1∴a =1b =2210。
高一数学试题(答案在最后)考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:人教A 版必修第一册第一章~第五章第3节.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.与2024-︒角终边相同的角是()A.24︒B.113︒C.136︒D.224︒2.已知集合{34},{20}A x x B x x =∈-<≤=->N∣∣,则()B A ⋂=R ð()A.{}1,2 B.{}2,1,0-- C.{}0,1,2 D.{}2,1,0,1,2--3.已知函数()2,0πsin ,03x x f x x x ⎧>⎪=⎨⎛⎫≤ ⎪⎪⎝⎭⎩则(1)f -=()A.2B.12-C.12D.24.函数3()ln(1)f x x x=--的零点所在区间为()A.(2,3)B.(3,4)C.(4,5)D.(5,6)5.“lg 0x >”的一个必要条件是()A.22x -<<B.42x -<≤-C.2x >- D.||2x >6.设13π21log 3,2,log 3a b c ===,则()A.b a c >>B.a b c >>C.c a b>> D.a c b>>7.已知1m >,点()()()1231,,,,1,m y m y m y -+都在二次函数22y x x =-的图象上,则()A.123y y y <<B.321y y y <<C.132y y y =< D.213y y y <=8.若函数()222,143,1x m x f x x mx m x ⎧-<=⎨-+≥⎩有3个零点,则实数m 的取值范围是()A .1,13⎡⎫⎪⎢⎣⎭ B.()[),01,-∞⋃+∞C.[)1,2 D.[)1,12,3⎡⎫+∞⎪⎢⎣⎭U 二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知角α和β的终边关于x 轴对称,则()A.sin sin αβ=-B.tan tan αβ=C .πsin cos 2αβ⎛⎫+= ⎪⎝⎭D.cos(π)cos αβ-=10.下列说法正确的是()A.若0x >,则1x x+有最小值2B.若x ∈R ,则241xx +有最大值2C.若x y >,则33x y > D.若0x y <<,则11x y>11.关于幂函数()()1mf x m x -=-,下列结论正确的是()A.()f x 的图象经过原点B.()f x 为偶函数C.()f x 的值域为()0,∞+ D.()f x 在区间()0,∞+上单调递增12.设函数()f x 的定义域为R ,对于任意给定的正数p ,定义函数()()()(),,,,p f x f x p f x p f x p ⎧≤⎪=⎨>⎪⎩则称()p f x 为()f x 的“p 界函数”.若函数()22f x x x =+,则()A.()323f = B.()3f x 的最小值为1-C.()3f x 在[]1,1-上单调递减D.()31f x -为偶函数三、填空题:本题共4小题,每小题5分,共20分.13.已知某扇形所在圆的半径为3,扇形的面积为3π,则该扇形的圆心角(正角)的弧度数为______.14.已知集合{}{}21,xA xB x x a =<=≥∣∣,若,x A x B ∃∈∈,则实数a 的取值范围是__________.15.函数()4323x f x x -=+的单调递增区间为__________.16.已知函数3322y x =+与函数1122x x y +--=-的图象交于,,M N P 三点,则此三点中最远的两点间的距离为__________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知角α的终边经过点()sin 30,1P ︒.(1)求sin α,cos α的值;(2)求sin(π)cos 5πcos 2ααα++⎛⎫+ ⎪⎝⎭的值.18.选用恰当的证明方法,证明下列不等式.(1)已知,x y 均为正数,且1x y +=,求证:4925x y+≥;(2)已知0a b >>,求证:3322a b ab a b+>+.19.已知函数21()21x x f x -=+.(1)求证:函数()f x 是定义域为R 的奇函数;(2)判断函数()f x 的单调性,并用单调性的定义证明.20.已知f x b =++(a ,b 均为常数),且(0)1,(1)2f f ==-.(1)求函数()f x 的解析式;(2)若对(1,2)x ∀∈,不等式3log [()]2f x m +≤成立,求实数m 的取值范围.21.已知函数()f x 和()g x 的图象关于原点对称,且()22f x x x =-.(1)求函数()g x 的解析式;(2)若函数()()()1h x g x f x λ=-+在[]1,1-上单调递减,求实数λ的取值范围.22.两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧AB上选择一点建造垃圾处理厂,其对城市的影响度与所选地点到城市的距离有关,对城A和城B的总影响度为对城A与对城B的影响度之x,建在C处的垃圾处理厂对城A和城B的总影响度为y.统计调查表明垃圾和.记C点到城A的距离为km处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为9.(1)若垃圾处理厂建在圆弧AB的中点处,求垃圾处理厂对城A和城B的总影响度;(2)求垃圾处理厂对城A和城B的总影响度的最小值.高一数学试题考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:人教A 版必修第一册第一章~第五章第3节.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.与2024-︒角终边相同的角是()A.24︒B.113︒C.136︒D.224︒【答案】C 【解析】【分析】将2024-︒改写为20241363606︒-=-︒⨯︒,根据终边相同角的定义即可求解.【详解】因为20241363606︒-=-︒⨯︒,所以2024-︒角与136︒角终边相同.故选:C2.已知集合{34},{20}A x x B x x =∈-<≤=->N∣∣,则()B A ⋂=R ð()A.{}1,2 B.{}2,1,0-- C.{}0,1,2 D.{}2,1,0,1,2--【答案】C 【解析】【分析】根据集合的补集与交集的概念计算即可.【详解】由题意可得,{0,1,2,3,4},{|2}A B x x ==>,∴{|2}B x x =≤R ð,∴(){}0,1,2B A =R ð.故选:C .3.已知函数()2,0πsin ,03x x f x x x ⎧>⎪=⎨⎛⎫≤ ⎪⎪⎝⎭⎩则(1)f -=()A.2B.12-C.12D.2【答案】A 【解析】【分析】根据分段函数的解析式,代入计算可得.【详解】由题意可得()π1sin 32f ⎛⎫-=-=- ⎪⎝⎭.故选:A4.函数3()ln(1)f x x x=--的零点所在区间为()A.(2,3) B.(3,4)C.(4,5)D.(5,6)【答案】B 【解析】【分析】分别验证每个区间端点值的正负符号,由零点存在定理可判断出结果.【详解】易知函数3()ln(1)f x x x=--在其定义域(1,)+∞上连续不断,且3(3)ln 210,(4)ln 304f f =-<=->,则函数的零点在区间(3,4)上.故选:B .5.“lg 0x >”的一个必要条件是()A.22x -<<B.42x -<≤-C.2x >-D.||2x >【答案】C 【解析】【分析】先利用对数函数单调性求得“lg 0x >”的充要条件,然后把必要条件转化为真子集关系,逐项判断即可.【详解】由lg 0x >得1x >,要成为“lg 0x >”的必要条件,则{}1x x >是其对应的集合的真子集,而22,42,2x x x -<<-≤-均不满足题意,因为{}1x x >是{}2x x >-的真子集,所以“lg 0x >”的一个必要条件是“2x >-”.故选:C6.设13π21log 3,2,log 3a b c ===,则()A.b a c >>B.a b c >>C .c a b>> D.a c b>>【答案】A 【解析】【分析】利用指数函数与对数函数的单调性与“0,1”比较即可.【详解】13π210log 31,21,log 03a b c <===< ,c a b ∴<<.故选:A .7.已知1m >,点()()()1231,,,,1,m y m y m y -+都在二次函数22y x x =-的图象上,则()A.123y y y <<B.321y y y <<C.132y y y =<D.213y y y <=【答案】D 【解析】【分析】利用二次函数的对称性和单调性求解即可.【详解】二次函数22()2(1)1f x x x x =-=--,其图象的对称轴方程为1x =,而()()112m m -++=,所以()()11f m f m -+=,即13y y =,当1x >时,()f x 是单调增函数,因为1m >,所以11m m +>>,所以()()1f m f m +>,即23y y <,综上,213y y y <=.故选:D .8.若函数()222,143,1x m x f x x mx m x ⎧-<=⎨-+≥⎩有3个零点,则实数m 的取值范围是()A.1,13⎡⎫⎪⎢⎣⎭B.()[),01,-∞⋃+∞C.[)1,2D.[)1,12,3⎡⎫+∞⎪⎢⎣⎭U 【答案】C 【解析】【分析】分析可知,函数()f x 在(),1-∞上有一个零点,在[)1,+∞上有两个零点,求出这三个零点,根据题意可得出关于实数m 的不等式组,由此可解得实数m 的取值范围.【详解】当1x <时,函数()2xf x m =-单调递增,则函数()f x 在(),1-∞上至多一个零点,当1x ≥时,函数()()()22433f x x mx m x m x m =-+=--至多两个零点,因为函数()f x 有三个零点,则函数()f x 在(),1-∞上有一个零点,在[)1,+∞上有两个零点,当1x <时,令()20xf x m =-=,可得2x m =,必有0m >,解得2log x m =,所以,2log 1m <,解得02m <<;当1x ≥时,由()()()30f x x m x m =--=,可得x m =或3x m =,所以,1313m m m m ≥⎧⎪≥⎨⎪≠⎩,解得m 1≥.综上所述,实数m 的取值范围为[)1,2.故选:C.二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知角α和β的终边关于x 轴对称,则()A.sin sin αβ=-B.tan tan αβ=C.πsin cos 2αβ⎛⎫+=⎪⎝⎭D.cos(π)cos αβ-=【答案】AC 【解析】【分析】根据题意2π,k k αβ=-+∈Z ,然后根据诱导公式逐项判断即可.【详解】因为角α和β的终边关于x 轴对称,可得2π,k k αβ=-+∈Z .对于A ,由sin sin(2π)sin k αββ=-+=-,A 正确;对于B ,由tan tan(2π)tan()tan k αβββ=-+=-=-,B 错误;对于C ,由πsin cos cos(2π)cos()cos 2k ααβββ⎛⎫+==-+=-=⎪⎝⎭,C 正确;对于D ,由cos(π)cos cos(2π)cos k ααββ-=-=--+=-,D 错误.故选:AC10.下列说法正确的是()A.若0x >,则1x x+有最小值2B.若x ∈R ,则241xx +有最大值2C.若x y >,则33x y > D.若0x y <<,则11x y>【答案】ACD 【解析】【分析】根据基本不等式和不等式的性质判断.【详解】0x >,则12x x +≥=,当且仅当1x =时等号成立,A 正确;x ∈R ,20x>.211141222x x x x =≤++,当且仅当21x =,即0x =时等号成立,因此241x x +的最大值是12,B 错;由不等式的性质知C 正确,因为0x y <<,所以0,0y x xy ->>,所以110--=>y x x y xy ,即11x y>,D 正确,故选:ACD .11.关于幂函数()()1mf x m x -=-,下列结论正确的是()A.()f x 的图象经过原点B.()f x 为偶函数C.()f x 的值域为()0,∞+D.()f x 在区间()0,∞+上单调递增【答案】BC 【解析】【分析】由题意11m -=,得2()f x x -=,利用幂函数的性质判断各选项即可.【详解】由题意,11m -=,所以2m =,即2().f x x -=对于A ,()221f x xx-==的定义域为(,0)(0,)-∞+∞ ,故()f x 的图象不经过原点,A 错误;对于B ,因为221()f x xx-==的定义域为(,0)(0,)-∞+∞ ,2211()()()f x f x x x -===-,故()f x 为偶函数,B 正确;对于C ,由于21()0f x x =>,故值域为(0,)+∞,C 正确;对于D ,由于20-<,故2()f x x -=在区间(0,)+∞上单调递减,D 错误.故选:BC .12.设函数()f x 的定义域为R ,对于任意给定的正数p ,定义函数()()()(),,,,p f x f x p f x p f x p ⎧≤⎪=⎨>⎪⎩则称()p f x 为()f x 的“p 界函数”.若函数()22f x x x =+,则()A.()323f = B.()3f x 的最小值为1-C.()3f x 在[]1,1-上单调递减 D.()31f x -为偶函数【答案】ABD 【解析】【分析】根据题意得出3()f x 的解析式,即可判断ABC ;求得3(1)f x -的解析式,作出函数的图象,由图象判断D .【详解】根据题意,由223x x +≤,解得31x -≤≤,232,31()3,33,1x x x f x x x ⎧+-≤≤⎪=<-⎨⎪>⎩,所以3(2)3f =,故A 正确;当31x -≤≤时,223()2(1)1f x x x x =+=+-,且3()f x 在[]1,1-上单调递增,在[]3,1--上单调递减,()()()33313,11,33f f f =-=--=,所以31()3f x -≤≤,即3()f x的值域为[]1,3-,故B正确,C错误;因为231,22(1)3,23,2x xf x xx⎧--≤≤⎪-=<-⎨⎪>⎩,则3(1)f x-的图象如图所示,由图可知()31f x-的图象关y轴对称,所以函数()31f x-为偶函数,故D正确.故选:ABD.三、填空题:本题共4小题,每小题5分,共20分.13.已知某扇形所在圆的半径为3,扇形的面积为3π,则该扇形的圆心角(正角)的弧度数为______.【答案】2π3【解析】【分析】先根据扇形面积求得弧长,再利用弧长公式求得圆心角.【详解】由扇形面积12S rl=,得13π2lr=,解得2πl=,所以该扇形的圆心角(正角)2π3lrα==.故选:2π314.已知集合{}{}21,xA xB x x a=<=≥∣∣,若,x A x B∃∈∈,则实数a的取值范围是__________.【答案】(,0)-∞【解析】【分析】由命题的真假得出a A∈,从而易得其范围.【详解】{|21}{|0}xA x x x=<=<,{|}B x x a=≥,因为,x A x B∃∈∈,所以a A∈,所以a的范围是(,0)-∞,故答案为:(,0)-∞.15.函数()4323x f x x -=+的单调递增区间为__________.【答案】33(,,)22-∞--+∞【解析】【分析】利用分离常数法,得9()223f x x =-+,结合x 的范围可得答案.【详解】434699()2232323x x f x x x x -+-===-+++,由230x +¹,得32x ≠-,当3(,)2x ∈-∞-时,923y x =+单调递减,()f x 单调递增;当3(,)2x ∈-+∞时,923y x =+单调递减,()f x 单调递增,所以()f x 的单调增区间为33(,),(,)22-∞--+∞.故答案为:33(,,)22-∞--+∞.16.已知函数3322y x =+与函数1122x x y +--=-的图象交于,,M N P 三点,则此三点中最远的两点间的距离为__________.【答案】【解析】【分析】由题意可得,三个交点中一个必是点()1,0-,另外两个点关于点()1,0-对称.不妨记()1,0N -,设11133(,),122M x x x +>-,由1()f x =1()g x 求得1x ,所以此三点中最远的两点间的距离为2||MN .【详解】不妨记111(1)12333()(1),()2222222x x x x y f x x x y g x +--+-+=+=-===+=-,函数32y x =与22x x y -=-是奇函数且关于坐标原点对称,易知()(),f x g x 两个函数的图象均以点(1,0)-为对称中心,所以三个交点中一个必是点()1,0-,另外两个点关于点()1,0-对称.不妨记()1,0N -,设11133(,),122M x x x +>-,所以1()f x =1()g x ,即111(1)13(1)222x x x +-+=+-,解得111x +=,10x =,则2MN =,所以此三点中最远的两点间的距离为2||MN =..四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知角α的终边经过点()sin 30,1P ︒.(1)求sin α,cos α的值;(2)求sin(π)cos 5πcos 2ααα++⎛⎫+ ⎪⎝⎭的值.【答案】(1)sin 5α=,cos 5α=(2)12【解析】【分析】(1)根据三角函数定义即可得;(2)结合诱导公式即可得.【小问1详解】由1sin 302︒=,故角α的终边经过点1,12P ⎛⎫ ⎪⎝⎭,所以25sin 5α==,12cos 5α==;【小问2详解】sin(π)cos sin cos 1555πsin 225cos 25αααααα-+++-+==-⎛⎫+ ⎪⎝⎭.18.选用恰当的证明方法,证明下列不等式.(1)已知,x y 均为正数,且1x y +=,求证:4925x y+≥;(2)已知0a b >>,求证:3322a b ab a b +>+.【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)利用1的妙用,结合基本不等式证明即可;(2)利用作差法证明即可.【小问1详解】证明:因为1x y +=,所以4949()()x y x y x y +=++49494913y x y x x y x y ⎛⎫=+++=++ ⎪⎝⎭,又因为0,0x y >>,所以490,0y x x y>>,所以4912y x x y +≥=,当且仅当49y x x y =,即23,55x y ==时取等号,所以4925x y+≥.【小问2详解】证明:33223232a b ab a b a ab b a b+--=-+-2222222()()()()()()a a b b b a a b a b a b a b =-+-=--=-+,因为0a b >>,所以20,()0a b a b +>->,所以2()()0a b a b -->,所以33220a b ab a b +-->,即3322a b ab a b +>+.19.已知函数21()21x x f x -=+.(1)求证:函数()f x 是定义域为R 的奇函数;(2)判断函数()f x 的单调性,并用单调性的定义证明.【答案】(1)证明见解析(2)函数()f x 在R 上单调递增,证明见解析【解析】【分析】(1)利用定义法证明函数为奇函数;(2)利用定义法证明函数的单调性.【小问1详解】函数21()21x x f x -=+的定义域为R ,对于x ∀∈R ,都有x -∈R ,且211221()()211221x x x x x x f x f x ------===-=-+++,所以函数()f x 是定义域为R 的奇函数.【小问2详解】函数()f x 在R 上单调递增,证明如下:对于12,x x ∀∈R ,且12x x <,()()()()()()()()()()()1221121212121212212121212222121212121212121x x x x x x x x x x x x x x f x f x -+--+----=-==++++++,因为12x x <,所以12022x x <<,则12120,10,102222x x x x -<+>+>,则()()120f x f x -<,故函数()f x 在R 上单调递增.20.已知f x b =++(a ,b 均为常数),且(0)1,(1)2f f ==-.(1)求函数()f x 的解析式;(2)若对(1,2)x ∀∈,不等式3log [()]2f x m +≤成立,求实数m 的取值范围.【答案】(1)2()41(0)f x x x x =-+≥(2)[3,11].【解析】【分析】(1)由(0)1,(1)2f f ==-,代入函数解析式求出,a b ,得函数()f x 的解析式;(2)不等式等价于0()9f x m <+≤,利用函数()f x 在定义区间内的值域,求实数m 的取值范围.【小问1详解】由f x b =++,得2f b =++,即2()(0)f x x ax b x =++≥,由(0)1,(1)2f f ==-,可得(0)1,(1)12,f b f a b ==⎧⎨=++=-⎩解得1,4.b a =⎧⎨=-⎩所以2()41(0)f x x x x =-+≥【小问2详解】由3log [()]2f x m +≤,可得0()9f x m <+≤,所以对(1,2)x ∀∈,都有0()9f x m <+≤成立.由于22()41(2)3f x x x x =-+=--,所以()f x 在(1,2)上单调递减,且(1)2,(2)3f f =-=-,因此当(1,2)x ∈时,()(3,2)f x ∈--,要使0()9f x m <+≤,则29m -≤,且30m -≥,解得311m ≤≤.故实数m 的取值范围为[3,11].21.已知函数()f x 和()g x 的图象关于原点对称,且()22f x x x =-.(1)求函数()g x 的解析式;(2)若函数()()()1h x g x f x λ=-+在[]1,1-上单调递减,求实数λ的取值范围.【答案】(1)2()2g x x x=--(2)(,0]-∞【解析】【分析】(1)设点(),x y 是()g x 图象上任意一点,则(),x y 关于原点的对称点(),x y --在函数()f x 的图象上,即可求解;(2)2()(1)2(1)1h x x x λλ=-++-+,分为1λ=-,1λ>-与1λ<-三种情况讨论,结合二次函数的性质求解即可.【小问1详解】设点(),x y 是()g x 图象上任意一点,则(),x y 关于原点的对称点(),x y --在函数()f x 的图象上,所以2()2()y x x -=---,即22y x x =--,所以2()2g x x x =--.【小问2详解】222()()()12(2)1(1)2(1)1h x g x f x x x x x x x λλλλ=-+=----+=-++-+,①当1λ=-时,()41h x x =-+在[]1,1-上单调递减,满足题意;②当1λ>-时,要使()h x 在[]1,1-上单调递减,由二次函数的性质可得111λλ-≤-+,解得10λ-<≤,所以10λ-<≤;③当1λ<-时,要使()h x 在[]1,1-上单调递减,由二次函数的性质可得111λλ-≥+,解得1λ<-,所以1λ<-.综上,实数λ的取值范围是(,0]-∞.22.两县城A 和B 相距20km ,现计划在两县城外以AB 为直径的半圆弧AB 上选择一点建造垃圾处理厂,其对城市的影响度与所选地点到城市的距离有关,对城A 和城B 的总影响度为对城A 与对城B 的影响度之和.记C 点到城A 的距离为km x ,建在C 处的垃圾处理厂对城A 和城B 的总影响度为y .统计调查表明垃圾处理厂对城A 的影响度与所选地点到城A 的距离的平方成反比,比例系数为4;对城B 的影响度与所选地点到城B 的距离的平方成反比,比例系数为9.(1)若垃圾处理厂建在圆弧AB 的中点处,求垃圾处理厂对城A 和城B 的总影响度;(2)求垃圾处理厂对城A 和城B 的总影响度的最小值.【答案】(1)0.065(2)0.0625【解析】【分析】(1)由题意得90ACB ∠=︒,由20,AB AC x ==可得22400BC x =-,从而得总影响度的解析式,即可求解;(2)可得2225(320)(400)x y x x +=-,令2320(320,720)x t =∈+,所以5230400()1040y t t=-++,利用基本不等式求解即可得出答案.【小问1详解】点C 在以AB 为直径的半圆上,所以90ACB ∠=︒,由20,AB AC x ==,可得22400BC x =-,由题意可得2249(020)400y x x x =+<<-,因为垃圾处理厂建在弧 AB 的中点处,所以490.065200400200y =+=-,故所求总影响度为0.065.【小问2详解】由(1)知222222222494(400)95(320)400(400)(400)x x x y x x x x x x ⨯-++=+==---,令2320(320,720)x t =∈+,则2320x t =-,所以255(320)(720)2304001040t t y t t t t ==-⨯---+()5,320,720230400()1040t t t=∈-++,因为2304002480960t t +≥=⨯=,当且仅当230400t t =,即480,t x ==此时5510.0625230400960104016()1040y t t =≥==-+-++,故垃圾处理厂对城A 和城B 的总影响度的最小值为0.0625.。
2019年河南省新乡市铁路高级中学分校高一数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 下列函数为奇函数的是()A.B.C.D.参考答案:D2. 设A、B、C是三角形的三个内角,下列关系恒成立的是()A.cos(A+B)=cos C B.sin(A+B)=sin CC.tan(A+B)=tan C D.sin=sin参考答案:B略3. △ABC中,,,,则的值是()A. B. C. D. 或参考答案:B【分析】根据正弦定理求解.【详解】由正弦定理得,选B.【点睛】本题考查正弦定理,考查基本分析求解能力,属基础题.4. 一个几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.参考答案:D【分析】由几何体的三视图得该几何体是一个底面半径,高的扣在平面上的半圆柱,由此能求出该几何体的体积【详解】由几何体的三视图得:该几何体是一个底面半径,高的放在平面上的半圆柱,如图,故该几何体的体积为:故选:D【点睛】本题考查几何体的体积的求法,考查几何体的三视图等基础知识,考查推理能力与计算能力,是中档题.5. 下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=2x3 B.y=|x|+1 C.y=﹣x2+4 D.y=2﹣|x|参考答案:B【考点】函数奇偶性的判断;函数奇偶性的性质.【专题】计算题;函数的性质及应用.【分析】由函数的奇偶性和单调性的定义和性质,对选项一一加以判断,即可得到既是偶函数又在(0,+∞)上单调递增的函数.【解答】解:对于A.y=2x3,由f(﹣x)=﹣2x3=﹣f(x),为奇函数,故排除A;对于B.y=|x|+1,由f(﹣x)=|﹣x|+1=f(x),为偶函数,当x>0时,y=x+1,是增函数,故B正确;对于C.y=﹣x2+4,有f(﹣x)=f(x),是偶函数,但x>0时为减函数,故排除C;对于D.y=2﹣|x|,有f(﹣x)=f(x),是偶函数,当x>0时,y=2﹣x,为减函数,故排除D.故选B.【点评】本题考查函数的性质和运用,考查函数的奇偶性和单调性及运用,注意定义的运用,以及函数的定义域,属于基础题和易错题.6. 已知两条直线,两个平面,给出下面四个命题:①②③④其中正确命题的序号是()A.①③B.②④C.①④D.②③参考答案:C7. 已知全集U={1,2,3,4,5,6},集合A={1,3,5,6},则?U A等于( ) A.{1,3,5} B.{2,4,6} C.{2,4} D.{1,3,5,6}参考答案:C【考点】补集及其运算.【专题】集合思想;综合法;集合.【分析】根据补集的定义,求出A在全集U中的补集即可.【解答】解:∵全集U={1,2,3,4,5,6},集合A={1,3,5,6},∴?U A={2,4}.故选:C.【点评】本题考查了补集的定义与应用问题,是基础题目.8. 已知函数在(-∞,-1]上递增,则的取值范围是()A.B. C. D.参考答案:D∵函数在x≤?1上递增,当a=0时,y=1,不符合题意,舍去;当a≠0时,①当a<0时,此时为开口向下的抛物线,对称轴.由题意知,解得.②当a>0时, 此时为开口向上的抛物线,不满足题意综上知,a的取值范围为:,故选D.9. 关于函数,有下列命题:①其图象关于轴对称;②在上是增函数;③的最大值为1;④对任意都可做为某一三角形的三边长.其中正确的序号是()A.①③ B.②③ C.①④ D.③④参考答案:C10. 设非常值函数是一个偶函数,它的函数图像关于直线对称,则该函数是()A.非周期函数 B.周期为的周期函数C.周期为的周期函数 D.周期为的周期函数参考答案:解析:因为偶函数关于y轴对称,而函数图像关于直线对称,则,即。
2018-2019学年河南省新乡市高一上学期期中考试数学试题★祝考试顺利★注意事项:1、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
2、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
3、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
5、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
6、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合,则A. {-1,2}B. {-2,-1,0,1,2}C. {1,-2}D.【答案】A【解析】【分析】对集合B中的等式求解,可以求出集合【详解】因为,求出集合,所以,答案选A【点睛】本题考查集合的交集运算,属于简单题.2.已知函数,则在[0,2]上的最小值为A. 2B. 3C. 4D. 5【答案】B【解析】求出函数的对称轴,判断所属区间在对称轴的右边,可求出的最小值为,代入求解即可.【详解】,图象的对称轴方程为,故在上的最小值为.答案选B.【点睛】本题考查二次函数的图像性质,使用数形结合的方法即可求解.3.函数的定义域是A. B. C. D.【答案】C【解析】【分析】求的定义域,只要注意分母不为0,偶次方根大于等于0,然后解不等式组即可.【详解】因为,所以,解得或,答案选C.【点睛】本题考查定义域问题,注意对不等式组进行求解即可,属于简单题.4.已知函数满足,则A. 3B. 4C. 5D. 6【答案】B【解析】【分析】把化简为,然后直接代入即可. 【详解】因为,所以,将x=1代入上式,则.答案选B.【点睛】本题考查函数的求值问题,先化简等式再代入即可,属于简单题.5.下列函数为奇函数,且在定义域上是减函数的是A. B. C. D.【解析】【分析】奇函数必须满足以下两条件:(1)定义域关于原点对称;(2);A.设,定义域为,,奇函数,然后用定义法判断该函数的单调性,该函数在定义域上为增函数,不符题意B.设,定义域为,,偶函数,不符题意C. 设,明显为偶函数,不符题意.D.设,定义域为,因为,所以,,奇函数,然后,用定义法判断该函数的单调性,该函数在定义域上为减函数,故选D.【详解】因为,所以为奇函数,且在定义域上是减函数.答案选D.【点睛】本题考查函数的定义域的求解,以及奇偶性与单调性的判断,属于中等题.6.已知,则a,b,c的大小关系是A. c<b<aB. a<b<cC. c<a<bD. b<c<a【答案】C【解析】【分析】利用指数函数与对数函数的单调性,对a,b,c进行放缩比较大小即可.【详解】因为,所以c<a<b.答案选C.【点睛】本题考查指数函数与对数函数的单调性问题,难点在于如何利用函数的单调性质进行放缩,进而比较大小,属于基础题.7.设集合,则=A. (0,1)B.C.D.【答案】B【解析】【分析】利用指数函数的单调性可以求出集合A,利用对数函数的单调性可以求出集合B,然后,利用A与B的补集关系可以求出答案.【详解】由题意得,,则,答案选B【点睛】本题考查指数函数与对数函数的单调性问题,难点在于利用函数单调性的性质进行求解,属于基础题.8.已知函数是R上的增函数,则a的取值范围为A. B. C. (0,1) D.【答案】D【解析】【分析】因为为R上单调递增函数,所以也为增函数,所以有,同时,为保证为R 上单调递增函数,则要有,综上,可得,求解即可.【详解】由题意得,解得.答案选D.【点睛】本题考查分段函数的单调性问题,难点在于分段点处的值的处理,使用数形结合法会比较容易处理该类题目,属于中等题9.若函数在(0,2)上有两个零点,则a的取值范围为A. (0,2)B. (0.1)C. (1,2)D.【答案】B【解析】【分析】根据抛物线的对称轴x=1,由数形结合可知,只要满足,即可满足函数在(0,2)上有两个零点,求解即可得到a的取值范围.【详解】因为抛物线的对称轴为x=1,所以,解不等式得a的取值范围为(0,1),答案选B.【点睛】本题考查二次函数的图像性质,难点在于判断对称轴与区间之间的关系,属于中等题.10.奇函数是R上的增函数,且,则不等式的解集为A. B. C. D.【答案】C【解析】【分析】由为奇函数,且不等式可得,等价于,等价于,再根据是在R上的增函数,即可求解.【详解】因为是奇函数,所以,则等价于,因为,所以.因为在R上的增函数,所以,即.答案选C.【点睛】本题考查函数的奇偶性与单调性,难点在于化简不等式,对于不等式可作如下转化进行化简,转化过程如下:,本题属于中等题.11.已知函数,若对任意,任意x∈R,不等式恒成立,则k的最大值为A. B. 1 C. D.【答案】D【解析】【分析】化简不等式可得,,根据不等式恒成立的转化关系可得,等价于,等价于,其中为关于的一次函数,故分别代入和即可求出k的最大值【详解】因为,所以,则不等式恒成立等价于,设,则,解得.答案选D.【点睛】本题考查不等式恒成立的转化,以及利用函数的单调性求参数最值,难点在于对不等式恒成立进行转化,属于难题.二、填空题:本大题共4小题,每小题5分,共20分.将答案填在答题卡中的横线上 12.函数的零点为_________。
【答案】0 【解析】 【分析】对数函数的必过点为零点,直接令,即可求出零点.【详解】令,解得x=0.【点睛】本题考查对数函数的必过点,直接代入计算即可,属于简单题 13.已知函数是定义在R 上的奇函数,则_____【答案】 【解析】 【分析】利用函数是定义在R 上的奇函数,则有,可以求出,然后代入,求出函数值即可.【详解】因为函数是奇函数,所以,则a=1.故.【点睛】本题考查奇函数的性质,直接计算即可,属于简单题.14.某桶装水经营部每天的固定成本为420元,每桶水的进价为5元,日均销售量y (桶)与销售单价x (元)的关系式为y =-30x +450,则该桶装水经营部要使利润最大,销售单价应定为_______元. 【答案】10 【解析】 【分析】根据题意,列出关系式,,然后化简得二次函数的一般式,然后根据二次函数的性质即可求出利润的最大值.【详解】由题意得该桶装水经营部每日利润为,整理得,则当x=10时,利润最大.【点睛】本题考查函数实际的应用,注意根据题意列出相应的解析式即可,属于基础题. 15.已知函数.若总是存在实数a,b.使得,则b的取值范围为_____________。
【答案】【解析】【分析】由,化简得,令,利用二次函数的性质可得,,则有,进而解得.【详解】因为,所以,即,解得.【点睛】本题考查二次函数的性质,利用等量代换,把题目的问题转化为二次函数求最值得题目即可求解,属于中等题.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤16.(1)计算(2)已知,且,求m的值【答案】(1)7;(2)4【解析】【分析】(1)利用对数函数,指数函数的性质,以及四则运算关系即可求解.(2)由题意,化简得,,然后代入中求解即可【详解】(1)原式=(2)因为,所以,,所以,所以因为m>0,所以m=4.【点睛】本题属于考查指数与对数的四则运算,直接计算即可,属于基础题17.设集合.(1)若a=2时,求A B(2)若,求a的取值范围【答案】(1);(2)【解析】【分析】(1)先求出A,代入,求出集合B,然后直接求出即可.(2)由题意得,,可得,然后分类讨论:①当;②当;然后直接【详解】(1)由题意得,因为a=2,所以则(2)因为,所以①当时,由题意得9-4a<0.解得;②当时,由题意得解得.综上,a的取值范围为.【点睛】本题考查含参集合的交集和并集运算,难点在于不要遗漏空集情况的考虑,属于难题.18.已知函数(1)在答题卡中的网格中画出的草图(2)求在[0,4]上的值域【答案】(1)见解析;(2)【解析】【分析】(1)根据题意,去掉绝对值,化简为分类函数的情况来作图即可.(2)根据第(1)问的图像找出在[0,4]上的最大最小值即可.【详解】(1).(2)由1可知,在上是减函数,在上是增函数.则在上的最小值为因为,所以在上的最大值为.故在上的值域为.【点睛】本题考查分类函数的图像,难点在于把函数化简成分类函数,然后作图,利用数形结合的分析方法即可求解.19.已知幂函数在(0,+∞)上是增函数(1)求的解析式(2)若,求的取值范围【答案】(1);(2)【解析】【分析】(1)由幂函数的性质可得,,再由在上为增函数,则2m+1>0,然后,根据以上条件,求解即可.(2)由为R上的增函数,可得,求出a的范围,然后根据单调递增的特性,即可求出的取值范围.【详解】(1)因为是幂函数,所以即或因为在上是增函数,所以2m+1>0,即m>-,则m=1故=.(2)因为为R上的增函数.所以,解得. 故的取值范围为.【点睛】本题考查幂函数的性质和单调性,注意幂函数的系数为1,难点在于利用函数的单调性转化成不等式求解,属于中等题.20.已知函数(1)若为奇函数,求k的值(2)若在R上恒成立,求k的最小值【答案】(1);(2)4【解析】【分析】(1)根据为奇函数,所以,然后代入求解即可.(2)根据恒成立的条件把不等式进行转化,即由,得,然后进行参变分离得,最后再次利用恒成立条件对不等式进行转化得,最后转化为进行求解即可.【详解】(1)因为为奇函数,所以.即1+k=0,则k=-1.(2)由,得,即.设,.则.因为在R上恒成立,所以.故k的最小值为4.【点睛】本题考查函数的奇偶性,以及根据恒成立的条件对不等式进行转化求参数范围,难点在于如何根据恒成立的条件对不等式进行转化,属于难题.21.已知函数(1)判断函数的单调性,并说明理由(2)若对任意的恒成立,求a的取值范围【答案】(1)见解析;(2)【解析】【分析】(1)根据题意,直接把函数代入,然后根据定义法判断该函数的单调性即可.(2)根据题意,对函数的双变量问题一步步转化,对任意的,恒成立等价于恒成立,然后化简得,可令,即求恒成立,最终转化为,然后根据二次函数的性质进行讨论,即可求出a的取值范围.【详解】(1)的定义域为.因为.且在上单调递增.在上单调递增,所以在上单调递增.(2)因为,所以在上的最大值为.对任意的,恒成立等价于恒成立,即.①当时,即时,,即,无解;②当时,即时,,即,又,所以.③当时,即时,,即,又,此时无解.综上,a的取值范围为【点睛】本题对数函数的运算,以及根据函数的双变量求解参数范围的问题,本题难点有两个地方:一、对函数双变量恒等关系转化为不等式求解问题;二、对含参二次函数的分类讨论,本题在讨论的时候应围绕对称轴与x的取值范围之间的关系进行讨论,属于难题.。