现代控制理论实验指导书2-第2章1zyx
- 格式:doc
- 大小:165.50 KB
- 文档页数:6
现代控制理论实验指导书实验⼀多变量时域响应⼀、实验⽬的1、掌握多输⼊多输出(MIMO )系统传递函数的建⽴2、分析MIMO 系统时域响应的特点⼆、实验仪器1、 TDN —AC/ACS 型⾃动控制系统实验箱⼀台2、⽰波器3、万⽤表三、实验原理与电路1、传递函数矩阵关于传递函数矩阵的定义是当初始条件为零时,输出向量的拉⽒变换式与输⼊向量的拉⽒变换式之间的传递关系。
设系统动态⽅程为()()x Ax t Bu t ?=+,()()()y t Cx t Du t =+令初始条件为零,进⾏拉⽒变换,有()()()()()()sX s AX s BU s Y s CX s DU s =+=+则11()()()()[()]()()()X s sI A BU s Y s C sI A B D U s G s U s --=-=-+=系统的传递函数矩阵表达式为1()()G s C sI A B D -=-+设多输⼊多输出系统结构图如图1-1。
图1-1多输⼊多输出系统结构图它是由传递函数矩阵为()G s 和()H S 的两个⼦系统构成。
由于()()()()[()()]()[()()()]Y s G s E s G s U s Z s G s U s H s Y s ==-=-1()[()()]()()Y s I G s H s G s U S -=+闭环传递矩阵为:1()[()()]()s I G s H s G s -Φ=+ 2、实验题⽬某⼀控制系统如图1-2,为⼆输⼊⼆输出系统的结构图。
图1-2 ⼆输⼊⼆输出系统的结构图由系统结构图可知,控制器的传递函数阵()c G s 为10()01c G s ??=被控对象的传递函数阵()p G s 为1/(0.11)0()1/(0.11)1/(0.11)p s G s s s +??=??++??反馈传递函数阵()H s 为10()01H s ??=?于是根据闭环传递矩阵公式得1()[()()()]()()c p c p s I G s G s H s G s G s -Φ=+ 将(),(),()c p G s G s H s 代⼊上式可得1101/(0.11)01010()011/(0.11)1/(0.11)0101s s s s -?+Φ=+++1/(0.11)0101/(0.11)1/(0.11)01s s s +++化简得21/(0.12)0()(0.11)/(0.12)1/(0.12)s s s s s +??Φ=??+++??由上式可得系统的输出量()()0.12Y s U s s =+21220.111()()()(0.12)0.12s Y s U s U s s s +=+++ 四、实验内容及步骤1、根据图1-2设计模拟电路图1-3,并按图1-3搭接线路图1-3 系统模拟电路图2、令u1为⼀阶跃信号,观察并记录系统输出的波形。
第一章习题答案1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。
11K s K K p +sK s K p 1+s J 11sK n 22s J K b -++-+-)(s θ)(s U 图1-27系统方块结构图解:系统的模拟结构图如下:)(s U )(s θ---+++图1-30双输入--双输出系统模拟结构图1K pK K 1pK K 1+++pK n K ⎰⎰⎰11J ⎰2J K b ⎰⎰-1x 2x 3x 4x 5x 6x系统的状态方程如下:u K K x K K x K K x X K x K x x x x J K x J x J K x J K x x J K x x x pp p p n p b1611166131534615141313322211+--=+-==++--===∙∙∙∙∙∙阿令y s =)(θ,则1x y =所以,系统的状态空间表达式及输出方程表达式为[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∙∙∙∙∙∙654321165432111111112654321000001000000000000010010000000000010x x x x x x y uK K x x x x x x K K K K K K J K J J K J K J K x x x x x x p p pp npb1-2有电路如图1-28所示。
以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。
R1L1R2L2CU---------Uc---------i1i2图1-28 电路图解:由图,令32211,,x u x i x i c ===,输出量22x R y =有电路原理可知:∙∙∙+==+=++3213222231111x C x x x x R x L ux x L x R 既得22213322222131111111111x R y x C x C x x L x L R x u L x L x L R x =+-=+-=+--=∙∙∙写成矢量矩阵形式为:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡32121321222111321000*********x x x R y u L x x x CCL L R L L R x x x 。
现代控制理论》实验指导书王璐自动化07-1 班山东科技大学机电系实验一系统的传递函数阵和状态空间表达式的转换、实验目的1 •学习多变量系统状态空间表达式的建立方法、了解状态空间表达式与传递函数相互转换的 方法; 2.通过编程、上机调试,掌握多变量系统状态空间表达式与传递函数相互转换方法。
、实验要求学习和了解系统状态方程的建立与传递函数相互转换的方法;其中A 为n x n 维系数矩阵、B 为n x r 维输入矩阵C 为m x n 维输出矩阵,D 为传递阵,一般情况下为0。
系统的传递函数阵和状态空间表达式之间的关系如式(1 — 2)示。
式(1.2)中,num(s)表示传递函数阵的分子阵,其维数是 m x r ; den(s)表示传递函数阵的按s 降幕排列的分母。
五、实验步骤1 .据所给系统的传递函数或( A 、B 、C 阵),依据系统的传递函数阵和状态空间表达式之间的 关系如式(1— 2),采用MATLA B file.m 编程。
注意:ss2tf 和tf2ss 是互为逆转换的指令; 2. 在MATLA 界面下调试程序,并检查是否运行正确。
3. 已知MIMO 系统的系统的传递函数,求系统的空间状态表达式。
系统的传递函数为:4. 从系统的传递函数(1.4)式求状态空间表达式。
程序:num =[0 0 1 2;0 1 5 3]; %在给num 赋值时,在系数前补0,必须使num 和den 赋值的个 数相同; den =[1 2 3 4];[A,B,C,D]=tf2ss( num,de n)二、实验设备1. 计算机1台2.MATLAB6.X 软件 1 套。
四、实验原理说明设系统的模型如式 x Axy Cx(1 — 1)示。
Bu x DuR n u R r y R m(1— 1)G (S )器 C (SI A )1B D(1 — 2)G(S)s 2 5s 3 s 32s 23s 4(1 — 4)程序运行结果A =-2 -3 -4 1 0 0 0 1B =1 0 0在已知系统的状态空间表达式可以求得系统的传递函数,现在已知系统的状态空间表达式来求 系统的传递函数,对上述结果进行相应的验证。
《现代控制理论》实验指导书第一部分使用说明(1)微纳科技cSPACEcSPACE快速控制原型和硬件在回路开发系统(以下简称cSPACE系统)拥有AD、DA、IO、Encoder和快速控制原型开发、硬件在环仿真功能,通过Matlab/Simulink设计好控制算法,将输入、输出接口替换为cSPACE模块,编译整个模块就能自动生成DSP代码,在控制卡上运行后就能生成相应的控制信号,从而方便地实现对被控对象的控制。
运行过程中通过cSPACE提供的MATLAB接口模块,可实时修改控制参数,并以图形方式实时显示控制结果;而且DSP采集的数据可以保存到磁盘,研究人员可利用MATLAB对这些数据进行离线处理。
cSPACE主要能完成:平台实验、一级倒立摆的经典控制实验;一级倒立摆、二级倒立摆的现代控制实验;一级倒立摆、二级倒立摆的智能控制实验。
图1为利用cSPACE工具的开发流程图。
图1 cSPACE开发流程图1(2)AEDK-LabACT-3A自控原理实验箱AEDK-LabACT-3A自动控制实验箱主要能完成:1、自动控制原理实验;2、微机控制技术实验;3、控制系统实验。
自动控制实验箱根据这三个实验项目设计了四个功能区来实现。
根据功能本实验机划分了各种实验区均在主实验板上。
实验区组成见表1。
表1 实验区组成A 实验区模拟运算单元有六个模拟运算单元,每单元由多组电阻、或电容构成的输入回路、反馈回路和1~2个运算放大器组成。
A1~A6模拟运算扩充库包括校正网络库(A7)、整形模块(A8),可调零放大器(A9),放大器(A10)和2个0~999.9KΩ的直读式可变电阻、2个电位器及多个电容(A11)。
A7~A11B 实验区手控阶跃信号发生器由手控阶跃发生(0/+5v、-5v/+5v),幅度控制(电位器),非线性输出组成。
B1 函数发生器含有十种(可选择)波形输出:矩形波、正弦波、斜坡、方波输出,方波/正弦波、矩形波/正弦波同时输出,继电特性、饱和特性、死区特性及间隙特性等非线性输出。
现代控制理论实验指导书哈尔滨理工大学现代控制理论实验报告姓名:袁一鸣班级:13级自动化— 3 班学号:1330130325日期:2016.7.4实验一控制系统的能控性和能观性一实验目的1.掌握能控性和能观性的概念,学会用MATLAB判断能控性和能观性;2. 掌握系统的结构分解,学会用MATLAB 进行分解;3.掌握系统能控标准型和能观标准型,学会用MATLAB 进行变换。
二 实验设备PC 机一台,装有MATLAB 软件。
三 实验内容1. 系统方程为,x Ax Bu y Cx =+=式中,0061011016A -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦;310B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦;[]001C =,试按能控性进行分解。
2. 系统方程为,x Ax Bu y Cx =+=。
式中,121021132A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦;011B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦;[]101C =,求线性变换矩阵,将其变换成能控标准型和能观标准型。
四 实验原理1 线性定常系统能控性和能观性判据系统状态空间描述为x Ax Bu y Cx =+⎧⎨=⎩1) N 阶线性定常系统状态完全能控的充要条件是:能控性矩阵21[]n c Q B AB A B A B -=的秩为n 。
能控性矩阵可用MATLAB 提供的函数ctrb()自动产生,其调用格式为ctrb(A,B)。
能控性矩阵的秩可用MATLAB 提供的函数rank()求出。
2) N 阶线性定常系统状态完全能观的充要条件是:能观性矩阵21o n C CA Q CA CA -⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦的秩为n 。
能观性矩阵可用MATLAB 提供的函数obsv()自动产生,其调用格式为obsv(A,B)。
2 线性系统的结构分解1) 按能控性分解:如果系统状态不完全能控,可通过非奇异变换分解为能控和不能控两部分,当能控矩阵的秩()c rank Q n <时,可以使用函数命令ctrbf()对线性系统进行能控性分解,其调用格式为,,,,(,,)A B C T K ctrbf A B C ⎡⎤=⎣⎦,其中T 为相似变换矩阵,K 为一个相量,()sum K 可以求出能控的状态分量的个数。
现代控制理论实验指导书实验一:线性系统状态空间分析1、模型转换图1、模型转换示意图及所用命令传递函数一般形式:)()(11101110n m a s a s a s a b s b s b s b s G n n n n m m m m ≤++++++++=----MATLAB 表示为:G=tf(num,den),其中num,den 分别是上式中分子,分母系数矩阵。
零极点形式:∏∏==--=n i j mi i ps z s K s G 11)()()( MATLAB 表示为:G=zpk(Z,P,K),其中 Z ,P ,K 分别表示上式中的零点矩阵,极点矩阵和增益。
传递函数向状态空间转换:[A,B,C,D] = TF2SS(NUM,DEN);状态空间转换向传递函数:[NUM,DEN] = SS2TF(A,B,C,D,iu)---iu 表示对系统的第iu 个输入量求传递函数;对单输入iu 为1;验证教材P438页的例9-6。
求P512的9-6题的状态空间描述。
>> A=[0 1;0 -2];>> B=[1 0;0 1];>> C=[1 0;0 1];>> D=[0 0;0 0];>> [NUM,DEN] = ss2tf(A,B,C,D,1)NUM =0 1 20 0 0DEN =1 2 0>> [NUM,DEN] = ss2tf(A,B,C,D,2)NUM =0 0 10 1 0DEN =1 2 0给出的结果是正确的,是没有约分过的形式P512 9-6>> [A,B,C,D]=tf2ss([1 6 8],[1 4 3])A =-4 -31 0B =1C =2 5D =12、状态方程求解单位阶跃输入作用下的状态响应:G=ss(A,B,C,D);[y,t,x]=step(G);plot(t,x). 零输入响应[y,t,x]=initial(G,x0)其中,x0为状态初值。
《现代控制理论》实验指导书俞立徐建明编浙江工业大学信息工程学院2007年4月实验1 利用MATLAB 进行传递函数和状态空间模型间的转换1.1 实验设备PC 计算机1台(要求P4-1.8G 以上),MATLAB6.X 或MATLAB7.X 软件1套。
1.2 实验目的1、学习系统状态空间模型的建立方法、了解状态空间模型与传递函数相互转换的方法;2、通过编程、上机调试,掌握系统状态空间模型与传递函数相互转换的方法。
1.3 实验原理说明设系统的状态空间模型是xAx Bu y Cx Du=+⎧⎨=+⎩& (1.1) p y R ∈其中:n x R ∈是系统的状态向量,是控制输入,m u R ∈是测量输出,A 是维状态矩阵、是维输入矩阵、是n n ×m n ×n p ×B D C 维输出矩阵、是直接转移矩阵。
系统传递函数和状态空间模型之间的关系如式(1.2)所示。
1()()G s C sI A B D −=−+ (1.2) 表示状态空间模型和传递函数的MATLAB 函数。
函数ss (state space 的首字母)给出了状态空间模型,其一般形式是 SYS = ss(A,B,C,D)函数tf (transfer function 的首字母)给出了传递函数,其一般形式是 G=tf(num,den)其中的num 表示传递函数中分子多项式的系数向量(单输入单输出系统),den 表示传递函数中分母多项式的系数向量。
函数tf2ss 给出了传递函数的一个状态空间实现,其一般形式是 [A,B,C,D]=tf2ss(num,den)函数ss2tf 给出了状态空间模型所描述系统的传递函数,其一般形式是[num,den]=ss2tf(A,B,C,D,iu) 其中对多输入系统,必须确定iu 的值。
例如,若系统有三个输入和,则iu 必须是1、2或3,其中1表示,2表示,3表示。
该函数的结果是第iu 个输入到所有输出的传递函数。
第11章 现代控制理论11.1 现代控制理论实验预习知识11.1.1 状态反馈1. 状态方程选择状态变量x 1,x 2如图11-1,列写状态方程如下:[]⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--=⎥⎥⎦⎤⎢⎢⎣⎡∙∙21212110,0101202x x y u x x x x2图11-1 状态变量⎥⎦⎤⎢⎣⎡-=2002010M ,R ankM=2 显然能控;⎥⎦⎤⎢⎣⎡-=1210N ,rankN=2 显然能观。
故可作状态反馈改变被控对象的特性,使其更快的跟踪给定信号(阶跃信号)。
根据[]⎥⎦⎤⎢⎣⎡-=2121x x K K v u 或[]⎥⎦⎤⎢⎣⎡+=2121x x K K v u 可画出全状态反馈的模拟电路图。
如图11-2所示。
y图11-2 全状态模拟反馈电路图2. Matlab 仿真① 当只有输出反馈时,开环传函为()()()21202++=s s k s G o ,画根轨迹可得图11-3。
图11-3 根轨迹图② 输出反馈时,考虑(1)给出的开环传函,要想单位反馈阶跃响应无超调,可从根轨迹图上求得,当ts 最短时,阻尼比为0.707(最佳阻尼比),此时K2=0.125。
所以,有超调时,K2>0.125,无超调时,K2<0.125即可。
③ simulink 输出仿真图图11-4 仿真电路④ 输出反馈的仿真结果图11-5 仿真结果⑤ 状态反馈的仿真图图11-6 状态反馈的仿真电路⑥ 状态反馈的仿真结果第 171 页57.021==k k图11-7 状态反馈的仿真结果11.1.2 状态观测器和状态反馈1. 模拟实现电路模拟电路实现如图11-8所示。
⎪⎭⎫⎝⎛-=2~212x x K 加5V 阶跃图11-8 模拟实现电路2. 状态观测器Matlab 仿真状态观测器Matlab 仿真图如图11-9所示。
1x 2x 1~x 2~x 1~11^x x x -=2~22^x x x -=状态观测器仿真图图11-9 状态观测器Matlab 仿真图其中,反馈系数为:g1=g2=-15。
实验二 利用MATLAB 求取线性系统的状态空间模型的解并分析其稳定性
实验目的:
1、根据状态空间模型分析系统由初始状态和外部激励所引起的响应;
2、了解系统稳定性的判定方法(直接法和间接法);
3、通过编程、上机调试,掌握系统运动的分析方法。
实验原理:
一、系统时域响应的求解方法
给定系统的状态空间模型:
()()()()()()
x t Ax t Bu t y t Cx t Du t =+=+ (2.1) 设系统的初始时刻00t =,初始状态为(0)x ,则系统状态方程的解为
0()0
()(0)()(0)()t At At
A t At A t x t e x e e Bu d e x e Bu d ττττττ--=+=+⎰⎰ (2.2)
输出为
()0()(0)()()t
At A t y t Ce x C e Bu d Du t τττ-=++⎰ (2.3) 包括两部分,第一部分是由系统自由运动引起的,是初始状态对系统运动的影响;第二部分是由控制输入引起的,反映了输入对系统状态的影响。
输出()y t 由三部分组成。
第一部分是当外部输入等于零时,由初始状态0()x t 引起的,故为系统的零输入响应;第二部分是当初始状态0()x t 为零时,由外部输入引起的,故为系统的外部输入响应;第三部分是系统输入的直接传输部分。
MA TLAB 函数:
函数initial(A,B,C,D,x0)可以得到系统输出对初始状态x0的时间响应; 函数step(A,B,C,D)给出了系统的单位阶跃响应曲线;
函数impulse(A,B,C,D) 给出了系统的单位脉冲响应曲线;
函数 [y,T,x]=lsim(sys,u,t,x0) 给出了一个状态空间模型对任意输入u 的响应,其中
的sys 表示贮存在计算机内的状态空间模型,它可以由函数sys=ss(A,B,C,D)得到,x0是初始状态。
二、系统稳定性的判定方法
间接法:根据系统矩阵A 的特征值判定系统稳定性;
直接法:根据李亚普诺夫方程
T A P PA Q +=-,求出判别矩阵P ,然后判定系
统稳定性。
MA TLAB 函数:
P=lya(A,Q); %根据系统矩阵A 和正定矩阵Q ,求解李亚普诺夫方程得到稳定性判别矩阵P ;
impulse(sys); %求解系统的单位阶跃响应;
eig( ); %求解特征值;
expm( ); %求解矩阵指数函数;
实验步骤
1、构建系统的状态空间模型,采用MA TLAB 的m-文件编程;
2、求取系统的状态和输出响应;
3、分析系统的稳定性;
4、在MA TLAB 界面下调试程序,并检查是否运行正确。
例2.1 考虑由以下状态方程描述的系统: 111222(0)012,(0)1051x x x x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦
⎣⎦⎣⎦⎣⎦ 求该系统状态对初始状态的时间响应。
编写和执行以下m-文件
A=[0 1;-10 –5];
B=[0;0]; D=B;
C=[1 0;0 1];
x0=[2;1];
[y,x,t]=initial(A,B,C,D,x0);
plot(t,x(:,1),t,x(:,2))
grid
title(‘Response to Initial Condition ’)
xlabel(‘Time (sec)’)
ylabel(‘x1, x2’)
text(0.55,1.15,’x1’)
text(0.4,-2.9,’x2’)
得到如图2.1所示的系统状态对初始条件的响应曲线。
例2.2 考虑以下系统:
111222112211116.50101001x x u x x u y x y x --⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣
⎦⎣⎦⎣⎦ 试给出该系统的单位阶跃响应曲线。
编写和执行以下的m-文件
A=[-1 –1;6.5 0];
B=[1 1;1 0];
C=[1 0;0 1];
D=[0 0;0 0];
step(A,B,C,D)
可以得到如图2.2所示的4条单位阶跃响应曲线:
例2.3 试求以下系统:
[]022()()()130()10()
x t x t u t y t x t -⎡⎤⎡⎤=+⎢⎥⎢⎥-⎣⎦⎣⎦
= 在余弦输入信号和初始状态[]11T x =下的状态响应。
编写和执行以下的m-文件:
A=[0 -2;1 -3];B=[2;0];C=[1 0];D=[0];
sys=ss(A,B,C,D);
x0=[1;1];
t=[0:0.01:20];
u=cos(t);
[y,T,x]=lsim(sys,u,t,x0);
subplot(2,1,1),plot(T,x(:,1))
xlabel(‘Time(sec)’),ylabel(‘X_1’)
subplot(2,1,2),plot(T,x(:,2))
xlabel(‘Time(sec)’),ylabel(‘X_2’)
得到以下的状态响应曲线:
例2.4设系统的状态方程为
0123x x ⎡⎤=⎢⎥--⎣⎦
试分析平衡点的稳定性。
编写和执行以下m-文件
A=[0 1;-2 -3];
M=eig(A) %观察其特征值是否全为负值;
Q=[1 0;0 1];
P=lya(A,Q) %观察P 是否是正定矩阵;
得到如下结果:
M=
-1
-2
P=
1.25 0.25
0.25 0.25
实验要求
1、在运行以上程序的基础上,应用MA TLAB 验证一个振动现象可以由以下系统产生:
01()10x t x ⎡⎤=⎢⎥-⎣⎦
证明该系统的解是
cos sin ()(0)sin cos t t x t x t t ⎡⎤=⎢⎥-⎣⎦
假设初始条件0(0)
1x ⎡⎤=⎢⎥⎣⎦
,用Matlab 观察该系统解的形状。
2、设系统的状态方程为 1123x x -⎡⎤=⎢⎥-⎣⎦
试分析平衡点的稳定性。