第一章 函数极限和连续
- 格式:doc
- 大小:972.50 KB
- 文档页数:35
第一章函数、极限和连续【考试要求】一、函数1.理解函数的概念:函数的定义,函数的表示法,分段函数.2.理解和掌握函数的简单性质:有界性,单调性,奇偶性,周期性.3.了解反函数:反函数的定义,反函数的图像.4.掌握函数的四则运算与复合运算.5.理解和掌握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数.6.了解初等函数的概念.二、极限1.理解数列极限的概念:数列,数列极限的定义.2.了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,掌握极限的四则运算法则.3.理解函数极限的概念:函数在一点处极限的定义,左右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限.4.掌握函数极限的定理:唯一性定理,夹逼定理,四则运算定理.5.理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较.6.熟练掌握用两个重要极限求极限的方法.7.熟练掌握分段函数求极限的方法.三、连续1.理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的间断点及其分类.2.掌握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的间断点及确定其类型.3.掌握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题.4.理解初等函数在其定义区间上连续,并会利用连续性求极限. 5.熟练掌握分段函数连续性的判定方法.【考试内容】一、函数(一)函数的概念1.函数的定义:设数集D R ⊂,则称映射:f D R →为定义在D 上的函数,通常简记为()yf x =,x D ∈,其中x 称为自变量,y 称为因变量,D 称为定义域.说明:表示函数的记号是可以任意选取的,除了常用的f外,还可以用其他的英文字母或希腊字母,如“g ”、“F ”、“ϕ”等,相应的,函数可记作()y g x =,()y F x =,()y x ϕ=等.有时还直接用因变量的记号来表示函数,即把函数记作()y y x =,这一点应特别注意.2.函数的解析(公式)表示法 (1)函数的显式表示法(显函数):()yf x =形式的函数,即等号左端是因变量的符号,而右端是含有自变量的式子,如2cos xy xe x =-,13sin ln x x e y x e x-=++等.(2)函数的隐式表示法(隐函数):函数的对应法则由方程(,)0F x y =所确定,即如果方程(,)0F x y =确定了一个函数关系()y f x =,则称()y f x =是由方程(,)0F x y =所确定的隐函数形式.说明:把一个隐函数化成显函数,叫做隐函数的显化.例如从方程310x y +-=解出31y x =-,就把隐函数化成了显函数.但并非所有的隐函数都能显化,隐函数的显化有时是非常困难的,甚至是不可能的.(3)分段函数:如果函数的对应法则是由几个解析式表示的,则称之为分段函数,如1,0()1,0x x f x x x +≥⎧=⎨-<⎩ 是由两个解析式表示的定义域为(,)-∞+∞的一个函数.(4)由参数方程确定的函数:如果自变量x 与因变量y 的关系是通过第三个变量t 联系起来 ()()x t y t ϕφ=⎧⎨=⎩ (t 为参变量),则称这种函数关系为参数方程所确定的函数.例如:参数方程 2cos 2sin x t y t=⎧⎨=⎩ 表示的图形即为圆心在原点,半径为4的圆.(二)函数的几种特性1.有界性设函数()f x 的定义域为D ,数集X D ⊂,如果存在正数M,使得()f x M≤对任一x X ∈都成立,则称函数()f x 在X 上有界.如果这样的M不存在,就称函数()f x 在X 上无界.说明:我们这里只讨论有界无界的问题而不区分上界和下界,并且,由上述定义不难看出,如果正数M 是函数()f x 的一个界,则比M大的数都是函数()f x 的界.2.单调性 设函数()f x 的定义域为D ,区间I D ∈.如果对于区间I 上任意两点1x 及2x ,当12x x <时,恒有12()()f x f x <,则称函数()f x 在区间I 上是单调增加的;如果对于区间I 上任意两点1x 及2x ,当12x x <时,恒有12()()f x f x >,则称函数()f x 在区间I 上是单调减少的.单调增加和单调减少的函数统称为单调函数. 3.奇偶性 设函数()f x 的定义域D 关于原点对称.如果对于任一x D ∈,()()f x f x -=恒成立,则称()f x 为偶函数.如果对于任一x D ∈,()()f x f x -=-恒成立,则称()f x 为奇函数.例如:()cos f x x =、2()f x x =都是偶函数,()s i n f x x =、()arctan f x x =是奇函数,而()sin cos f x x x =+则为非奇非偶函数.偶函数的图形关于y 轴对称,而奇函数的图形关于原点对称.说明:两个偶函数的和是偶函数,两个奇函数的和是奇函数;两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,偶函数与奇函数的乘积是奇函数.其余结论读者可自行论证. 4.周期性设函数()f x 的定义域为D .如果存在一个正数l ,使得对于任一x D ∈有()x l D ±∈,且()()f x l f x +=恒成立,则称()f x 为周期函数,l 称为()f x 的周期,通常我们说周期函数的周期是指最小正周期.例如:函数sin x 、cos x 都是以2π为周期的周期函数,函数tan x 是以π为周期的周期函数.(三)函数的运算1.和差积商运算 设函数()f x ,()g x 的定义域依次为1D ,2D ,12D D D φ=≠,则我们可以定义这两个函数的下列运算: (1)和(差)f g ±:()()()()f g x f x g x ±=±,x D ∈;(2)积f g ⋅:()()()()f g x f x g x ⋅=⋅,x D ∈;(3)商f g :()()()f f x x g g x ⎛⎫= ⎪⎝⎭,\{()0,}x D x g x x D ∈=∈. 2.反函数(函数的逆运算)对于给定的y 是x 的函数()y f x =,若将y 当作自变量而x 当作因变量,则由关系式()y f x =所确定的函数()x y ϕ=称为函数()f x 的反函数,记为1()y f x -=,()f x 叫做直接函数.若直接函数()yf x =的定义域为D ,值域为M ,则反函数1()y f x -=的定义域为M ,值域为D .且直接函数的图像与反函数的图像关于直线y x =对称.3.复合函数(函数的复合运算)设函数()y f u =的定义域为fD ,函数()ug x =的定义域为g D ,且其值域g f R D ⊂,则由下式确定的函数[()]y f g x =,g x D ∈称为由函数()u g x =与函数()y f u =构成的复合函数,它的定义域为g D ,变量u 称为中间变量.说明:g 与f能构成复合函数的条件是函数g 的值域g R 必须含在函数f的定义域fD 内,即gf R D ⊂,否则不能构成复合函数.此外,复合函数可以由多个函数复合而成.(四)基本初等函数与初等函数1.基本初等函数 幂函数:yx μ=(R μ∈是常数); 指数函数:x y a =(0a >且1a ≠);对数函数:log a y x =(0a >且1a ≠,特别当a e =时记为ln y x =);三角函数:sin yx =,cos y x =,tan y x =,cot y x =,sec y x =,csc y x =;反三角函数:arcsin y x =,arccos y x =,arctan y x =,cot y arc x =.以上五类函数统称为基本初等函数.说明:反三角函数是学习和复习的难点,因此这里重点给出三角函数和反三角函数的关系,这对于后边学习极限、渐近线及导数等知识是非常有帮助的,请大家牢记. (1)反正弦函数arcsin yx =:是由正弦函数sin y x =在区间[,]22ππ-上的一段定义的反函数,故其定义域为[1,1]-,值域为[,]22ππ-. (2)反余弦函数arccos y x =:是由余弦函数cos y x =在区间[0,]π上的一段定义的反函数,故其定义域为[1,1]-,值域为[0,]π. (3)反正切函数arctan yx =:是由正切函数tan y x =在区间(,)22ππ-上的一段定义的反函数,故其定义域为(,)-∞+∞,值域为(,)22ππ-. (4)反余切函数cot yarc x =:是由余切函数cot y x =在区间(0,)π上的一段定义的反函数,故其定义域为(,)-∞+∞,值域为(0,)π. 2.初等函数由常数和基本初等函数经过有限次的四则运算和有限次的函数复合步骤所构成并可用一个式子表示的函数,称为初等函数.例如:22sin cos y x x =,22y x =-,2ln(1)y x x =++,2arccos(1)y x =-等都是初等函数.在本课程中所讨论的函数绝大多数都是初等函数.二、极限(一)数列的极限1.数列极限的定义:设{}n x 为一数列,如果存在常数A ,对于任意给定的正数ε(不论它多么小),总存在正整数N ,使得当n N >时,不等式n x A ε-<都成立,那么就称常数A 是数列{}n x 的极限,或者称数列{}n x 收敛于A ,记为lim n n x A →∞=或n x A →(n →∞).如果不存在这样的常数A ,就说数列{}n x 没有极限,或者说数列{}n x 是发散的,习惯上也说lim n n x →∞不存在.说明:数列极限中自变量n 的趋向只有一种,即n →∞,虽然含义表示正无穷,但不要写做n→+∞,注意与函数极限的区别.2.收敛数列的性质性质(1):(极限的唯一性)如果数列{}n x 收敛,那么它的极限唯一.性质(2):(收敛数列的有界性)如果数列{}n x 收敛,那么数列{}n x 一定有界. 说明:对于数列{}n x ,如果存在正数M ,使得对一切n ,都有n x M ≤,则称数列{}n x 是有界的,否则称数列{}n x 是无界的. 性质(3):(收敛数列的保号性)如果lim nn x A →∞=,且0A >(或者0A <),那么存在正整数N ,当n N >时,都有0n x >(或0n x <). (二)函数的极限1.函数极限的定义 (1)0xx →时函数的极限:设函数()f x 在点0x 的某个去心邻域内有定义.如果存在常数A ,对于任意给定的正数ε(不论它多么小),总存在正数δ,使得当x 满足不等式00x x δ<-<时,对应的函数值()f x 都满足不等式()f x A ε-<,那么常数A就叫做函数()f x 当0x x →时的极限,记作0lim ()x x f x A →=或()f x A →(当0x x →).说明:函数的左极限lim ()x x f x A -→=或0()f x A -=;右极限0lim ()x x f x A +→=或0()f x A +=;左极限与右极限统称单侧极限.函数()f x 当0x x →时极限存在的充要条件是左右极限都存在并且相等,即00()()f x f x -+=.(2)x →∞时函数的极限:设函数()f x 当x大于某一正数时有定义.如果存在常数A ,对于任意给定的正数ε(不论它多么小),总存在正数X ,使得当x 满足不等式x X >时,对应的函数值()f x 都满足不等式()f x A ε-<,那么常数A 就叫做函数()f x 当x →∞时的极限,记作lim ()x f x A →∞=或()f x A →(当x →∞).说明:此定义包含lim ()x f x A →+∞=和lim ()x f x A →-∞=两种情况.2.函数极限的性质(以0xx →为例)性质(1):(函数极限的唯一性)如果0lim ()x x f x →存在,那么这极限唯一.性质(2):(函数极限的局部有界性)如果0lim ()x x f x A →=,那么存在常数0M >和0δ>,使得当00x x δ<-<时,有()f x M ≤.性质(3):(函数极限的局部保号性)如果0lim()x x f x A →=,且0A >(或0A <),那么存在常数0δ>,使得当00x x δ<-<时,有()0f x >(或()0f x <). (三)极限运算法则1.如果0lim()x x f x A →=,0lim ()x x g x B →=,则有(1)0lim[()()]lim ()lim ()x x x x x x f x g x f x g x A B →→→±=±=±; (2)0lim[()()]lim ()lim ()x x x x x x fx g x f x g x A B →→→⋅=⋅=⋅;(3)000lim ()()lim()lim ()x x x x x x f x f x A g x g x B→→→==,其中0B ≠; (4)0lim[()]lim ()x x x x cfx c f x →→=,其中c 为常数;(5)0lim[()][lim ()]n n x x x x fx f x →→=,其中n 为正整数.2.设有数列{}n x 和{}n y ,如果lim nn x A →∞=,lim n n y B →∞=,则有(1)lim()nn n x y A B →∞±=±; (2)lim()nn n x y A B →∞⋅=⋅;(3)lim n n nx Ay B →∞=,其中0n y ≠(1,2,n =)且0B ≠.3.如果()()x x ϕψ≥,而0lim ()x x x A ϕ→=,0lim ()x x x B ψ→=,则A B ≥.4.复合函数的极限运算法则:设函数[()]y f g x =是由函数()u g x =与函数()y f u =复合而成,[()]f g x 在点0x 的某去心邻域内有定义,若00lim ()x x g x u →=,0lim ()u u f u A→=,且存在00δ>,当00(,)x U x δ∈时,有()g x u ≠,则lim [()]lim ()x x u u f g x f u A →→==.说明:本法则以0xx →为例,其他趋向下亦成立.(四)极限存在准则1.准则I 如果数列{}n x 、{}n y 及{}n z 满足下列条件: (1)从某项起,即0n N ∃∈,当0n n >时,有n n n y x z ≤≤,(2)lim nn y A →∞=,lim n n z A →∞=,那么数列{}n x 的极限存在,且lim nn x A →∞=.准则I ' 如果函数()f x 、()g x 及()h x 满足下列条件:(1)当0(,)x U x r ∈(或x M >)时,()()()g x f x h x ≤≤,(2)0()lim ()x x x g x A →→∞=,0()lim ()x x x h x A →→∞=,那么0()lim ()x x x f x →→∞存在,且等于A .说明:准则I 及准则I '称为夹逼准则.2.准则II 单调有界数列必有极限.准则II ' 单调有界函数必有极限.(函数有界一般是指在某个邻域内有界)(五)两个重要极限1.0sin lim1x xx→=,可引申为()0sin ()lim1()x x x ϕϕϕ→=,式中不管自变量x 是哪种趋向,只要在此趋向下()0x ϕ→即可(()0x ϕ+→或()0x ϕ-→时亦成立).2.10lim(1)xx x e →+= 或 1lim(1)x x e x→∞+=,可引申为1()()0lim (1())x x x e ϕϕϕ→+=(()0x ϕ+→或()0x ϕ-→时亦成立)或()()1lim (1)()x x ex ϕϕϕ→∞+=(()x ϕ→+∞或()x ϕ→-∞时亦成立). 说明:数列亦有第二种极限形式,即1lim(1)nn e n→∞+=.两个重要极限是考试的必考内容,请大家务必好好掌握.(六)无穷小和无穷大1.定义(1)无穷小的定义:如果函数()f x 当0x x →(或x →∞)时的极限为零,那么称函数()f x 为当0x x →(或x →∞)时的无穷小量(简称无穷小).特别地,以零为极限的数列{}n x 称为n→∞时的无穷小.说明:以后我们再提到无穷小时,把数列{}n x 当作特殊的函数来看待,故所谓的无穷小本质上就是函数,并且一定是在自变量x 的某一趋向下才有意义. (2)无穷大的定义:如果在自变量的某一变化过程中,函数()f x 的绝对值无限增大,则称函数()f x 为自变量在此变化过程中的无穷大量(简称无穷大).说明:在自变量的同一变化过程中,如果()f x 为无穷大,则1()f x 为无穷小;反之,如果()f x 为无穷小且()0f x ≠,则1()f x 为无穷大. 2.无穷小的比较设α,β均为自变量同一趋向下的无穷小,且0α≠,(1)如果lim0βα=,则称β是比α高阶的无穷小,记作()o βα=; (2)如果lim βα=∞,则称β是比α低阶的无穷小;(3)如果lim0c βα=≠,则称β与α是同阶无穷小; (4)如果lim 1βα=,则称β与α是等价无穷小,记作~αβ;(5)如果lim0k c βα=≠,0k >,则称β是关于α的k 阶无穷小. 3.无穷小的性质(1)有限个无穷小的和是无穷小. (2)常数与无穷小的乘积是无穷小. (3)有限个无穷小的乘积是无穷小. (4)有界函数与无穷小的乘积是无穷小.(5)求两个无穷小之比的极限时,分子及分母都可用等价无穷小来替换,即设α,β,α',β'均为自变量同一趋向下的无穷小,且~αα',~ββ',limβα''存在,则lim lim ββαα'='(lim 表示自变量的任一趋向下的极限,以后文中出现此符号时均为此意,不再解释).说明:等价无穷小非常重要,故将常用的等价无穷小列举如下,请大家务必牢记.0x →时sin ~x x ,可引申为()0x ϕ→时,sin ()~()x x ϕϕ; 0x →时tan ~x x ,可引申为()0x ϕ→时,tan ()~()x x ϕϕ;0x →时sin ~arc x x ,可引申为()0x ϕ→时,sin ()~()arc x x ϕϕ; 0x →时211cos ~2x x -,可引申为()0x ϕ→时,211cos ()~()2x x ϕϕ-;0x →时111~n x x n +-,可引申为()0x ϕ→时,11()1~()n x x nϕϕ+-;0x →时1~x e x -,可引申为()0x ϕ→时,()1~()x e x ϕϕ-;0x →时ln(1)~x x +,可引申为()0x ϕ→时,ln(1())~()x x ϕϕ+.三、连续(一)连续的概念1.连续的定义连续性定义(1):设函数()f x 在点0x 的某一邻域内有定义,如果000lim lim[()()]0x x y f x x f x ∆→∆→∆=+∆-=,则称函数()yf x =在点0x 连续(即自变量的变化量趋于零时函数值的变化量也趋于零). 连续性定义(2):设函数()f x 在点0x 的某一邻域内有定义,如果00lim ()()x x f x f x →=,则称函数()yf x =在点0x 连续.2.左连续、右连续及区间连续 (1)左连续:lim ()x x f x -→存在且等于0()f x ,即00()()f x f x -=;(2)右连续::lim ()x x f x +→存在且等于0()f x ,即00()()f x f x +=;(3)区间连续:若函数()f x 在区间每一点都连续,则称()f x 为该区间上的连续函数,或者说函数()f x 在该区间上连续.如果区间包括端点,则函数()f x 在右端点连续是指左连续,()f x 在左端点连续是指右连续.说明:一切初等函数在其定义区间内都是连续的.(二)函数的间断点1.定义:设函数()f x 在点0x 的某去心邻域内有定义,如果函数有下列三种情形之一:(1)在0xx =处没有定义;(2)虽在0x x =处有定义,但0lim ()x x f x →不存在;(3)虽在0x x =处有定义,且0lim ()x x f x →存在,但00lim ()()x x f x f x →≠,则函数()f x 在点0x 为不连续,而点0x 称为函数()f x 的不连续点或间断点.2.分类:(1)第一类间断点:如果0x 是函数()f x 的间断点,但左极限0()f x -和右极限0()f x +都存在,那么0x 称为函数()f x 的第一类间断点.00()()f x f x -+=时称0x 为可去间断点,00()()f x f x -+≠时称0x 为跳跃间断点.(2)第二类间断点:不是第一类间断点的任何间断点,称为第二类间断点.常见的第二类间断点有无穷间断点和振荡间断点.(三)闭区间上连续函数的性质1.有界性与最值定理:在闭区间[,]a b 上连续的函数在该区间上有界且一定能取得它的最大值和最小值. 2.零点定理:设函数()f x 在闭区间[,]a b 上连续,且()f a 与()f b 异号(即()()0f a f b ⋅<),那么在开区间(,)a b 内至少有一点ξ,使得()0f ξ=. 3.介值定理:设函数()f x 在闭区间[,]a b 上连续,且在这区间的端点取不同的函数值()f a A =及()f b B =,那么对于A 与B 之间的任意一个数C ,在开区间(,)a b 内至少有一点ξ,使得()f C ξ=(a b ξ<<).【典型例题】【例1-1】求复合函数. 1.设()12xf x x =-,求[()]f f x . 解:求[()]f f x 就是用()f x 代替x 然后化简,得12[()]122141212xx xx f f x x x x x x -===----⋅-. 2.设2,01()3,12x x f x x x ⎧≤≤=⎨<≤⎩ ,()xg x e =,求[()]f g x .解:当01xe ≤≤即0x ≤时,22[()]()x xfg x e e ==, 当12xe <≤即0ln 2x <≤时,[()]3xfg x e =,故2,0[()]3,0ln 2x x e x f g x e x ⎧≤=⎨<≤⎩ .【例1-2】求函数的定义域. 1.()arcsin(21)ln(1)f x x x =-+-.解:由arcsin(21)x -可得1211x -≤-≤,即01x ≤≤;由arcsin(21)x -可得arcsin(21)0x -≥,即0211x ≤-≤,112x ≤≤;由l n (1)x -可得10x->,即1x <,故原函数的定义域为三部分的交集,即1[,1)2. 2.21()arccos(2)2x f x x x x -=+---. 解:由1x -可得10x -≥,即1x ≥;由220x x --≠即(1)(2)0x x +-≠可得1x ≠-且2x ≠;由arccos(2)x -可得121x -≤-≤,13x ≤≤,故原函数的定义域为三部分的交集,即为[1,2)(2,3].【例1-3】判断函数的奇偶性. 1.设()f x 和()g x 为任意函数,定义域均为(,)-∞+∞,试判定下列函数的奇偶性. (1)()()()()f x f x g x g x +-++-解:由奇偶性的判定可知,()()f x f x +-与()()g x g x +-均为偶函数,故其和亦为偶函数. (2)()()()()f x f x g x g x --++-解:由奇偶性的判定可知,()()f x f x --为奇函数,()()g x g x +-为偶函数,故其和为非奇非偶函数. 2.判定函数2()ln(1)f x x x =++的奇偶性.解:因2()ln(()1)f x x x -=-+-+2ln(1)x x =-++21ln 1x x=++2ln(1)()x x f x =-++=-,故原函数为奇函数.【例1-4】计算下列极限.1.22212lim()n nn n n→∞+++.解:当n →∞时,此题是无限个无穷小之和,不能直接求极限,先变形化简再计算:222221(1)121212lim()lim lim 2n n n n n n n n n n n n →∞→∞→∞+++++++===. 2.222111lim()12n n n n n→∞++++++. 解:因22222111121nn n n n n n nn <+++<+++++,并且2l i m1n nn n→∞=+,2lim 11n nn →∞=+,故原极限值为1.(夹逼准则)3.222lim(1)nn n n→∞++.解:22(22)222222222222lim(1)lim(1)lim(1)n n n n n n n n n n n n e n n n n+⋅+→∞→∞→∞++++=+=+=.4.23lim()21nn n n →∞-+.解:21424212344lim()lim(1)lim(1)212121n nn n n n n n n e n n n +-⋅--+→∞→∞→∞---=+=+=+++. 【例1-5】计算下列极限. 1.sin limx xx→∞.解:当x →∞时,1x为无穷小,sin x 虽没有极限但却是有界函数,故根据无穷小与有界函数的乘积仍为无穷小,可得sin lim0x xx→∞=.说明:本极限与01lim sin x x x →意义是一样的.2.21lim 1n x x x x nx →+++--.解:2211111lim lim 11n n x x x x x n x x x x x →→+++--+-++-=--2121lim[1(1)(1)(1)]n n x x x x x x x --→=+++++++++++(1)1232n n n +=++++=. 说明:此题也可用洛必达法则(见第三章)求解,过程如下:2111(1)lim lim(12)12n n x x x x x n n n x nx x -→→+++-+=+++=-.3.0sin(1)lim 3x x e x→-.解:因当0x →时,sin(1)~1xx ee --,1~x e x -,故 00sin(1)11limlim 333x x x x e e x x →→--==. 说明:本题可以使用洛必达法则求解如下:00sin(1)cos(1)1lim lim 333x x x x x e e e x →→--⋅==. 4.sin 0limsin x x x e e x x→--.解:sin sin sin 00(1)lim lim 1sin sin x x x x x x x e e e e x x x x-→→--==--(0x →时,sin ~sin x x e x x --).5.23lim()2xx x x→∞++. 解:2(2)2222311lim()lim(1)lim(1)222x x x x xx x x x e x x x+⋅+→∞→∞→∞+=+=+=+++. 6.11lim(sincos )x x x x→∞+. 解:111(sin cos 1)11sin cos 11111lim(sin cos )lim[1(sin cos 1)]x x x x x xx x x x x x⋅+-+-→∞→∞+=++-211111sin cos 1sincos 12limlim lim 1lim 111110x x x x x x x x x xx xxe e e e e →∞→∞→∞→∞-+--+++=====.【例1-6】已知()f x 是多项式,且32()2lim 2x f x x x →∞-=,0()lim 3x f x x→=,求()f x . 解:利用前一极限式可令32()22f x x x ax b =+++,再利用后一极限式,得 00()3lim lim()x x f x ba x x→→==+,则 3a =,0b =,故32()223f x x x x =++.【例1-7】当0x →时,比较下列无穷小的阶. 1.2x 比1cos x -.解:因 22002limlim 211cos 2x x x x x x →→==-,故2x 与1cos x -是同阶无穷小. 2.2x 比11x +-.解:因 220limlim 01112x x x x x x→→==+-,故2x 是比11x +-高阶的无穷小. 3.11x x +--比x .解:因 0011(11)(11)lim lim (11)x x x x x x x x x x x x →→+--+--++-=++-2lim 1(11)x x x x x →==++-,故11x x +--与x 是等价无穷小. 4.2x 比tan sin x x -.解:因 2220002cos limlim lim 1tan sin sin (1cos )2x x x x x x x x x x x x x →→→===∞--⋅, 故2x 是比tan sin x x -低阶的无穷小. 说明:本题中的四个题目均可用洛必达法则求解. 【例1-8】讨论下列分段函数在指定点处的连续性.1.2,01()1,11,1x x f x x x x ⎧≤<⎪==⎨⎪+>⎩在1x =处的连续性. 解:因(1)1f =,11(1)lim ()lim 22x x f f x x ---→→===, 11(1)lim ()lim(1)2x x f f x x +++→→==+=,从而1lim ()2(1)x f x f →=≠,故函数在1x =处不连续.2.1,0()ln(1),0x e x f x x x ⎧⎪<=⎨⎪+≥⎩ 在0x =处的连续性.解:因(0)0f =,1(0)lim ()lim 0xx x f f x e ---→→===,(0)lim ()lim ln(1)0x x f f x x +++→→==+=,从而0lim ()0(0)x f x f →==,故函数在0x =处连续.【例1-9】当常数a 为何值时,函数2,0()ln(1),0x a x f x x x x-≤⎧⎪=⎨+>⎪⎩ 在0x =处连续?解:因(0)f a =-,0(0)lim ()lim(2)x x f f x x a a ---→→==-=-,10000ln(1)1(0)lim ()lim lim ln(1)lim ln(1)1xx x x x x f f x x x xx +++++→→→→+===+=+=,故由连续性可得,(0)(0)(0)f f f -+==,即1a -=,故1a =-.【例1-10】求下列函数的间断点并判断其类型. 1.1()xf x e= .解:所给函数在0x =处无定义,故0x =是间断点.又1lim x x e +→=+∞,10lim 0xx e -→=,故0x=是()f x 的第二类间断点.2.()sin xf x x= .解:所给函数在x k π=(0,1,2,k =±±)处无定义,故0x =、x k π=(1,2,k=±±)是间断点.又0lim1sin x xx→=,故0x =是第一类间断点,且是可去间断点;lim sin x k xxπ→=∞,故x k π=是第二类间断点,且是无穷间断点.3.111()1xxe f x e -=+ .解:所给函数在0x=处无定义,故0x =是间断点.又111(0)lim 11xx xe f e ++→-==+,111(0)lim 11xx xe f e --→-==-+,故0x =是()f x 的第一类间断点且是跳跃间断点.4.1arctan ,0()0,0x f x xx ⎧≠⎪=⎨⎪=⎩ . 解:该题是分段函数的连续性问题,因0x ≠时1arctanx 是初等函数,故1arctan x在0x ≠时是连续的,所以该题主要考虑分界点0x =处的连续性.由1(0)lim arctan 2x f x π++→==,01(0)lim arctan 2x f x π--→==-,可知0x =是()f x 的第一类间断点且是跳跃间断点.【例1-11】证明方程32410x x -+=在区间(0,1)内至少有一个根.证:函数32()41f x x x =-+在闭区间[0,1]上连续,又(0)10f =>,(1)20f =-<,根据零点定理,在(0,1)内至少有一点ξ,使得()0f ξ=,即32410ξξ-+= (01ξ<<),该等式说明方程32410x x -+=在区间(0,1)内至少有一个根是ξ.【例1-12】证明方程21xx ⋅=至少有一个小于1的正根.证:由题意,函数()21x f x x =⋅-在区间[0,1]上连续,又(0)10f =-<,(1)10f =>,根据零点定理,在(0,1)内至少有一点ξ,使得()0f ξ=,即210ξξ⋅-= (01ξ<<),该等式说明方程21x x ⋅=在区间(0,1)内至少有一个小于1的正根ξ.【历年真题】一、选择题1.(2010年,1分)函数211arccos 2x y x +=--的定义域是( )(A )[3,1]- (B )[3,1]-- (C )[3,1)-- (D )[1,1]-解:因 2101112x x ⎧-≥⎪⎨+-≤≤⎪⎩,故 11212x x -≤≤⎧⎨-≤+≤⎩ , 1131x x -≤≤⎧⎨-≤≤⎩ ,所以 11x -≤≤,故选(D ). 2.(2010年,1分)极限0sin3lim x xx→等于( )(A )0 (B )1 (C )13(D )3 解:00sin33limlim 3x x x xx x→→==,故选(D ). 3.(2009年,1分)极限(1)limnn n n→∞+-=( ) (A )1 (B )0 (C )∞ (D )不存在解:(1)(1)(1)lim lim[1]1lim 101n n n n n n n n n n→∞→∞→∞+---=+=+=+=,故选(A ).4.(2009年,1分)若1,0()0,01,0x x f x x x x -<⎧⎪==⎨⎪+>⎩,则0lim ()x f x →=( )(A )1- (B )0 (C )1 (D )不存在解:因00lim ()lim(1)1x x f x x --→→=-=-,0lim ()lim(1)1x x f x x ++→→=+=,lim ()lim ()x x f x f x -+→→≠,故0lim ()x f x →不存在,选(D ). 5.(2009年,1分)2x π=是函数tan xy x=的( ) (A )连续点 (B )可去间断点 (C )跳跃间断点 (D )第二类间断点解:因 2lim 0tan x x x π→=,故2x π=是函数tan xy x =的可去间断点,选(B ). 6.(2008年,3分)设1()sinf x x x= ,则lim ()x f x →∞等于( )(A )0 (B )不存在 (C )∞ (D )1解:1sin1lim ()lim sin lim11x x x x f x x x x→∞→∞→∞===,故选(D ).7.(2008年,3分)当0x →时,23x 是2sinx 的( )(A )高阶无穷小 (B )同阶无穷小,但不等价 (C )低阶无穷小 (D )等价无穷小解:因 22220033lim lim 3sin x x x x x x→→==,故选(B ).8.(2007年,3分)当0x →时,tan 2x 是( )(A )比sin3x 高阶的无穷小 (B )比sin3x 低阶的无穷小 (C )与sin3x 同阶的无穷小 (D )与sin3x 等价的无穷小解:因0tan 222limlim sin333x x x x x x →→==,故选(C ). 9.(2006年,2分)设()sin f x x = ,,0(),0x x g x x x ππ-≤⎧=⎨+>⎩ ,则[()]f g x =( )(A )sin x (B )cos x (C )sin x - (D )cos x - 解:当0x ≤时,[()]()sin()sin()sin f g x f x x x x πππ=-=-=--=-;当0x>时,[()]()sin()sin f g x f x x x ππ=+=+=-,故选(C ). 10.(2005年,3分)设120lim(1)xx mx e →-=,则m =( )(A )12- (B )2 (C )2- (D )12解:由11()20lim(1)lim[1()]m m xmxx x mx mx e e ⋅---→→-=+-==,得2m =-,选(C ).11.(2005年,3分)设1xy e-=是无穷大,则x 的变化过程是( )(A )0x+→ (B )0x -→ (C )x →+∞ (D )x →-∞解:0x +→时,1x →+∞,1x-→-∞,10x e -→;0x -→时,1x →-∞,1x-→+∞,1x e -→+∞;故选(B ). 二、填空题1.(2010年,2分)若函数21,1(),1x x f x x a x -+≤⎧=⎨->⎩ 在1x =处连续,则a = .解:11lim()lim(21)1x x f x x --→→=-+=-,11lim ()lim()1x x f x x a a ++→→=-=-,因()f x 在点1x =处连续,故11lim ()lim ()x x f x f x -+→→=,即11a -=-,2a =. 2.(2010年,2分)0x =是函数1()cos f x x x=的第 类间断点.解:因1lim ()lim cos0x x f x x x→→==,故0x =是函数()f x 的第一类间断点.3.(2009年,2分)设1,1()0,11,1x f x x x ⎧<⎪==⎨⎪->⎩,()x g x e =,则[(l n 2)]g f = .解:因0ln 21<<,故 (ln 2)1f =,所以 1[(ln 2)](1)g f g e e ===.4.(2009年,2分)1sin y x=在0x =处是第 类间断点.解:因0x →时,1x→∞,1sin x 没有极限,故 0x = 是第二类间断点.5.(2008年,4分)函数ln arcsin yx x =+的定义域为 .解:由题意,011x x >⎧⎨-≤≤⎩ ,故原函数的定义域为 (0,1].6.(2008年,4分)设数列n x 有界,且lim 0n n y →∞=,则lim n n n x y →∞= .解:数列可看作特殊的函数,因数列n x 有界,数列n y 为无穷小,所以根据无穷小与有界函数的乘积仍然是无穷小可得,lim 0n nn x y →∞=.7.(2008年,4分)函数31y x =+的反函数为 .解:由31yx =+可得,31y x =+,31x y =-,故反函数为 31y x =-.8.(2007年,4分)函数21arcsin 3x y -=的定义域为 .解:由21113x --≤≤得,3213x -≤-≤,即12x -≤≤,所以定义域为[1,2]-. 9.(2007年,4分)21lim()xx x x→∞-= .解:22(2)2111lim()lim(1)lim(1)x x x x x x x e x x x-⋅--→∞→∞→∞---=+=+=.10.(2006年,2分)若函数2121212(),0()12,0x x x f x xx a x +⎧->⎪=⎨+⎪-≤⎩在0x =处连续,则a = .解:0lim()lim(2)x x f x x a a --→→=-=-,22211221(3)3322000123lim ()lim()lim(1)11x x x x x x xx f x e xx+++++⋅---→→→--==+=++, 因()f x 在0x =处连续,故0lim ()lim ()x x f x f x -+→→=,即3a e --=,故3a e -=-. 三、计算题1.(2010年,5分)求极限lim xx x c x c →∞+⎛⎫⎪-⎝⎭,其中c 为常数.解:22222lim lim 1lim 1x c cxxxc x cc x x x x c c c e x c x c x c -⋅-→∞→∞→∞+⎛⎫⎛⎫⎛⎫=+=+=⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭.2.(2010年,5分)求极限3tan limx x xx→-. 解:22322000tan sec 1tan 1lim lim lim 333x x x x x x x x x x →→→--===. 说明:此题也可多次使用洛必达法则,解法如下:232000tan sec 12sec sec tan 1lim lim lim 363x x x x x x x x x x x x →→→--⋅===. 3.(2009年,5分)求极限 3113lim 11x x x →⎛⎫- ⎪--⎝⎭ . 解:此题为“∞-∞”型的极限,解法如下:23321111313(1)(2)lim lim lim 1111(1)(1)x x x x x x x x x x x x x →→→++--+⎛⎫-===- ⎪----++⎝⎭. 4.(2009年,5分)求极限 0limsin x x x e e x-→- .解:002limlim 2sin cos 1x x x x x x e e e e x x --→→-+===.5.(2008年,5分)求极限 2sin 2lim cos()x xx ππ→- .解:22sin 22cos2limlim 2cos()sin()(1)x x x x x x ππππ→→==----⋅-.6.(2007年,5分)求极限011lim()1x x x e →-- . 解:20000111111lim()lim lim lim 1(1)22x x x x x x x x x e x e x e x e x e x x →→→→------====--. 说明:0x →时,1~xex -.7.(2006年,4分)求极限 011limcot ()sin x x x x→- .解:2300011cos (sin )sin limcot ()lim lim sin sin x x x x x x x xx x x x x x→→→---== 2220011cos 12lim lim 336x x xx x x →→-===.8.(2006年,4分)设1cos 20()sin xf x t dt -=⎰,56()56x xg x =+,求0()lim()x f x g x →. 解:因0x →时,1cos 20()sin 0xf x t dt -=→⎰,56()056x xg x =+→,且1cos 220()(sin )sin sin(1cos )xf x t dt x x -''==-⎰,45()g x x x '=+,故 2245450000()()sin sin(1cos )(1cos )lim lim lim lim ()()x x x x f x f x x x x x g x g x x x x x →→→→'--==='++224454500011()124lim lim lim 041x x x x x x x x x x x x x→→→⋅====+++.9.(2005年,5分)求极限111lim()1ln x x x→-- .解: 1111111ln 1lim()lim lim 11ln (1)ln ln x x x x x xx x x x x x x→→→--+-==---+11111limlim ln 1ln 112x x x x x x x →→--===-+-++.。
第一章 极限与连续一、教学目的1.复习函数的定义及有关性质.2.理解极限的定义,无穷大、无穷小的概念,闭区间上连续函数的性质;掌握极限的性质及四则运算法则,并会利用它们求极限.3.掌握无穷小的比较,用两个重要极限求极限.二、教学重点1.极限的概念及其运算,连续的概念及性质.2.无穷大与无穷小的概念及比较.3.两个重要的极限公式.三、教学难点1.极限的定义及连续的概念.2.两个重要的极限公式.四、课时安排 约12学时1.1 函数◆1.1.1函数概念◆1.1.2函数的几种特性◆1.1.3反函数与复合函数◆1.1.4基本初等函数◆1.1.5 内容小结1.1.1函数概念定义1.1.1设x ,y 是两个变量,若当变量x 在非空数集D 内任取某一数值时,变量y按照某一规则f 总有一个确定的数值与之对应则称y 为x 的函数,简记为(),y f x x D =∈其中x 称为自变量, D 称为定义域.y 称为因变量,y 值的集合称为函数的值域.例1 求函数412--=x xy 的定义域. 解 要使函数有意义, 必须0x ≠, 且240x -≥.解不等式得2x ≥.所以函数的定义域为{2}D x x =|≥, 或(,2][2,)D =-∞+∞例2 函数 2y =. 其定义域为(,)D =-∞+∞, 值域为{2}R =图形为一条平行于x 轴的直线.例 3 函数⎩⎨⎧<-≥==0 0 ||x x x x x y . 称为绝对值函数. 其定义域为(,)D =-∞+∞, 值域为[0,)R =+∞.例4 函数⎪⎩⎪⎨⎧<-=>==01000 1sgn x x x x y . 称为符号函数. 其定义域为(,)D =-∞+∞, 值域为{1,0,1}R =-.例5 设x 为任意实数不超过x 的最大整数称为x 的整数部分, 记作[]x .函数[]y x =称为取整函数. 其定义域为(,)D =-∞+∞, 值域为R Z =. 例如:0]75[=, 1]2[=,[]3,[1]1,[ 3.5]4π=-=--=-. 例6 产某种产品的固定成本为48000元,每生产一件产品成本增加2400元,则该种产品的总成本y 与产量x 的函数关系可表为240048000y x =+定义1.1.2在自变量的不同变化范围中, 对应法则用不同式子来表示的函数称为分段函数.例7 函数⎪⎩⎪⎨⎧>+≤≤=1110 2x x x x y , 其定义域为[0,1](1,)[0,)D =+∞=+∞.当01x ≤≤时, x y 2=; 当1x >时, 1y x =+ . 例如2212)21(==f ; 2 1 2)1(==f ;(3)134f =+=. 1.1.2 函数的几种特性1.函数的有界性设函数()y f x =的定义域为D .如果存在正数M 使对任一x D ∈, 有()f x M ≤, 则称函数()f x 在D 上有界; 如果这样的M 不存在, 则称函数()y f x =在D 上无界.注意1:函数的有界与否和讨论的区间密切相关.注意2:函数如果有界,其界不唯一.2.函数的单调性设函数()y f x =的定义域为D , 区间I D ⊂. 如果对于区间I 上任意两点 1x 及2x ,当12x x <时, 恒有12()()f x f x <,则称函数()f x 在区间I 上是单调增加的.如果对于区间I 上任意两点1x 及2x , 当12x x <时, 恒有 12()()f x f x >, 则称函数()y f x =在区间I 上是单调减少的.单调增加和单调减少的函数统称为单调函数.3.函数的奇偶性设函数()f x 的定义域D 关于原点对称 (即若x D ∈, 则x D -∈).如果对于任意的x D ∈, 有()()f x f x -=, 则称()f x 为偶函数.如果对于任一x D ∈, 有()()f x f x -=-, 则称()f x 为奇函数.偶函数的图形关于y 轴对称, 奇函数的图形关于原点对称.4.函数的周期性设函数()f x 的定义域为D . 如果存在一个正数l , 使得对于任意x D ∈有()x l D +∈,且 ()()f x l f x +=,则称()f x 为周期函数.l 称为()f x 的周期.注意:一个函数如果有周期,其周期不唯一.我们把所有周期中的最小正值称为最小正周期,简称周期.周期函数的图形特点: 在函数的定义域内, 每个长度为l 的区间上, 函数的图形有相同的形状.1.1.3反函数与复合函数定义 1.1.3设函数对每个()y f D =, 有唯一的x D ∈, 使得()f x y =,于是有1()f y x -=,1f -为函数f 的反函数.由于人们习惯上自变量用x 表示, 因变量用y 表示, 于是()y f x =,x D ∈的反函数记成1()y f x -=,()x f D ∈.若f 是定义在D 上的单调函数,容易证明1f -也是()y f D =上的单调函数.定义 1.1.4设函数()y f u =的定义域为1D ,函数()u g x =在D 上有定义且1()g D D ⊂,则由下式确定的函数[()],y f g x x D =∈ 称为由函数()u g x =和函数()y f u =构成的复合函数, 它的定义域为D , 变量u 称为中间变量.1.1.4.基本初等函数常数函数:a y = (a 为常数);幂函数:(y x R μμ=∈是常数);指数函数: (01)x y a a =>≠且;对数函数:log (0,1a y x a a =>≠,特别当a e =时, 记为ln y x =);三角函数:sin ,cos ,tan ,cot ,sec ,csc y x y x y x y x y x y x ======;反三角函数:arcsin ,arc s ,arc ,arc y x y co x y tgx y ctgx ==== .统称为基本初等函数.由基本初等函数经过有限次的四则运算和有限次复合并可用一个式子表示的函数, 称为初等函数.1.1.5 内容小结1.函数的概念2.函数的性质3.反函数与分段函数4.基本初等函数 1.2 函数的极限◆1.2.1数列的极限◆1.2.2函数的极限◆1.2.3内容小结1.2.1数列的极限定义1.2.1对于数列{x n }, 如果当n 无限增大时, 数列的一般项x n 无限地接近于某一确定的常数A , 则称常数A 是数列{x n }的极限, 或称数列{x n }收敛于A . 记为lim n n x A →∞=. 如果数列没有极限, 则称数列是发散的.例1. 观察下列数列并指出其极限.(1)lim n c →∞{}=. (2)lim 1n n n →∞{}=+ 1(3)lim{}2nn →∞= 解:观察数列在n →∞时的变化趋势,有(1)lim n c c →∞{}= (2)lim lim 1n n n n u n →∞→∞{}={}=1+ 1(3)lim{}lim{}02n n n n u →∞→∞==1.2.2函数的极限1.当x →x 0 时函数的极限定义1.2.2若x 无限接近于x 0 时, 函数f (x )的值无限接近于常数A , 则称当x 趋于x 0 时, f (x )以A 为极限. 记作 0lim x x →f (x )=A 或 f (x )→A (当x →0x ). 定义1.2.3若x →x 0- 时, f (x )无限接近于某常数A , 则常数A 叫做函数f (x )当x →x 0时的左极限, 记为A x f x x =-→)(lim 0. 定义1.2.4 若当x →x 0+ 时, f (x )无限接近于某常数A , 则常数A 叫做函数f (x )当x →x 0时的右极限, 记为A x f x x =+→)(lim 0.左极限和右极限统称为单侧极限.例2 设函数⎩⎨⎧≥<=0,10,)(x x x x f ,求)(lim 0x f x -→和)(lim 0x f x +→. 解:)(lim 0x f x -→=0lim 0=-→x x )(lim 0x f x +→=11lim 0=+→x 定理1.1 当0x x →时,函数)(x f 极限存在的充分必要条件是当0x x →时,函数)(x f 的左、右极限都存在且相等,即A x f x f A x f x x x x x x ==⇔=+-→→→)(lim )(lim )(lim 000 例3 讨论函数⎪⎩⎪⎨⎧>+=<-=010 00 1)(x x x x x x f 当x →0时的极限不存在.解:这是因为, 1)1(lim )(lim 00-=-=--→→x x f x x , 1)1(lim )(lim 00=+=++→→x x f x x , )(lim )(lim 00x f x f x x +-→→≠. 所以0lim ()x f x →不存在. 2.当x →∞时函数的极限定义1.2.5设f (x )当|x |大于某一正数时有定义.如果当x 的绝对值无限增大时函数f (x )无限趋近于常数A , 则称常数A 为函数f (x )当x →∞时的极限, 记为A x f x =∞→)(lim 或 f (x )→A (x →∞).类似地可定义A x f x =-∞→)(lim 和A x f x =+∞→)(lim . 注意: A x f x =∞→)(lim ⇔A x f x =-∞→)(lim 且A x f x =+∞→)(lim .例4. 考察1lim x x→∞=?.解 当x 无限变大时,分式的分母越来越大而分子的值不变,故知1lim 0x x →∞=1.2.3 内容小结1.数列的极限2.函数的极限1.3极限的运算◆1.3.1极限的四则运算◆1.3.2两个重要的极限◆1.3.3 内容小结1.3.1极限的四则运算定理1.2 在某个变化过程中,如果 lim f (x )=A , lim g (x )=B , 则有(1) lim [f (x )±g (x )] = lim f (x ) ±lim g (x ) =A ± B ;(2) lim f (x )⋅g (x ) = lim f (x ) ⋅ lim g (x ) =A ⋅B ; (3)BA x g x f x g x f ==)(lim )(lim )()(lim (B ≠0). 推论1 如果lim f (x )存在, 而c 为常数, 则lim [c f (x )]=c lim f (x ).推论2 如果lim f (x )存在, 而n 是正整数, 则lim [f (x )]n =[lim f (x )]n .特别地,法则1、2可以推广到有限个函数的情形.例1. 求)12(lim1-→x x . 解: 11121lim 21lim 2lim )12(lim1 1 1 1=-⋅=-=-=-→→→→x x x x x x x . 例2. 求351lim 23 2+--→x x x x . 解: )35(lim )1(lim 351lim 223223 2+--=+--→→→x x x x x x x x x 3lim lim 5lim 1lim lim 2222232→→→→→+--=x x x x x x x x 325)lim (1)lim (2232+⋅--=→→x x x x 3731021223-=+--=. 例3. 求93lim 2 3--→x x x . 解: 31lim )3)(3(3lim 93lim 3 32 3+=+--=--→→→x x x x x x x x x 61)3(lim 1lim 3 3=+=→→x x x .例5 求357243lim 2323-+++∞→x x x x x . 解:先用x 3 去除分子及分母, 然后取极限: 73357243lim 357243lim 332323=-+++=-+++∞→∞→x x x x x x x x x x . 例6求52123lim 232+---∞→x x x x x . 解:先用x 3 去除分子及分母, 然后取极限: 020512123lim 52123lim 332232==+---=+---∞→∞→x x x x x x x x x x x . 例7 求12352lim 223--+-∞→x x x x x . 解: 因为052123lim232=+---∞→x x x x x , 所以 ∞=--+-∞→12352lim 223x x x x x . 归纳上述情况,我们有分式函数的极限 ⎪⎩⎪⎨⎧>∞=<=+⋅⋅⋅+++⋅⋅⋅++--∞→mn m n b a mn b x b x b a x a x a m m m n n n x 0 lim 00110110例8 求)1211(lim 21---→x x x 解 当1→x 时,11-x 与122-x 的极限都不存在,不能直接运算极限的运算法则,可先通分化简再计算极限,即2111lim 121lim )1211(lim 12121=+=--+=---→→→x x x x x x x x1.3.2 两个重要的极限 1.1sin lim 0=→xx x . 例9 求x x x tan lim0→. 解: x x x tan lim 0→x x x x cos 1sin lim 0⋅=→1cos 1lim sin lim 00=⋅=→→xx x x x . 例10 求20cos 1lim x x x -→.解: 20cos 1lim x x x -→=220220)2(2sin lim 212sin 2lim x x x x x x →→= 2112122sin lim 21220=⋅=⎪⎪⎪⎭⎫ ⎝⎛=→x x x . 2.x x x)11(lim +∞→=e . 若令x t 1=,则∞→x 时,0→t .于是,有 e t tt =+→10)1(lim 例11求x x x)11(lim -∞→. 解: )1()11(lim )11(lim --∞→∞→-+=-x x x x x x 11])11(lim [---∞→=-+=e xx x . 例12 求x x x 511lim ⎪⎭⎫ ⎝⎛+∞→ 解 55511lim 11lim e x x x x x x =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+∞→∞→ 例13 求x x x x 211lim ⎪⎭⎫ ⎝⎛-+∞→ 解 x x x x 211lim ⎪⎭⎫ ⎝⎛-+∞→=x x x x 21111lim ⎪⎪⎪⎪⎭⎫ ⎝⎛-+∞→=x xx x x 221111lim ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+∞→=422e e e =- 例14求x x x 20)31(lim -→ 解 x x x 20)31(lim -→=6310)]3(1[lim --→⎭⎬⎫⎩⎨⎧-+x x x =6-e 1.3.3 内容小结1.极限的四则运算2.两个重要的极限1.4 无穷小与无穷大◆1.4.1 无穷小◆1.4.2 无穷大◆1.4.3 无穷小的比较◆1.4.4 内容小结1. 4. 1无穷小定义1. 4. 1如果函数f (x )当x →x 0(或x →∞)时以零为极限, 则称函数f (x )为当x →x 0(或x →∞)时的无穷小量. 简称无穷小.值得注意的是,说一个函数f (x )是无穷小,必须指明自变量x 的变化趋势.例如,函数y=x-2是x →2时的无穷小,而当x 趋向其他数值时就不是无穷小了.另外,切不可认为无穷小是一个绝对值很小很的数,它是变量,是指函数的极限为零.在常数中“0”是无穷小,它是特殊的无穷小量.无穷小具有以下性质:性质1 有限多个无穷小的和仍是无穷小.性质2 有限多个无穷小的乘积仍是无穷小.性质3有界函数与无穷小的乘积仍是无穷小.定理1. 3 在自变量的同一变化过程x →x 0(或x →∞)中, 函数f (x )具有极限A 的充分必要条件是f (x )=A +α, 其中α是无穷小.1.4.2无穷大定义1. 4. 2当x →x 0(或x →∞)时, 函数的绝对值|f (x )|无限增大, 就称函数 f (x )为当x →x 0(或x →∞)时的无穷大. 记为∞=→)(lim 0x f x x (或∞=∞→)(lim x f x ). 注意: 当x →x 0(或x →∞)时为无穷大的函数f (x ), 按函数极限定义来说, 极限是不存在的. 但为了便于叙述函数的这一性态, 我们也说“函数的极限是无穷大”, 并记作∞=→)(lim 0x f x x (或∞=∞→)(lim x f x ). 按照函数的绝对值|f (x )|无限增大的方向又可以分为正无穷大与负无穷大:+∞=∞→→)(lim )( 0x f x x x , -∞=∞→→)(lim )( 0x f x x x . 与无穷小相同,说一个函数是无穷大,必须指明自量x 的变化趋势.例1 指出自变量在怎样的变化过程中函数11y x =-是无穷大? 解: 因为 11lim 1x y x -→==-∞-, 11lim 1x y x +→==+∞- 所以,当1x -→时为负无穷大,当1x +→时为正无穷大.定理1.4在自变量的同一变化过程中, 如果f (x )为无穷大, 则)(1x f 为无穷小; 反之, 如果f (x )为无穷小, 且f (x )≠0, 则)(1x f 为无穷大.1.4. 3无穷小的比较定义1. 4. 3 设α及β都是在同一个自变量的变化过程中的无穷小.如果0lim=αβ, 就说β是比α高阶的无穷小, 记为β=o (α). 如果∞=αβlim, 就说β 是比α 低阶的无穷小. 如果0lim≠=c αβ, 就说β 与α 是同阶无穷小. 如果1lim =αβ, 就说β与α是等价无穷小, 记为α~β . 例2. 因为03lim 20=→xx x , 所以当x →0时, 3x 2是比x 高阶的无穷小, 即3x 2=o (x )( x →0). 例3. 因为∞=∞→211lim n n n , 所以当n →∞时, n 1是比21n 低阶的无穷小. 例4. 因为639lim 23=--→x x x , 所以当x →3时, x 2-9与x -3是同阶无穷小. 例5. 因为21cos1lim 20=-→x x x , 所以当x →0时, 1-cos x 与x 的同阶无穷小. 例6. 因为1sin lim 0=→xx x , 所以当x →0时, sin x 与x 是等价无穷小, 即sin x ~ x (x →0). 定理1. 5 设α~α ', β~β ', 且αβ''lim存在, 则αβαβ''=lim lim . 例7. 求xx x 5sin 2tan lim 0→. 解: 当x →0时, tan 2x ~ 2x , sin 5x ~ 5x , 所以x x x 5sin 2tan lim 0→5252lim 0==→x x x . 例8. 求x x x x 3sinlim 30+→. 解: 当x →0时sin x ~x , 无穷小x 3+3x 与它本身显然是等价的, 所以3131lim 3lim 3sin lim203030=+=+=+→→→x x x x x x x x x x . 1.4.4 内容小结1.无穷小2.无穷大3.无穷小的比较 1.5 函数的连续性◆1.5.1连续的概念◆1.5.2函数的间断点◆1.5.3 连续函数的运算与初等函数的连续性◆1.5.4闭区间上连续函数的性质◆1.5.5 内容小结1.5.1连续的概念定义1.5.1设函数y =f (x )在点x 0的某一个邻域内有定义. 当自变量x 在这邻域内从x 0变到1x 时, 函数y 相应地从f (x 0)变到)(1x f , 则称自变量的终值与初值的差01x x x -=∆为自变量的增量(或自变量的改变量),而函数的终值与初值的差)()()()(0001x f x x f x f x f y -∆+=-=∆称为函数的增量(或函数的改变量).定义1.5.2 设函数y = f (x )在点x 0 的某一个邻域内有定义, 如果自变量的增量∆x =x -x 0 趋于零时, 对应的函数的增量∆y = f (x 0+∆x )- f (x 0 )也趋于零, 即0lim 0=∆→∆y x ,则称函数y = f (x )在点x 0 处连续.定义1. 5. 3 设函数y = f (x )在点x 0 的某一个邻域内有定义, 如果当0x x → 时,函数)(x f 的极限存在,且)()(lim 00x f x f x x =→则称函数y = f (x )在点x 0处连续.若)()(lim 00x f x f x x =-→, 则称y =f (x )在点0x 处左连续. 若)()(lim 00x f x f x x =+→, 则称y =f (x )在点0x 处右连续. 定理1.6函数y =f (x )在点x 0处连续的充分必要条件是)()(lim )(lim 000x f x f x f x x x x ==+-→→ 定义1. 5. 4如果函数y =f (x )在区间(a,b )或[a,b]上每一点(区间左端点右连续,右端点左连续)都连续, 则称函数y =f (x )在(a,b )或[a,b]在为区间上的连续函数, 或者说函数在该区间上连续.例1 试证⎪⎩⎪⎨⎧=≠=0,00,1sin )(x x x x x f 在0=x 处是连续的. 解 因为)0(01sin lim )(lim 0f xx x f x x ===→→ 所以)(x f 在0=x 处是连续.例2 证明⎩⎨⎧>≤+=0,cos 0,12)(x x x x x f 在0=x 处是连续 证 因为1cos lim )(lim 00==++→→x x f x x , 1)12(lim )(lim 00=+=--→→x x f x x且1)0(=f ,即)(x f 在0=x 处左、右连续且都等于函数值,所以在0=x 处是连续. 例3. 证明函数y =sin x 在区间(-∞, +∞)内是连续的.证: 设x 为区间(-∞, +∞)内某一任意点. 则此时有∆y =sin(x +∆x )-sin x )2cos(2sin 2x x x ∆+∆=, 当∆x →0时, ∆y 是无穷小与有界函数的乘积, 所以0lim 0=∆→∆y x . 故函数y =sin x 在区间(-∞, +∞)内连续.1. 5. 2函数的间断点定义1.5.5设函数f (x )在点x 0的某邻域内有定义. 若函数f (x )至少有下列三种情形之一:(1)在x 0 处没有定义;(2)虽然在x 0 有定义, 但极限0lim x x →f (x )不存在; (3)虽然在x 0有定义且极限0lim x x →f (x )存在, 但极限0lim x x →f (x )≠ f (x 0); 则称函数f (x )在点x 0不连续, 点x 0称为函数f (x )的不连续点或间断点.例4. 函数x y 1sin =在点x =0没有定义, 所以点x =0是函数x1sin 的间断点. 当x →0时, 函数值在-1与+1之间振荡, 所以点x =0称为函数x1sin 的振荡型间断点.例5. 函数112--=x x y 在x =1没有定义, 所以点x =1是函数的间断点. 因为11lim 21--→x x x 2)1(lim 1=+=→x x , 如果补充定义: 令x =1时y =2, 则所给函数在x =1成为连续. 所以x =1称为该函数的可去间断点.例6 讨论函数21xy =在0=x 的连续性. 解 因为21x y =在0=x 处定义,且∞=→201lim x x ,故0=x 是21x y =的间断点,称为无穷间断点.例7. 设函数⎪⎩⎪⎨⎧>+=<-=010 00 1)(x x x x x x f .因为1)1(lim )(lim 00-=-=--→→x x f x x , 1)1(lim )(lim 00=+=++→→x x f x x , )(lim )(lim 00x f x f x x ++→→≠,所以极限)(lim 0x f x →不存在, x =0是函数f (x )的间断点. 因函数f (x )的图形在x =0处产生跳跃现象, 我们称x =0为函数f (x )的跳跃间断点.通常把间断点分成两类:设x 0是函数f (x )的间断点, 若左极限)(lim 0x f x x -→与右极限)(lim 0x f x x +→都存在, 则称x 0为第一类间断点.否则称为第二类间断点.故可去间断点和跳跃间断点都是第一类间断点,而振荡间断点和无穷断点都是第二类间断点.1. 5. 3 连续函数的运算与初等函数的连续性定理1. 7.设函数f (x )和g (x )在点x 0 处连续, 则他们的和、差、积、商(当0)(0≠x g 时)f (x )±g (x ), f (x )⋅g (x ),)()(x g x f (当0)(0≠x g 时) ,在点x 0也连续. 定理1. 8如果函数f (x )在区间I x 上单调增加(或单调减少)且连续, 则它的反函数x =f -1(y )也在对应的区间I y ={y | y =f (x ),x ∈I x }上单调增加(或单调减少)且连续.例8. 由于y =sin x 在区间]2,2[ππ-上单调增加且连续, 所以它的反函数y =arcsin x 在区间[-1, 1]上也是单调增加且连续的.定理1.9设函数y =f [g (x )]由函数y =f (u )与函数u =g (x )复合而成, 若函数u =g (x )在点x 0连续, 函数y =f (u )在点u 0=g (x 0)连续, 则复合函数y =f [ϕ(x )]在点x 0也连续.例9 求93lim 23--→x x x . 解: 因为 932--=x x y 是由u y =与932--=x x u 复合而成的. 93lim 23--→x x x 93lim 23--=→x x x 61=. 例10. 讨论函数xy 1sin =的连续性. 解: 函数x y 1sin =是由y =sin u 及xu 1=复合而成的. sin u 当-∞<u <+∞时是连续的, x1当-∞<x <0和0<x <+∞时是连续的, 所以函数x1sin 在无限区间(-∞, 0)和(0, +∞)内是连续的. 定理1 .10 一切初等函数在其定义区间内都是连续的.例11. 求201lim x x -→. 解: 初等函数f (x )=21x -在点00=x 是有定义的, 所以 111lim 20==-→x x . 例12. 求x x sin ln lim 2π→.解: 初等函数f (x )=ln sin x 在点2 0π=x 是有定义的,所以 02 sin ln sin ln lim 2==→ππx x .例13. 求xx x 11lim 20-+→. 解: x x x 11lim 20-+→)11()11)(11(lim 2220++++-+=→x x x x x 02011lim20==++=→x x x . 例14. 求x x a x )1(log lim0+→. 解: x x a x )1(log lim 0+→x a x x 10)1(log lim +=→ae a ln 1log ==. 例15. 求xa x x 1lim 0-→. 解: 令a x -1=t , 则x =log a (1+t ), x →0时t →0, 于是x a x x 1lim 0-→=a t t a t ln )1(log lim 0=+→. 1. 5. 4闭区间上连续函数的性质对于在区间I 上有定义的函数f (x ), 如果有x 0∈I , 使得对于任一x ∈I 都有f (x )≤f (x 0 ) (f (x )≥f (x 0 )),则称f (x 0 )是函数f (x )在区间I 上的最大值(最小值).定理1.11(最大值和最小值定理)在闭区间上连续的函数在该区间上一定能取得它的最大值和最小值.注意: 如果函数在开区间内连续, 或函数在闭区间上有间断点, 那么函数在该区间上就不一定有最大值或最小值.定理12(有界性定理)在闭区间上连续的函数一定在该区间上有界.定理13(零点定理)设函数f (x )在闭区间[a , b ]上连续, 且f (a )与f (b )异号, 那么在开区间(a , b )内至少有一点ξ 使f (ξ)=0.(也称为根的存在定理)定理14(介值定理)设函数f (x )在闭区间[a , b ]上连续, 且在这区间的端点取不同的函数值f (a )=A 及f (b )=B ,那么, 对于A 与B 之间的任意一个数C , 在开区间(a , b )内至少有一点ξ , 使得f (ξ)=C .推论 在闭区间上连续的函数必取得介于最大值M 与最小值m 之间的任何值.例14. 证明方程x 3-4x 2+1=0在区间(0, 1)内至少有一个根.证: 函数f (x )= x 3-4x 2+1在闭区间[0, 1]上连续, 又f (0)=1>0, f (1)=-2<0.根据零点定理, 在(0, 1)内至少有一点ξ , 使得f (ξ)=0, 即 ξ 3-4ξ 2+1=0 (0<ξ<1).这等式说明方程x 3-4x 2+1=0在区间(0, 1)内至少有一个根是ξ .1.5.5 内容小结1.连续的概念2.函数的间断点3. 连续函数的运算与初等函数的连续性4.闭区间上连续函数的性质第六节 常用的经济函数介绍1.需求函数一种商品的市场需求量Q 与该商品的价格p 密切相关,通常,降低商品价格会使需求量增加,而提高商品价格会使需求量减少.如果不考虑其他因素的影响,需求量Q 可以看作是价格p 的一元函数,称之为需求函数,记作Q=Q (p )一般来说,需求函数为价格p 的单调减少函数.根据市场统计,常见的需求函数有以下几种类型:(1)线性需求函数 Q =a – bp (a >0,b >0);(2)二次需求函数Q= a – bp –c 2p (a >0,b >0,c >0); (3)指数需求函数Q = bp ae - (a >0,b >0);需求函数Q =Q (p )的反函数,就是价格函数,记作P = P (q ) 也反映商品的需求与价格的关系.2.供给函数某种商品的市场供给量S 也受商品价格p 的制约,价格上涨将刺激生产者向市场提供更多的商品,使供给量增加;反之,价格下跌将将使供给量减少.供给量S 也可看成价格p 的一元函数,称为供给函数,记为S = S (p)供给函数为价格p 的单调增加函数.常见的供给函数有线性函数、二次函数、幂函数、指数函数等.其中线性供给函数为 S = - c +d p (c >0,d>0)3总成本函数、收入函数和利润函数在生产和产品的经营活动中,人们总希望尽可能降低成本,提高收入和利润.而成本、收入和利润这些经济变量都与产品的产量或销售量q 密切相关,他们都可以看作q 的函数,分别称为总成本函数,记为C (q );收入函数,记为R (q );利润函数,记为L (q ).总成本由固定成本1C 和可变成本2C (q )两部分组成,固定成本与产量q 无关无关,如设备维修费、企业管理费等;可变成本随产量q 的增加而增加,如原材料、费、动力费等.即C (q )=1C +2C (q )总成本函数C (q )是q 的单调增加函数.最典型的成本函数是三次函数230123C a a q a q a q =+-+ (i a < 0,1,2,3)但有时为了使问题简单化,也常常采用线性成本函数C =a + b q (a >0,b >0)及二次成本函数. 只给出总成本不能说明企业生产的好坏,为了评价企业的生产状况,需要计算产品的平均成本,即生产q 件产品时的平均成本,记作C ,则()()21C q C q C C q q q ==+,其中()2C q q 称为平均可变成本R (q )=pq利润等于收入与总成本的差,于是利润函数为 L (q )= R (q )-C (q)例1 已知某种产品的总成本函数为22000,8q C =+ 求当生产200个产品时的总成本和平均成本. 解 由题意,产量200个时的总成本为()220020020007000,8C =+= 产量200个时的平均成本为()700020035.200C ==。
第一章函数、极限、连续一、极限1.1数列极限的定义:∀ε>0,存在自然数N,使得当n>N时,就有|x n−a|<ε,那么称数列{x n}收敛于a,记为limn→∞x n=a.称a为此数列的极限;极限不存在的数列称为发散数列.1.2函数极限的定义:设f(x)在a的某个去心领域有定义,A是一个实数。
如果对任一个ε>0,存在一个δ>0,使得当0<|x−a|<δ时,就有|f(x)−A|<ε,那么称f(x)在a处有极限A,记为limx→af(x)=A或f(x)→A(x→a).海涅定理:limx→af(x)=A的充分必要条件是,对任一满足x n→a(∀n,x n≠a)的数列,均有f(x n)→A.定理:limx→af(x)≠A成立的充分必要条件是,存在一个常数ε0>0,使得在a的任何去心邻域,都可以找到一点,满足|f(x)−A|≫ε0.1.3极限的性质及运算定理:如果f(x)在λ处极限存在,则f(x)比在λ的某去心邻域上有界。
定理:函数的极限若存在,则必唯一。
定理:若limx→λf(x)=A,limx→λf(x)=B,且A>B,则存在λ的某个去心邻域N̂λ(δ),使得在N̂λ(δ)上,f(x)>g(x)成立。
(反之,也成立。
)定理(夹逼准则):若f(x)≪ℎ(x)≪g(x)在λ的某个去心邻域上成立,且limx→λf(x)=limx→λg(x)=A,则limx→λℎ(x)=A。
注:(1) limx→af(x)=∞(±∞),函数f(x)为无穷大量;limx→af(x)=0,函数f(x)为无穷小量.(2)若函数极限存在,则函数的极限运算符合四则运算法则。
(3)limx→a f(x)=∞(±∞),则limx→a1f(x)=0;lim x→af (x )=0,limx→a 1f (x )=∞(±∞).(4)若f (x )在λ的某个去心邻域上有界,g (x )当x →λ时为无穷小量,则f(x)g (x )当x →λ时也为无穷小量。
第一章 函数 极限 连续知识点拔1.1 函数一、函数的概念设D 是一个非空数集,若存在一个对应法则f ,使得对D 内的每一个值x 都有唯一的y 值与之对应,则称这个对应法则f 是定义在数集D 上的一个函数,记作:)(x f y =,其中x 叫自变量,y 叫因变量或函数,数集D 称为函数的定义域,而数集}),(|{D x x f y y z ∈==叫函数的值域.如果D x ∈0,称函数)(x f 在0x 处有定义,函数)(x f 在0x 处的函数值记为0x x y =或)(0x f .注释:①函数定义的两个要素:定义域和对应法则;②两个函数相等条件:定义域和对应法则都相同的两个函数是相同函数,如:22)(2---=x x x x f 与1)(+=x x g 不同,因定义域不同;x x f 2sin )(=与x x g sin )(=不同,因对应法则不同;x x x x f 222cos sin )(++=与1)(2+=t t g 相同,也就是当两上函数的定义域和对应法则都相同时,即使其自变量所用的字母不同,但两个函数相同.③若定义域内的每一个x 只对应一个函数值y ,则称该函数为单值函数,若同一个x 值可对应于多于一个的函数值y ,这种函数称为多值函数.二、函数的基本性质1、函数的单调性:设函数在区间D 上有定义,如果对2121,x x D x x <∈∀且,恒有)()(21x f x f <(或)()(21x f x f >),则称)(x f 在区间D 上严格单调增加(或严格单调减少)的.如果对于D x x ∈∀21,21x x <且,有)()(21x f x f ≤ (或)()(21x f x f ≥)称)(x f 在区间D 上是单调增加(或单调减少)的.注释:(1)函数的有界性与单调性是与某个区间密切相关的,区间不同函数的有界性与单调性也不同.(2)增+增=增,增-减=增,减+减=减,减-增=减,增的倒数为减,减的倒数为增. (3)增函数与增函数或减函数与减函数的复合为单调增加函数. (4)增函数与减函数或减函数与增函数的复合为单调减少函数.2、函数的奇偶性:设D 是对称于原点的区间,若对D x ∈∀,)()(x f x f -=-有,则称)(x f 是奇函数;若有)()(x f x f =-,称)(x f 是偶函数.注释:①奇(偶)函数的定义域必须是关于原点对称的区间. ②奇函数)(x f 的图象关于原点对称,偶函数的图象关于y 轴对称. ③奇偶函数的运算性质1°奇函数的代数和仍为奇函数;偶函数的代数和仍为偶函数;奇函数与偶函数的代数和为非奇非偶函数;2°偶数个奇(或偶)函数的积为偶函数;奇数个奇函数的积为奇函数; 3°一奇一偶函数的积是奇函数;4°奇函数的导数是偶函数,偶函数的导数是奇函数;5°奇函数的原函数是偶函数;偶函数)(x f 的原函数⎰=xa dt t f x F )()(是奇函数的充要条件是0=a ,即在所有原函数中只有一个函数是奇函数.④任何一个定义域是关于原点对称的函数都可以表示成一个奇函数与一个偶函数和的形式,即=)(x f 2)()(2)()(x f x f x f x f -++--.3、函数的有界性:设)(x f 在区间D 上有定义,如果存在0>M ,使得对一切D x ∈都有M x f ≤)(,则称)(x f 在D 上有界,否则称为无界,即对0>∀M ,若存在D x ∈0,使得M x f >)(,称)(x f 在D 上是无界的.注释:函数的有界性与x 的取值区间有关. 若函数xy 1=在区间),1(+∞上有界,但在)1,0(内是无界的,因为在这个区间上函数满足定义的M 不存在,即函数的有界性与x 的取值区间有关.4、函数的周期性:设)(x f 的定义域为D ,若存在常数0>T ,伎得对D x ∈∀,必有D T x ∈±,并且有)()(x f T x f =+成立,则称)(x f 是以T 为周期的周期函数,T 称为函数)(x f 的周期,所有周期中的最小正周期叫函数)(x f 的周期.注释:①周期函数的定义域必须是无限点集,但不能是有限区间. 如:x y tan =的定义域是(+∞∞-,)且....,2,1,0,2=+≠k k x ππ②若)(x f 的周期为T ,则)(φω+x f 的周期为ωT(0≠ω);③周期函数的和、差、积仍为周期函数,且周期为各个函数周期的最小公倍数,如:x x y 3cos 4sin +=周期是32,42ππ的最小公倍数π2,但也有例外,如:x sin ,x cos 的周期为2π,但x x y cos sin +=的周期为π;④周期函数的导数仍为周期函数,且周期不变; ⑤设)(x f 是周期为T 的函数,则它的原函数⎰=xadt t f x F )()(为周期函数的充要条件是0)(0=⎰Tdx x f ,或者说,周期函数的原函数不一定是周期函数,如:x x f cos 1)(+=是以2π为周期的函数,但其任一个原函数C x x x F ++=sin )(不是周期函数.⑥不是每一个周期函数都有最小正周期的,如:狄利克雷函数⎩⎨⎧=无理数有理数x x y ,0,1任何有理数r 都是它的周期,即若x 为有理数, r x +也是有理数,故有)(1)(r x f x f +==;若x 为无理数, r x +也是无理数,故)(0)(r x f x f +==,可见r 为)(x f 的周期,但它没有最小的正周期. 又如:C y =,C 为常数,它是周期为任意实数且没有最小正周期的周期函数.三、反函数设函数)(x f y =,其定义域为D ,值域为M ,如果对于M 中的某一个y 值(M y ∈),都可以从关系式)(x f y =确定唯一的x (D x ∈)与之对应,这样就确定了一个以y 为自变量的新函数,记为:)(1y fx -=,称函数)(1y f x -=为函数)(x f y =的反函数,它的定义域为M ,值域为D .注释:①习惯上自变量用x 表示,函数用y 表示,因此函数)(x f y =的反函数)(1y f x -=通常表示为)(1x fy -=.②反函数的定义域就是其原来函数的值域;反函数的值域就是原来函数的定义域,且有)]([)]([11x f f x x f f --==.③原来函数)(x f y =与其反函数)(1x fy -=的图像关于x y =对称(前提是在同一坐标系中),)(x f y =的图像与其反函数)(y x φ=的图像重合.④只有一一对应的函数才有反函数.⑤若)(x f 在区间I 内单调⇒)(x f 在区间I 内一定存在单值反函数,反之不一定成立,即若)(x f 在区间I 内存在单值反函数但)(x f 在区间I 内不一定单调,如: ⎩⎨⎧≤≤+≤--=10,101,)(x x x <x x f 在区间]1,1[-内存在单值反函数,但它在]1,1[-上不单调.四、复合函数若函数)(x u φ=在0x 处有定义,而)(u f y =在)(00x u φ=处有定义,则)]([x f y φ=称为由)(u f y =和)(x u φ=复合而成的复合函数,u 称为中间变量.注释:①只有当函数)(x u φ=的值域与)(u f y =的定义域的交集不是空集时才构成复合数. ②函数的复合:先利用外层函数关系,再利用内层函数关系而构成,如:设x x f sin )(=,x e x =)(φ,则x e x x f sin )](sin[)]([==φφ.③复合函数的分解:先找到外层函数关系,设其内部整体为中间变量u ,再依次分解,如:21)]sin [arctan(x x y +=,可设)sin arctan(x x u +=,x x v sin +=,则原来函数是由21u y = , v u arctan =,x x v sin +=复合而成.五、初等函数1、基本初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数这五类函数统称为基本初等函数.2、初等函数:由常数和五类基本初等函数经过有限次的四则运算和有限次复合运算且可用一个数学解析式表示的函数叫初等函数.注释:初等函数必须用一个式子表示,不能用一个式表示的函数不能称为初等函数,故分段函数一般不是初等函数.3、分段函数:若函数在其定义域内的不同部分上,分别用不同的表达式表示,这类函数称为分段函数.如:符号函数⎪⎩⎪⎨⎧<-=>=.0,1,0,0,0,1sgn x x x x 是分段函数且是有界函数和奇函数.又如: x x x x x x x y sgn .0,,0,=⎩⎨⎧<-≥==是分段函数.注释:分段函数一般不是初等函数,但若)(x f 是初等函数,则⎩⎨⎧<-≥==.0)(),(,0)(),()()(2x f x f x f x f x f x f 是初等函数. 又如:取整函数[]x y =,即“不超过x 的最大整数”是分段函数. 又如:定义在R 上的狄利克雷(Dirichlet )函数⎩⎨⎧=.,0,1)(无理数有理数x ,x x D 是分段函数,且是有界的,)(x D 是周期函数,但没有最小的正周期,任何有理数都是它的周期,并且)(x D 还是偶函数.4、初等函数的几个特例设函数)(x f 和)(x g 都是初等函数,则(1))(x f 是初等函数,因为=)(x f []2)(x f ;(2)最大值函数max )(=x ϕ{})(),(x g x f 和最小值函数{})(),(min )(x g x f x =ψ都是初等函数,这是因为{}[])()()()(21)(),(max )(x g x f x g x f x g x f x -++==ϕ {}[])()()()(21)(),(min )(x g x f x g x f x g x f x --+==ψ (3)幂指函数)()]([x g x f y = (0)(>x f )是初等函数,因为)(ln )()](ln[)()()]([x f x g x f x g e e x f x g ==.1.2 极限一、数列极限的定义 1、数列极限的概念设}{n x 为数列,a 为定数,若对任给的正数ε,总存在正整数N ,使得当N n >时,有ε<-a x n ,则称数列}{n x 收敛于a ,而a 称为数列}{n x 的极限,记作:a x n n =∞→lim ,或a x n →(∞→n ).若数列}{n x 没有极限,则称数列}{n x 不收敛,或称}{n x 为发散数列. 若0lim =∞→n n x ,则称}{n x 为无穷小数列.定理 数列}{n x 收敛于a 的充要条件是:}{a x n -为无穷小数列. 2、有界数列的概念对于数列}{n x ,如果存在正数M ,使得对于一切的n x 都有不等式M x n ≤||成立,则称数列}{n x 是有界的;如果这样的正数M 不存在,则称数列}{n x 是无界的.注释:(1)若数列}{n x 收敛,则数列有界;(2)有界数列}{n x 不一定收敛,如:n n a )1(-=有界,但不收敛,所以数列有界是数列收敛的必要条件;(3)C C n =∞→lim (常数);01lim=∞→p n n (0>p );0lim =∞→nn q (1<q ); (4)等差数列的求和公式2)(1n n a a n S +=或d n n na S n 2)1(1-+=. (5)等比数列的前n 项和公式qq a S n n --=1)1(1.3、单调数列的概念对于数列}{n x ,如果满足条件 ≤≤≤≤≤+121n n x x x x ,则称数列}{n x 为单调增加数列;如果满足条件 ≥≥≥≥≥+121n n x x x x ,则称数列}{n x 为单调减少数列.单调增加数列和单调减少数列统称为单调数列. 定理(单调有界准则) 单调有界数列必有极限.二、函数极限1、∞→x 时,函数)(x f 的极限 (1)概念定义 如果当∞→x 时,函数)(x f 无限趋近于某个确定的常数A ,则称常数A 为函数)(x f 当∞→x 时的极限,记作:A x f x =∞→)(lim 或A x f →)((∞→x ).注释:(1)∞→x 是指x 的绝对值无限增大,它包含以下两种情况:x 取正值并无限增大,记作:+∞→x ;x 取负值且其绝对值无限增大,记作:-∞→x .(2)如果+∞→x 和-∞→x 两种情况都存在且函数的极限值相等时,则可合并写成∞→x . 定义 如果当+∞→x 时,函数)(x f 无限趋近于某个确定的常数A ,则称常数A 为函数)(x f 当+∞→x 时的极限,记作:A x f x =+∞→)(lim 或A x f →)((+∞→x ).如果当-∞→x 时,函数)(x f 无限趋近于某个确定的常数A ,则称常数A 为函数)(x f 当-∞→x 时的极限,记作:A x f x =-∞→)(lim 或A x f →)((-∞→x ).(2)函数)(x f 在∞→x 时极限存在的充要条件定理 极限A x f x =∞→)(lim 存在的充要条件是A x f x =+∞→)(lim 且A x f x =-∞→)(lim .如:由于2arctan lim π=+∞→x x ,2arctan lim π-=-∞→x x ,所以x x x x arctan lim arctan lim -∞→+∞→≠,故极限x x arctan lim ∞→不存在;又如:由于0lim =-∞→x x e ,+∞=+∞→x x e lim 即不存在,故极限xx e ∞→lim 不存在.2、0x x →时,函数)(x f 的极限 (1)函数)(x f 在0x x →时的极限概念定义 设函数)(x f 在0x 的某个去心邻域内有定义,如果当0x x →时,函数)(x f 无限地趋近于某一确定的常数A ,则称A 为函数)(x f 当0x x →时的极限,记作:A x f x x =→)(lim 0或Ax f →)((0x x →).注释:0x x →表示x 趋近于0x ,含以下两种情况:(1)x 从大于0x 的一侧(即右侧)趋近于0x ,记作:+→0x x ; (2)x 从大于0x 的一侧(即右侧)趋近于0x ,记作:-→0x x .(2)函数左极限与右极限的概念定义 设函数)(x f 在0x 的某个左侧邻域),(00x x δ-(0>δ)内有定义,如果当x 从0x 的左侧趋近于0x (记作:-→0x x )时,函数)(x f 无限地趋近于某一确定的常数A ,则称A 为函数)(x f 当-→0x x 时的极限,记作:A x f x x =-→)(lim 0或A x f =-)(0或A x f =-)0(0.设函数)(x f 在0x 的某个右侧邻域),(00δ+x x (0>δ)内有定义,如果当x 从0x 的右侧趋近于0x (记作:+→0x x )时,函数)(x f 无限地趋近于某一确定的常数A ,则称A 为函数)(x f 当+→0x x 时的极限,记作:A x f x x =+→)(lim 0或A x f =+)(0或A x f =+)0(0.(3)函数)(x f 在0x x →时极限存在的充要条件定理 极限A x f x x =→)(lim 0存在的充要条件是A x f x x =-→)(lim 0且A x f x x =+→)(lim 0.注释:该定理主要用来判定分段函数在分段点处极限是否存在的重要定理. (4)几个常用极限01lim=∞→x x ,C C x x =→0lim (常数),0sin lim 0=→x x ,1cos lim 0=→x x ,00lim x x x x =→. (5)初等函数的极限基本初等函数在定义域内任一点0x 的极限等于该点的函数值;初等函数在定义区间内任一点0x 的极限等于该点的函数值.3、函数极限的性质(1)唯一性:若极限)(lim 0x f x x →存在,则它的极限必唯一;(2)局部有界性:若)(li m 0x f x x →存在,则0>∃δ和0>M ,当δ<-<00x x 时,有M x f ≤)(;(3)保序性:设A x f x x =→)(lim 0,B x g x x =→)(lim 0,(Ⅰ)若B A >,则0>∃δ,当δ<-<00x x 时,有)()(x g x f >; (Ⅱ)若当δ<-<00x x 时,有)()(x g x f >,则B A ≥.(4)保号性:若0)(lim 0>=→A x f x x (或<0),则必0>∃δ,当δ<-<00x x 时,有0)(>x f (或0)(<x f )若0)(>x f (或0)(<x f ),且A x f x x =→)(lim 0,则0≥A (或0≤A ).注释:①上述的变化趋势0x x →,可以换成-→0x x ,+→0x x ,∞→x ,-∞→x ,+∞→x②若)0(0)(<>或x f ,且A x f x x =→)(lim 0,则0>A )0(<或是错误的,如)0(0)(2≠>=x x x f ,但0)(lim 0=→x f x1.3 极限的运算法则若)(lim x f ,)(lim x g 都存在,则(1)[])(lim )(lim )()(lim x g x f x g x f ±=±;(2)[])(lim )(lim )()(lim x g x f x g x f ±=,特别地)(lim )(lim x f C x Cf =; (3))(lim )(lim )()(limx g x f x g x f =,其中0)(lim ≠x g ; (4))]([lim )]([lim x g f x g f =; (5)[],)(lim )(lim )(lim )(x g x g x f x f =其中0)(lim >x f 且不等于1,特别地[]αα)(lim )](lim[x f x f =(α为实数). 注释:①法则(1)(2)可以推广到有限个函数.②0x x →时有理分式极限的求法设)(x R 是有理分式,01110111)()()(b x b x b x b a x a x a x a x Q x P x R n n n n n n n n m n ++++++++==---- ,其中0≠n a ,0≠n b .(1)若0)(0≠x Q m ,则)()()()(lim 0000x R x Q x P x R m n x x ==→;(2)若0)(0=x Q m ,而0)(0≠x P n ,则∞=→)(lim 0x R x x ;(3)若0)(0=x Q m 且0)(0=x P n ,则)(x P n 与)(x Q m 一定有公因子)(0x x -,将)(x P n 与)(x Q m 因式分解,约去公因式后再计算极限.③∞→x 时有理分式极限的求法⎪⎪⎩⎪⎪⎨⎧<∞=>=∞→.,.,.,0)(lim 时当时当时当n m n m b an m x R n n x 其中0≠n a ,0≠n b . ④无理分式极限的求法:先分子或分母有理化,在计算极限 ⑤“∞-∞”型有理分式的求法:先通分,再求极限.1.4 极限存在准则及两个重要极限一、极限存在准则夹逼定理:如果对于0x 的去心邻域内的一切x 都有)()()(x h x f x g ≤≤,且A x h x g x x x x ==→→)(lim )(lim 0,则有A x f x x =→)(lim 0.二、两个重要极限 1、1sin lim0=→xx x ,1sin lim 0=→x x x ,一般的1sin lim0=∆∆→∆,∆表示任一函数)(x u ,即1)()(sin lim 0)(=→x u x u x u ;2、e xxx =+∞→)11(lim ,e x x x =+→10)1(lim ,一般的e =∆+∆∞→∆)11(lim ,e =∆+∆→∆10)1(lim ,∆表示任一函数)(x u ,即e x u x u x u =+∞→)()())(11(li m ,e x u x u x u =+→)(1)())(1(lim .1.5 无穷小量与无穷大量、无穷小的比较一、无穷小量1、无穷小量的概念若0)(lim 0=→x f x x (或0)(lim =∞→x f x ),则称)(x f 是0x x →(或∞→x )时的无穷小量,简称无穷小;2、极限与无穷小量的关系α+=⇔=∞→→A x f A x f x x x )()(lim )(0,其中α是0x x →时的无穷小量.|)(|)(lim )(0A x f A x f x x x -⇔=∞→→是0x x →(或∞→x )时的无穷小量.3、无穷小量的性质(1)有限个无穷小量的和、差、积仍然是无穷小量,(2)有界函数与无穷小量的乘积是无穷小量。
第一章 函数 极限 连续1.1 数列极限的求法一 基本概念 数列极限、数列收敛、数列发散1. 数列极限:lim n n x a→∞=描述语言:当n 充分大时,数列一般项n x 无限趋于(无限接近,充分接近)某个确定的常数a ,则称a 就是数列{}n x 的极限.“N ε-”语言:0ε∀>,N ∃,当n N >时,有n x a ε-<. 二 基本结论1. 收敛数列性质:唯一性;有界性;保号性;子序列的收敛性.2. 单调有界原理:单调有界数列必有极限;或叙述为:单调增加有上界必有极限,单调减少有下界必有极限.3. 夹逼法则:若n n n y x z ≤≤,n N >,且lim lim n n n n y z a →∞→∞==,则lim n n x a →∞=.4. 数列极限运算法则:设lim n n x A →∞=,lim n n y B →∞=,那么(1)lim ()n n n x y A B →∞±=±;(2)lim n n n x y AB →∞⋅=;(3)lim(0)n n nx A B y B→∞=≠.(4)lim ()ny Bn n x A →∞=5. 两个重要极限:1lim (1)e x x x →+=;0sin lim1x x x→=.这两个极限公式可以推广为:当0x x →时,()0f x →,则1()lim (1())e f x x x f x →+=;0sin ()lim1()x x f x f x →=.三 基本方法数列极限的未定式(不确定型)有八种形式:00;∞∞;0⋅∞;∞±∞;1∞;0∞;00;无限个无穷小的和.1. 取大原则 (极限的形式是∞∞,分子和分母同除以n 的最大次幂)例1 求下列极限:(1)2221lim21n n n n n →∞+--+; (2)limn →∞;2. 有理化法(当分子或分母含有根式时,n 的最大次幂有抵消,一般要考虑分子有理化或分母有理化,或分子、分母同时有理化,通过有理化,明确抵消后剩余部分)例2 求下列极限:(1)limn n→∞; (2)lim )n n →∞.3. 夹逼法则 (当数列的一般项不是关于n 代数式或为无限个无穷小的和)例3 求12limd 1sin n n xx x→∞+⎰.解 解此题的关键是将积分表示为关于n 的代数式,显然没办法直接积分,只能通过 对被积函数的放缩,达到可积的目的.11112110d d 1sin 11n nn xx x x xxn n +≤≤==+++⎰⎰,所以12limd 01sin n n xx x→∞=+⎰.例4 求22212lim ()12n nn n n n→∞++++++ (说明将分子n 变成m 的结果)解 无限个无穷小的和是数列极限的未定式的一种常见的形式,解决此类问题常见方法有:夹逼法则;定积分;Stolz 定理.本题应用夹逼法则:22222121212121nn nn nn n n nn ++++++≤+++≤+++++由于2212121limlim12n n nnn nn →∞→∞++++++==++ ,于是222121lim ()122n n n n n n→∞+++=+++4. 单调有界原理(数列一般项不是关于n 的代数式,而是有规律的给出一般项;或是一般项的递推公式)解决此类问题的具体方法:1. 证明单调;2. 证明有界;3. 通过递推公式求极限. 例5 若数列{}n a满足1a >11()2n n na a a a +=+,证明数列极限存在,并求之.证明单调性:因为11()2n n n a a a a +=+≥,所以()21102n n nna a a a a +-=-≤ 或 1n n aa +≤于是,数列{}n a 单调递减.有下界:显然有下界. 根据单调有界原理:极限存在.令lim n n a x →∞=,对递推公式两边取极限,有12a x x x ⎛⎫=+ ⎪⎝⎭,解方程得x =,即lim n n a →∞=例6收敛,并求其极限.证明令1x =2x =n nx =,则n x =,用数学归纳法可以证明:数列{}n x 单调增加,有上界。
第一章 函数、极限和连续§1.1 函数一、 主要内容 ㈠ 函数的概念1. 函数的定义: y=f(x), x ∈D定义域: D(f), 值域: Z(f).2.分段函数:⎩⎨⎧∈∈=21)()(D x x g D x x f y3.隐函数: F(x,y)= 04.反函数: y=f(x) → x=φ(y)=f -1(y)y=f -1(x)定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数:y=f -1(x), D(f -1)=Y, Z(f -1)=X且也是严格单调增加(或减少)的。
㈡ 函数的几何特性1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2),则称f(x)在D 内单调增加( );若f(x 1)≥f(x 2),则称f(x)在D 内单调减少( );若f(x 1)<f(x 2),则称f(x)在D 内严格单调增加( );若f(x 1)>f(x 2),则称f(x)在D 内严格单调减少( )。
2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x)3.函数的周期性:周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数4.函数的有界性: |f(x)|≤M , x ∈(a,b)㈢ 基本初等函数1.常数函数: y=c , (c 为常数)2.幂函数: y=x n, (n 为实数)3.指数函数: y=a x, (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con xy=tan x , y=cot x y=sec x , y=csc x6.反三角函数:y=arcsin x, y=arccon xy=arctan x, y=arccot x ㈣ 复合函数和初等函数1.复合函数: y=f(u) , u=φ(x)y=f[φ(x)] , x ∈X2.初等函数:由基本初等函数经过有限次的四则运算(加、减、乘、除)和复合所构成的,并且能用一个数学式子表示的函数§1.2 极 限一、 主要内容 ㈠极限的概念1. 数列的极限:Aynn =∞→lim称数列{}n y 以常数A 为极限;或称数列{}n y 收敛于A.定理: 若{}n y 的极限存在⇒{}n y 必定有界.2.函数的极限:⑴当∞→x 时,)(x f 的极限:Ax f A x f A x f x x x =⇔⎪⎪⎭⎫==∞→+∞→-∞→)(lim )(lim )(lim⑵当0x x →时,)(x f 的极限:A x f x x =→)(lim 0左极限:Ax f x x =-→)(lim 0右极限:A x f x x =+→)(lim 0⑶函数极限存的充要条件:定理:Ax f x f A x f x x x x x x ==⇔=+-→→→)(lim )(lim )(lim 0㈡无穷大量和无穷小量1. 无穷大量:+∞=)(lim x f称在该变化过程中)(x f 为无穷大量。
X 再某个变化过程是指:,,,∞→+∞→-∞→x x x 000,,x x x x x x →→→+-2.无穷小量:)(lim =x f称在该变化过程中)(x f 为无穷小量。
3.无穷大量与无穷小量的关系:定理:)0)((,)(1lim 0)(lim ≠+∞=⇔=x f x f x f 4.无穷小量的比较:0lim ,0lim ==βα⑴若0lim =αβ,则称β是比α较高阶的无穷小量;⑵若c =αβlim (c 为常数),则称β与α同阶的无穷小量;⑶若1lim =αβ,则称β与α是等价的无穷小量,记作:β~α;⑷若∞=αβlim ,则称β是比α较低阶的无穷小量。
定理:若:;,2211~~βαβα则:2121limlimββαα=㈢两面夹定理 1. 数列极限存在的判定准则:设:nn n z x y ≤≤ (n=1、2、3…)且: a z y n n n n ==∞→∞→lim lim则: a x n n =∞→lim2. 函数极限存在的判定准则: 设:对于点x 0的某个邻域内的一切点 (点x 0除外)有:)()()(x h x f x g ≤≤且:Ax h x g x x x x ==→→)(lim )(lim 0则:A x f x x =→)(lim 0㈣极限的运算规则若:B x v A x u ==)(lim ,)(lim则:①B A x v x u x v x u ±=±=±)(lim )(lim )]()(lim[②B A x v x u x v x u ⋅=⋅=⋅)(lim )(lim )]()(lim[③BA x v x u x v x u ==)(lim )(lim )()(lim )0)((lim ≠x v 推论:①)]()()(lim [21x u x u x u n ±±±Λ)(lim )(lim )(lim 21x u x u x u n ±±±=Λ②)(lim )](lim[x u c x u c ⋅=⋅③nnx u x u )]([lim )](lim [=㈤两个重要极限1.1sin lim 0=→xxx 或 1)()(sin lim 0)(=→x x x ϕϕϕ 2.e xxx =+∞→)11(lim e x xx =+→10)1(lim§1.3 连续一、 主要内容 ㈠ 函数的连续性1. 函数在0x 处连续:)(x f 在0x 的邻域内有定义,1o0)]()([lim lim 000=-∆+=∆→∆→∆x f x x f y x x2o)()(lim 00x f x f x x =→左连续:)()(lim 00x f x f x x =-→右连续:)()(lim 00x f x f x x =+→2. 函数在0x 处连续的必要条件:定理:)(x f 在0x 处连续⇒)(x f 在0x 处极限存在3. 函数在0x 处连续的充要条件:定理:)()(lim )(lim )()(lim 000x f x f x f x f x f x x x x x x ==⇔=+-→→→4. 函数在[]b a ,上连续:)(x f 在[]b a ,上每一点都连续。
在端点a 和b 连续是指:)()(lim a f x f a x =+→ 左端点右连续;)()(lim b f x f bx =-→ 右端点左连续。
a0 b x 5. 函数的间断点:若)(x f 在0x 处不连续,则0x 为)(x f 的间断点。
间断点有三种情况:1o)(x f 在x 处无定义;2o)(lim 0x f x x →不存在;3o)(x f 在x 处有定义,且)(lim 0x f x x →存在,但)()(lim 00x f x f x x ≠→。
两类间断点的判断: 1o 第一类间断点:特点:)(lim 0x f x x -→和)(lim 0x f x x +→都存在。
可去间断点:)(lim 0x f x x →存在,但)()(lim 00x f x f x x ≠→,或)(x f在0x 处无定义。
2o 第二类间断点:特点:)(lim 0x f x x -→和)(lim 0x f x x +→至少有一个为∞,或)(lim 0x f x x →振荡不存在。
无穷间断点:)(lim 0x f x x -→和)(lim 0x f x x +→至少有一个为∞㈡函数在0x 处连续的性质1.连续函数的四则运算:设)()(lim 00x f x f x x =→,)()(lim 00x g x g x x =→1o)()()]()([lim 000x g x f x g x f x x ±=±→2o)()()]()([lim 000x g x f x g x f x x ⋅=⋅→3o )()()()(lim 000x g x f x g x f x x =→⎪⎭⎫ ⎝⎛≠→0)(lim 0x g x x2.复合函数的连续性:)]([),(),(x f y x u u f y ϕϕ===)]([)(lim ),()(lim 0)(000x f u f x x x u x x ϕϕϕϕ==→→则:)]([)](lim [)]([lim 00x f x f x f x x x x ϕϕϕ==→→3.反函数的连续性:)(),(),(001x f y x f x x f y ===-)()(lim )()(lim 01100y f y f x f x f y y x x --→→=⇔=㈢函数在],[b a 上连续的性质1.最大值与最小值定理:)(x f 在],[b a 上连续⇒)(x f 在],[b a 上一定存在最大值与最小值。
-M0 a b x2. 有界定理:)(x f 在],[b a 上连续⇒)(x f 在],[b a 上一定有界。
3.介值定理:)(x f 在],[b a 上连续⇒在),(b a 内至少存在一点ξ,使得:c f =)(ξ,其中:Mc m ≤≤xx推论:)(x f 在],[b a 上连续,且)(a f 与)(b f 异号⇒在),(b a 内至少存在一点ξ,使得:0)(=ξf 。
4.初等函数的连续性:初等函数在其定域区间内都是连续的。
第二章 一元函数微分学§2.1 导数与微分 一、主要内容㈠导数的概念1.导数:)(x f y =在0x 的某个邻域内有定义,xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(lim lim 00000)()(lim 0x x x f x f x x --=→ 00)(0x x x x dxdy x f y ==='='2.左导数:00)()(lim )(0x x x f x f x f x x --='-→- 右导数:000)()(lim )(0x x x f x f x f x x --='+→+定理:)(x f 在0x 的左(或右)邻域上连续在其内可导,且极限存在;则:)(lim )(00x f x f x x '='-→-(或:)(lim )(00x f x f x x '='+→+)3.函数可导的必要条件:定理:)(x f 在0x 处可导⇒)(x f 在0x 处连续4. 函数可导的充要条件:定理:)(00x f y x x '='=存在)()(00x f x f +-'='⇒,且存在。