2019届九年级中考数学复习《直角三角形与等腰三角形》专题精练卷及解析
- 格式:docx
- 大小:140.49 KB
- 文档页数:5
§4.4 等腰三角形和直角三角形一、选择题1.(改编题)已知等腰三角形三边中有两边的长分别为4,9,则这个等腰三角形的周长为( )A.13 B.17C.22 D.17或22解析若腰长是4,则三边为4,4,9,∵4+4<9,∴不能组成三角形,∴舍去;若腰长为9,则三边为9,9,4,∵4+9>9,∴能组成三角形.∴等腰三角形的周长为9+9+4=22.故选C.答案 C2.(原创题)如图,在△ABC中,AB=AC,AB+BC=8.将△ABC折叠,使得点A落在点B处,折痕DF分别与AB,AC交于点D,F,连结BF,则△BCF的周长是( )A.8 B.16C.4 D.10解析由折叠可得FB=FA,∴△BCF的周长=BC+CF+FB=BC+CF+FA=BC+AC.∵AB=AC,∴△BCF的周长=BC+AB=8,故选A.答案 A3. (原创题)如图,圆柱形纸杯高8 cm,底面周长为12 cm,在纸杯内壁离杯底2 cm的点C处有一滴蜂蜜,一只蚂蚁正好在纸杯外壁,离杯上沿 2 cm 与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为( ) A.2 3 B.6 2C.10 D.以上答案都不对解析如图:将杯子侧面展开,作A关于EF的对称点A′,连结A′C,则A′C即为最短距离,由题意可得出:A′D=6 cm,CD=8 cm,A′C =A′D2+CD2=62+82=10,故选C.答案 C4.(改编题)点P是等边三角形ABC所在平面上一点,若P和△ABC的三个顶点所组成的△PAB,△PBC,△PAC都是等腰三角形,则这样的点P的个数为( )A.1 B.4 C.7 D.10解析应该有十个点:①内部一个,是三角形的中心P;②外面有九个,在直线AP上有三个点P1,P2,P3,满足AP1=AB,AP2=AB,BP3=AB.同理,在直线BP上有三个点,在直线CP上有三个点满足条件.故选D.答案 D5.(原创题)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2,4,3,则原直角三角形纸片的斜边长是A .10B .4 5C .10或4 5D .10或217解析 ∵AC ⊥BC ,FD ⊥BC ,∴FD ∥AC.∵AF =BF ,∴CD =BD ,∴AC =2FD.分两种情况:(1)BC =8,AC =4,由勾股定理得AB =82+42=80=45;(2)BC =8,AC =6,由勾股定理得AB =82+62=100=10.故选C. 答案 C6.(改编题)下列图案是由斜边相等的等腰直角三角形按照一定的规律拼接而成的.依此规律,第8个图案中的三角形与第一个图案中的三角形能够全等的共有________个.( )A .49B .64C .65D .81解析 第2个图案中,有4=22个三角形与第一个图案全等;第3个图案中,有9=32个三角形与第一个图案中的三角形全等;根据上面的规律,可猜想第8个图案中有64个三角形与第一个图案中的三角形全等.故选B. 答案 B 二、填空题7.(原创题)如图,等边△ABC 的边长为2,BC 边上的高交BC 于D ,过点D 作DE⊥AB 于点E ,则AE 的长是______.解析 ∵△ABC 是等边三角形,AD 是高,AB =BC =AC =2,∴BD =CD =1.在Rt △ADB 中,AD =AB 2-BD 2=22-12= 3.又∵S △ADB =12×BD×AD =12×AB×DE,∴DE=1×32=32.在Rt△ADE中,由勾股定理:AE=AD2-DE2=(3)2-⎝⎛⎭⎪⎫322=32.答案3 28.(改编题)已知x-5+|y-12|+(z-13)2=0,则由x,y,z为三边组成的三角形是________.解析∵x-5+|y-12|+(z-13)2=0,x-5≥0,|y-12|≥0,(z-13)2≥0,∴x-5=y-12=z -13=0,解得x=5,y=12,z=13.∵x2+y2=52+122=25+144=169,z2=132=169,∴x2+y2=z2,∴由x,y,z为三边组成的三角形是直角三角形.答案直角三角形9. (原创题)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是________尺.解析将圆柱平均分成五段,将最下边一段圆柱的侧面展开图画出,并连结其对角线即为每段的最短长度=32+42=5,所以葛藤的最短长度为5×5=25尺,故答案为25.答案2510.(改编题)如图,OP=1,过P作PP1⊥OP,得OP1=2;再过P1作P1P2⊥OP1且P1P2=1,得OP2=3;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP2 016=________.解析∵OP1=2,OP2=3,OP3=(3)2+1=2,OP4=22+12=5,依此类推可得OP n=n+1,∴OP2 016= 2 017.答案 2 017三、解答题11.(原创题)如图,Rt△ABC中,∠ABC=90°,分别以AB,BC为边在三角形外作等边△ABD和△BCE,连结AE和DC相交于点M.(1)试判断AE和DC的数量关系,说明理由.(2)求∠CME的度数.解(1)AE=DC.理由如下:∵△ABD和△BCE是等边三角形,∴AB=BD,BE=BC,∠ABD=∠EBC=60°.∴∠ABE=∠DBC=150°.∴△ABE≌△DBC.∴AE=DC.(2)∵△ABE≌△DBC,∴∠MEB =∠MCB.∴∠CME =180°-∠MCE-∠MEC=180°-∠MCB-∠BCE-∠MEC=180°-∠MEB-∠BCE-∠MEC=180°-∠BCE-∠BEC=180°-60°-60°=60°.12.(改编题)勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积进行了证明.著名数学家华罗庚提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言. (1)请根据图1中直角三角形叙述勾股定理;(2)以图1中的直角三角形为基础,可以构造出以a ,b 为底,以a +b 为高的直角梯形(如图2).请你利用图2,验证勾股定理;(3)利用图2中的直角梯形,我们可以证明a +bc < 2.其证明步骤如下:∵BC =a +b ,AD =________,又∵在直角梯形ABCD 中有BC_____AD(填大小关系),即______,∴a +bc< 2.解 (1)如果直角三角形的两直角边长为a ,b ,斜边长为c ,那么a 2+b 2=c 2. (2)∵Rt △ABE ≌Rt △ECD , ∴∠AEB =∠EDC;又∵∠EDC+∠DEC=90°, ∴∠AEB +∠DEC=90°, ∴∠AED =90°.S 梯形ABCD =S Rt △ABE +S Rt △DEC +S Rt △AED , 12(a +b)(a +b)=12ab +12ab +12c 2, 12(a 2+2ab +b 2)=12ab +12ab +12c 2, 整理得a 2+b 2=c 2.(3)由(1)(2)知AD =2c ,BC <AD ,a +b <2c. 故填2c<a +b<2c.2019-2020学年数学中考模拟试卷一、选择题1.下列调查中,适合普查的事件是( ) A .调查华为手机的使用寿命v B .调查市九年级学生的心理健康情况 C .调查你班学生打网络游戏的情况D .调查中央电视台《中国舆论场》的节目收视率2.如图,在平行四边形ABCD 中,AB 4=,BAD ∠的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG AE ⊥,垂足为G ,若DG 1=,则AE 的边长为( )A .B .C .4D .83.“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式CH 4,乙烷的化学式是C 2H 6,丙烷的化学式是C 3H 8,…,设碳原子的数目为n (n 为正整数),则它们的化学式都可以用下列哪个式子来表示( ) A.C n H 2n+2B.C n H 2nC.C n H 2n ﹣2D.C n H n+34.下列运算正确的是( ) A .3a 3+a 3=4a 6B .(a+b )2=a 2+b 2C .5a ﹣3a =2aD .(﹣a )2•a 3=﹣a 65.小明骑自行车去上学途中,经过先上坡后下坡的一段路,在这段路上所骑行的路程S (米)与时间t (分钟)之间的函数关系如图所示.下列结论:①小明上学途中下坡路的长为1800米;②小明上学途中上坡速度为150米/分,下坡速度为200米/分;③如果小明放学后按原路返回,且往返过程中,上、下坡的速度都相同,则小明返回时经过这段路比上学时多用1分钟;④如果小明放学后按原路返回,返回所用时间与上学所用时间相等,且返回时下坡速度是上坡速度的1.5倍,则返回时上坡速度是160米/分其中正确的有( )A.①④B.②③C.②③④D.②④6.下列计算正确的是( )3 =3 =±37.如图,以边长为a 的等边三角形各定点为圆心,以a 为半径在对边之外作弧,由这三段圆弧组成的曲线是一种常宽曲线.此曲线的周长与直径为a 的圆的周长之比是( )A .1:1B .1:3C .3:1D .1:28.如图,在边长为6的菱形ABCD 中,60DAB ∠=︒ ,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是( )A.183π-B.9πC.92π-D.3π9.如图,这是一幅2018年俄罗斯世界杯的长方形宣传画,长为4m ,宽为2m.为测量画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宜传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4左右.由此可估计宜传画上世界杯图案的面积为( )A .22.4mB .23.2mC .24.8mD .27.2m10.如图,在ABC ∆中,30ABC ∠=︒,10AB =,那么以A 为圆心、6为半径的⊙A 与直线BC 的位置关系是( )A .相交B .相切C .相离D .不能确定11.已知x+1x=6,则x 2+21x =( )A.38B.36C.34D.3212.如图,在△ABC 中,∠B =70°,∠C =30°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M 、N ,作直线MN ,交BC 于点D ,连接AD ,则∠BAD 的度数为( )A.40°B.45°C.50°D.60°二、填空题13.太阳半径约是6.97万千米,科学记数法表示约是____千米.14.空气中有一种有害粉尘颗粒,其直径大约为0.000 000 017m ,该直径可用科学记数法表示为______________.15.若关于x 的不等式(2)2a x a ->-的解集为1x <,化简3a -=______.16.如图,∠AOB 的两边OA 、OB 均为平面反光镜,∠AOB =40°,在射线OB 上有一点P ,从点P 点射出的一束光线经OA 上的Q 点反射后,反射光线QR 恰好与OB 平行,则∠QPB 的度数是___________17.如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上. (Ⅰ)AC 的长等于_____;(Ⅱ)在线段AC 上有一点D ,满足AB 2=AD•AC,请在如图所示的网格中,用无刻度的直尺,画出点D ,并简要说明点D 的位置是如何找到的(不要求证明)_____.18.如果分式有意义,那么x 的取值范围是_____.三、解答题 19.计算:(1221(1)()3-⨯--- (2)a (a ﹣8)﹣(a ﹣2)220.如图,在平面直角坐标系中,直线y=12x b +与抛物线y=211322x x --+交于A 、B 两点,且点A 在x 轴上,点B 的横坐标为-4,点P 为直线AB 上方的抛物线上一动点(不与点A 、B 重合),过点P 作x 轴的垂线交直线AB 于点Q ,PH ⊥AB 于H .(1)求b的值及sin∠PQH的值;(2)设点P的横坐标为t,用含t的代数式表示点P到直线AB的距离PH的长,并求出PH之长的最大值以及此时t的值;(3)连接PB,若线段PQ把△PBH分成成△PQB与△PQH的面积相等,求此时点P的坐标.21.图书馆是一个很好的学习平台,某市有关部门统计了最近6个月到图书馆的读者的职业分布情况,并做了下列两个不完整的统计图.(1)在统计的这段时间内,共有万人次到图书馆阅读,其中商人占百分比为%.(2)将条形统计图补充完整.(3)5月份到图书馆的读者共有24000人次,根据以上调查结果,估计24000人次中是职工的人次.22.我们已经知道一些特殊的勾股数,如三连续正整数中的勾股数:3、4、5;三个连续的偶数中的勾股数6、8、10;事实上,勾股数的正整数倍仍然是勾股数.(1)另外利用一些构成勾股数的公式也可以写出许多勾股数,毕达哥拉斯学派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n为正整数)是一组勾股数,请证明满足以上公式的a、b、c的数是一组勾股数.(2)然而,世界上第一次给出的勾股数公式,收集在我国古代的着名数学着作《九章算术》中,书中提到:当a=12(m2﹣n2),b=mn,c=12(m2+n2)(m、n为正整数,m>n时,a、b、c构成一组勾股数;利用上述结论,解决如下问题:已知某直角三角形的边长满足上述勾股数,其中一边长为37,且n=5,求该直角三角形另两边的长.23.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)求证:BD=CD;(2)不在原图添加字母和线段,对△ABC只加一个条件使得四边形AFBD是菱形,写出添加条件并说明理由.24.只用直尺(无刻度)完成下列作图:(1)如图1,过正方形ABCD 的顶点A 作一条直线平分这个正方形的面积; (2)如图2,不过正方形EFGH 的顶点作直线l 平分这个正方形的面积;(3)如图3,五个边长相等的正方形组成了一个“L 型”图形,作直线m 平分这个“L 型”图形的面积.25.已知:Rt △EFP 和矩形ABCD 如图①摆放(点P 与点B 重合),点F ,B (P ),C 在同一直线上,AB =EF =6cm ,BC =FP =8cm ,∠EFP =90°,如图②,△EFP 从图①的位置出发,沿BC 方向匀速运动,速度为1cm/s ,EP 与AB 交于点G ,与BD 交于点K ;同时,点Q 从点C 出发,沿CD 方向匀速运动,速度为1cm/s .过点Q 作QM ⊥BD ,垂足为H ,交AD 于点M ,连接AF ,PQ ,当点Q 停止运动时,△EFP 也停止运动设运动事件为(s )(0<t <6),解答下列问题: (1)当为何值时,PQ ∥BD ?(2)在运动过程中,是否存在某一时刻,使S 五边形AFPQM :S 矩形ABCD =9:8?若存在,求出t 的值;若不存在,请说明理由.(3)在运动过程中,当t 为 秒时,PQ ⊥PE .【参考答案】*** 一、选择题二、填空题 13.46.7910 14.7×10-815.3﹣a 16.80° 17.见解析. 18.x≠3 三、解答题19.(1)0;(2)﹣4a ﹣4. 【解析】 【分析】根据实数运算法则和整式运算法则分别计算即可,要注意负指数幂的意义. 【详解】解:(1221(1)()3-⨯--- =4+5×1﹣9 =4+5﹣9 =0;(2)a (a ﹣8)﹣(a ﹣2)2 =a 2﹣8a ﹣a 2+4a ﹣4 =﹣4a ﹣4. 【点睛】本题考查实数运算和整式运算,负指数幂的意义,熟练掌握运算顺序和运算法则是解题关键.20.(1)b=-1,sin PQH ∠=(2)2PH 1)=++t=-1时,PH ;(3)P (-3,0). 【解析】 【分析】(1)令y=0,求出点A 的坐标,然后把点A 的坐标代入直线解析式,求出点B 的值,然后根据点A 和点C 的坐标,求出OA 和OC 的长度,根据勾股定理求出AC 的长度,根据PQ ∥OC ,可得∠PQH=∠OCA ,然后求出sin ∠PQH 的值;(2)求出点P 和点Q 的坐标,运用三角函数,求出PH 的函数关系式,运用求最大值的方法求解即可. (3)作BD ⊥PQ 交PQ 的延长线于点D ,由S △PQB =S △PQH ,得出BQ=QH ,利用三角函数求出QH 和BQ 的关系式,运用相等的关系求出t ,即可得出点P 的坐标. 【详解】解:(1)令y=0得:211x x 3022--+=,化简x 2+x-6=0,解得x 1=-3,x 2=2, ∴A (2,0), ∵A (2,0)在直线12y x b =+上, ∴1+b=0,解得b=-1, ∴OC=1,OA=2,AC ∴=∵PQ ∥OC ,∴∠PQH=∠OCA ,sin PQH sin OCA5∴∠=∠==, (2)2111P t,t t 3,Q t,t 1222⎛⎫⎛⎫--+- ⎪ ⎪⎝⎭⎝⎭, 21PQ t t 42∴=--+,sin PQH ∠=)2221PH t t 4t 2t (t 1)25555⎛⎫∴=--+=++=-++ ⎪⎝⎭,∴当t=-1时,PH 有最大值为5, (3)如图,作BD ⊥PQ 交PQ 的延长线于点D ,设点P 的横坐标为t ,∵S △PQB =S △PQH ,∴BQ=QH ,在RT △PHQ 中,sin PQH∠=,QH :PH :PQ 1:2∴=21QH t t 42⎛⎫∴==--+ ⎪⎝⎭, 在RT △BDQ 中,∵∠BQD=∠PQH ,sin BQD sin PQH∴∠=∠=BDBQ ∴=BQ BD (t 4)22∴==+, BQ QH =,214)t t 422⎛⎫+=--+ ⎪⎝⎭, ∴t 2+7t+12=0,∴t 1=-3,t 2=-4(舍去),∴P (-3,0).【点睛】本题主要考查了二次函数与方程、几何知识的综合应用,涉及勾股定理,三角函数及方程,解题的关键是找准相等解的关系利用三角函数求解.21.(1)16;12.5;(2)详见解析;(3)9000(人次).【解析】【分析】(1)利用到图书馆阅读的人数=学生的人数÷学生的百分比求解,商人占百分比=商人数÷总人数求解即可,(2)求出职工到图书馆阅读的人数,作图即可,(3)利用总人数乘读者是职工的人数所占的百分比求解即可.【详解】解:(1)在统计的这段时间内,到图书馆阅读的人数为4÷25%=16(万人), 其中商人占百分比为216×100%=12.5%; 故答案为:16;12.5;(2)职工:16﹣4﹣2﹣4=6(万人),如图所示:(3)估计24000人次中是职工的人次为24000×616=9000(人次). 【点睛】 本题主要考查了条形统计图与扇形统计图,解题的关键是读懂统计图,从统计图中得到准确的信息.22.(1)证明见解析;(2)当n =5时,一边长为37的直角三角形另两边的长分别为12,35.【解析】【分析】(1)根据题意只需要证明a2+b2=c2,即可解答(2)根据题意将n=5代入得到a=12(m2﹣52),b=5m,c=12(m2+25),再将直角三角形的一边长为37,分别分三种情况代入a=12(m2﹣52),b=5m,c=12(m2+25),即可解答【详解】(1)∵a2+b2=(2n+1)2+(2n2+2n)2=4n2+4n+1+4n4+8n3+4n2=4n4+8n3+8n2+4n+1,c2=(2n2+2n+1)2=4n4+8n3+8n2+4n+1,∴a2+b2=c2,∵n为正整数,∴a、b、c是一组勾股数;(2)解:∵n=5∴a=12(m2﹣52),b=5m,c=12(m2+25),∵直角三角形的一边长为37,∴分三种情况讨论,①当a=37时,12(m2﹣52)=37,解得m (不合题意,舍去) ②当y=37时,5m=37,解得m=375(不合题意舍去);③当z=37时,37=12(m2+n2),解得m=±7,∵m>n>0,m、n是互质的奇数,∴m=7,把m=7代入①②得,x=12,y=35.综上所述:当n=5时,一边长为37的直角三角形另两边的长分别为12,35.【点睛】此题考查了勾股数和勾股定理,熟练掌握勾股定理是解题关键23.(1)【解析】【分析】(1)由AF与BC平行,利用两直线平行内错角相等得到一对角相等,再一对对顶角相等,且由E为AD的中点,得到AE=DE,利用AAS得到三角形AFE与三角形DCE全等,利用全等三角形的对应边相等即可得证;(2)根据“有一组邻边相等的平行四边形是菱形”进行判断即可.【详解】(1)∵AF ∥BC∴∠AFE =∠DCE∵E 是AD 的中点∴AE =DE在△AFE 和△DCE 中,AFE DCE AEF DEC AE BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DCE (AAS ),∴AF =CD ,∵AF =BD∴BD =CD ;(2)当△ABC 满足:∠BAC =90°时,四边形AFBD 菱形,理由如下:∵AF ∥BD ,AF =BD ,∴四边形AFBD 是平行四边形,∵∠BAC =90°,BD =CD ,∴BD =AD ,∴平行四边形AFBD 是菱形.【点睛】此题考查了全等三角形的判定与性质,以及矩形的判定,熟练掌握全等三角形的判定与性质是解本题的关键.24.(1)如图直线l 如图所示.见解析;(2)如图直线l 如图所示.见解析;(3)直线m 如图所示.见解析.【解析】【分析】(1)作正方形对角线所在的直线即为所求.(2)过正方形的中心作直线即可.(3)利用分割,补形,调整的策略解决问题即可.【详解】(1)如图直线l 如图所示.(2)如图直线l 如图所示.(3)直线m 如图所示.【点睛】本题考查作图﹣应用与设计,解题的关键是学会利用分割,补形,调整的策略解决问题.25.(1)247(2)t =2s 时,S 五边形AFPQM :S 矩形ABCD =9:8(3)327【解析】【分析】(1)利用平行线分线段成比例定理构建方程即可解决问题.(2)假设存在,由S 五边形AFPQM :S 矩形ABCD =9:8构建方程即可解决问题.(3)利用相似三角形的性质构建方程即可解决问题.【详解】解:(1)∵PQ ∥BD , ∴PC CQ CB CD=, ∴886t t -=, 解得t =247, ∴当t =247时,PQ ∥BD . (2)假设存在.∵S 五边形AFPQM =S △ABF +S 矩形ABCD ﹣S △PQC ﹣S △MQD =12×(8﹣t )×6+6×8﹣12(8﹣t )×t﹣12×(6﹣t )×34(6﹣t ) =215117822t t -+. 又∵S 五边形AFPQM :S 矩形ABCD =9:8,∴215117822t t ⎛⎫-+ ⎪⎝⎭:48=9:8, 整理得:t 2﹣20t+36=0,解得t =2或18(舍弃),∴t =2s 时,S 五边形AFPQM :S 矩形ABCD =9:8.(3)∵PQ ⊥PE ,∴∠QPE =90°,∵∠EFP =∠C =90°,∴∠EPF+∠QPC =90°,∠QPC+∠PQC =90°,∴∠EPF =∠PQC ,∴△EPF ∽△PQC , ∴EF PF PC CQ=, ∴688t t=-, 解得t =327, ∴当t =327时,PQ ⊥PE . 故答案为327. 【点睛】本题考查矩形的性质,平行线分线段成比例定理,相似三角形的判定和性质,多边形的面积等知识,解题的关键是熟练掌握基本知识,学会利用参数构建方程解决问题,属于中考常考题型.2019-2020学年数学中考模拟试卷一、选择题1.在-2,3.14,5π,这6个数中,无理数共有( ) A .4个 B .3个 C .2个 D .1个2.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径OB =6cm ,高OC =8cm .则这个圆锥漏斗的侧面积是( )A .30cm 2B .30πcm 2C .60πcm 2D .120cm 23.若数轴上表示﹣2和3的两点分别是点A 和点B ,则点A 和点B 之间的距离是( )A .﹣4B .﹣2C .3D .54.在平面直角坐标系xOy 中,以点(3,4)为圆心,4为半径的圆一定A .与x 轴和y 轴都相交B .与x 轴和y 轴都相切C .与x 轴相交、与y 轴相切D .与x 轴相切、与y 轴相交. 5.如图,在中,,分别是上两点,,点分别是的中点,则的长为( )A.10B.8C.D.206.将一图形绕着点O 顺时针方向旋转70后,再绕着点O 逆时针方向旋转120,这时如果要使图形回到原来的位置,需要将图形绕着点O 什么方向旋转多少度?( )A .逆时针方向,50B .顺时针方向,50C .顺时针方向,190D .逆时针方向,1907.某医疗器械公司接到400件医疗器械的订单,由于生产线系统升级,实际每月生产能力比原计划提高了30%,结果比原计划提前4个月完成交货.设每月原计划生产的医疗器械有x 件,则下列方程正确的是( )A .400400(130%)x x -+=4B .400400(130%)x x-+=4C .400400(130%)x x --=4D .4004004(130%)x x-=- 8.下列运算正确的是( )A .236a a a ⋅=B .22423a a a +=C .236(2)2a a -=-D .422()a a a ÷-= 9.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为F ,连接DF ,则下列四个结论中,错误的是( )A.△AEF ~△CABB.CF=2AFC.DF=DCD.tan ∠CAD=3410.如图,正方形ABCD 的顶点A (1,1),B (3,1),规定把正方形ABCD“先沿x 轴翻折,再向左平移1个单位”为一次变换,这样连续经过2019次变换后,正方形ABCD 的顶点C 的坐标为( )A .(﹣2018,3)B .(﹣2018,﹣3)C .(﹣2016,3)D .(﹣2016,﹣3)11.在体育模拟考中,某6人小组的1000米长跑得分(单位:分)分别为:10,9,8,10,10,9,则这组数据的众数和中位数分别是( )A .9分,8分B .9分,9.5分C .10分,9分D .10分,9.5分12.如图,已知BC 是圆柱底面的直径,AB 是圆柱的高,在圆柱的侧面上,过点A 、C 嵌有一圈路径最短的金属丝,现将圆柱侧面沿AB 剪开,所得的圆柱侧面展开图是( )A .B .C .D .二、填空题13.抛物线y=(2x﹣1)2+t与x轴的两个交点之间的距离为4,则t的值是_____.14.用不等号“>”或“<”连接:sin50°_____cos50°.15.已知x﹣y=2,则x2﹣y2﹣4y=_____.16.如图,将矩形OABC置于一平面直角坐标系中,顶点A,C分别位于x轴,y轴的正半轴上,点B的坐标为(5,6),双曲线y=kx(k≠0)在第一象限中的图象经过BC的中点D,与AB交于点E,P为y轴正半轴上一动点,把△OAP沿直线AP翻折,使点O落在点F处,连接FE,若FE∥x轴,则点P的坐标为___.17.如图,在△ABC中,∠C=90°,∠A=30°,a∥b,点B在直线b上,∠1=138°,则∠2=______度.18.如图,正方形ABCD的边长为4,⊙B的半径为2,P为⊙B上的动点,则PD+12PC的最小值等于_____.三、解答题19.随着通讯技术的迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了名学生,在扇形统计图中“QQ”的扇形圆心角的度数为;(2)将条形统计图补充完整;(3)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.20.如图,在Rt△ABC中,∠C=90°,D是AC边上一点,tan∠DBC=43,且BC=6,AD=4.求cosA的值.21.已知函数y=y1+y2,其中y1与x成反比例,y2与x﹣2成正比例,函数的自变量x的取值范围是x≥12,且当x=1或x=4时,y的值均为32.请对该函数及其图象进行如下探究:(1)解析式探究:根据给定的条件,可以确定出该函数的解析式为:.(2)函数图象探究:①根据解析式,补全下表:②根据表中数据,在如图所示的平面直角坐标系中描点,并画出函数图象.(3)结合画出的函数图象,解决问题:①当x=34,214,8时,函数值分别为y1,y2,y3,则y1,y2,y3的大小关系为:;(用“<”或“=”表示)②若直线y=k与该函数图象有两个交点,则k的取值范围是,此时,x的取值范围是.22.东北大米主要种植于黑龙江省、吉林省、辽宁省的广大平原地区,种植在极其肥沃的黑土地中,吸收了足够的氮、磷、钾等多种矿物元素,阳光雨露充足,又有纯净无污染的灌溉用水,生长周期比较长,一般五个月左右.东北大米颗粒饱满,质地坚硬,色泽清白透明;饭粒油亮,香味浓郁;蒸煮后出饭率高,粘性较小,米质较脆.刘阿姨到超市购买东北大米,第一次按原价购买,用了105元.几天后,遇上这种大米8折出售,她用140元又买了一些,两次共购买了40kg.这种东北大米的原价是多少?23.解不等式组1531xx x+≤⎧⎨->⎩①②请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得_________;(Ⅱ)解不等式②,得_________;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为________.24.解方程:213xx x+=-.25.先化简,再求值:2221(1)244x xx x x+++÷--+,其中x=3.【参考答案】*** 一、选择题二、填空题13.-1614.>15.416.(0,53)或(0,15).17.12 18.5 三、解答题19.(1)100,108°;(2)补图见解析;(3)1 3【解析】【分析】(1)由20÷20%可得这次统计共抽查人数,根据圆心角公式可得结果;(2)先求喜欢用短信的人数,再画图;(3)用树状图方法求概率.【详解】解:(1)20÷20%=100;所以这次统计共抽查了100名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数=360°×30100=108°; (2)喜欢用短信的人数为:100×5%=5人,补充图形,如图所示:(3)画树状图为:共有9种等可能的结果数,甲乙两名同学恰好选中同一种沟通方式的结果数为3, 所以恰好选用“微信”联系的概率=39=13.【点睛】考核知识点:从统计图表获取信息,求概率.20.5【解析】【分析】先在Rt △BDC 中,利用锐角三角函数的定义求出CD 的长,由AC=AD+DC 求出AC 的长,然后在Rt △ABC 中,根据勾股定理求出AB 的长,从而求出 cosA 的值.【详解】解:在Rt △BDC 中, tan ∠DBC=43, 且BC=6 , ∴ tan ∠DBC=DC BC =6DC =43, ∴CD=8,∴AC=AD+DC=12,在Rt △ABC 中,,∴ cosA =ACAB =. 【点睛】 本题主要考查解直角三角形.熟练掌握三角函数的定义是解题的关键.21.(1)2112y x x =+-;(2)①见解析;②见解析;(3)①y 2<y 1<y 3;②1<k≤134,12≤x≤8. 【解析】【分析】 (1)根据题意设11k y x= ,y 2=k 2(x ﹣2),则12(2)k y k x x =+-,即可解答 (2)将表中数据代入2112y x x =+-,即可解答 (3)①由(2)中图象可得:(2,1)是图象上最低点,在该点左侧,y 随x 增大而减小;在该点右侧y 随x 增大而增大,即可解答 ②观察图象得:x≥12 ,图象最低点为(2,1),再代入即可 【详解】(1)设11k y x= ,y 2=k 2(x ﹣2),则12(2)k y k x x =+- , 由题意得:1212323242k k k k ⎧-=⎪⎪⎨⎪+=⎪⎩ ,解得:12212k k =⎧⎪⎨=⎪⎩, ∴该函数解析式为2112y x x =+- , 故答案为:2112y x x =+-, (2)①根据解析式,补全下表:②根据上表在平面直角坐标系中描点,画出图象.(3)①由(2)中图象可得:(2,1)是图象上最低点,在该点左侧,y 随x 增大而减小;在该点右侧y 随x 增大而增大,∴y 2<y 1<y 3,故答案为:y 2<y 1<y 3, ②观察图象得:x≥12,图象最低点为(2,1), ∴当直线y =k 与该图象有两个交点时,1<k≤134 , 此时x 的范围是:12≤x≤8. 故答案为:1<k≤134,12≤x≤8. 【点睛】此题考查待定系数法求反比例函数的解析式,列出方程式解题关键22.这种大米的原价是每千克7元.【解析】【分析】设这种大米的原价是每千克x 元,根据第一次按原价购买,用了105元.几天后,遇上这种大米8折出售,她用140元又买了一些,两次共购买了40kg ,列出方程即可解答【详解】解:设这种大米的原价是每千克x 元, 根据题意,得105140400.8x x+=, 解得:x =7.经检验,x =7是原方程的解.答:这种大米的原价是每千克7元.【点睛】此题考查分式方程的应用,解题关键在于列出方程23.(Ⅰ)4x ≤;(Ⅱ)12x >;(Ⅲ)见解析;(Ⅳ)142x <≤. 【解析】【分析】(Ⅰ)直接移项即可得出答案;(Ⅱ)移项,两边同时除以2,即可得答案;(Ⅲ)根据解集在数轴上的表示方法表示出①②的解集即可;(Ⅳ)根据数轴找出两个解集的公共部分即可.【详解】(Ⅰ)15x +≤移项得:x≤4,故答案为:x≤4(Ⅱ) 31x x ->移项得:2x>1,解得:x>12,故答案为:x>12(Ⅲ)不等式①和②的解集在数轴上表示如图所示:(Ⅳ) 由数轴可得①和②的解集的公共解集为142x <≤, 故原不等式的解集为:142x <≤, 故答案为:142x <≤ 【点睛】 本题考查的是一元一次不等式组的整数解,会求一元一次不等式组的解集是解决此类问题的关键.求不等式组的解集,借助数轴找公共部分或遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.24.x =65. 【解析】【分析】根据分式方程的解法求解即可.【详解】去分母得:2x ﹣6+x 2=x 2﹣3x ,解得:x =65, 检验x =65是原方程的解. 【点睛】本题主要考查分式方程的解法,注意根的验证.25.3【解析】【分析】先算括号内的加法,把除法变成乘法,算乘法,再代入求出即可.【详解】2221(1)244x x x x x +++÷--+ 2222(2)21x x x x x -++-=⋅-+ 2(1)(2)21x x x x x +-=⋅-+ =x (x ﹣2)=x2﹣2x,当x=3时,原式=32﹣2×3=3.【点睛】本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.。
2019年中考数学总复习等腰三角形专题综合训练题1.在△ABC中,∠ABC=30°,∠BAC=70°.在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )A.7条 B.8条C.9条D.10条2. 如图,在△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为( )A.80° B.75° C.65° D.45°3. 如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=( )A.3 B.4 C.5 D.64. 如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是( )A.6 B.3 C.2.5 D.25. 如图,在△ABC中,AB=AC,AD是∠B AC的平分线.已知AB=5,AD=3,则BC的长为( )A.5 B.6 C.8 D.106. 如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于____.7. 如图钢架中,焊上等长的13根钢条来加固钢架.若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是____.8. 在△ABC中,∠C是最小内角.若过顶点B的一条直线把这个三角形分成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为△ABC的关于点B的伴侣分割线.例如:如图1,△ABC 中,∠A=90°,∠C=20°,若过顶点B的一条直线BD交AC于点D,且∠DBC=20°,则直线BD是△ABC 的关于点B的伴侣分割线.(1)如图2,△ABC中,∠C=20°,∠ABC=110°.请在图中画出△ABC关于点B的伴侣分割线,并注明角度;(2)△ABC中,设∠B的度数为y,最小内角∠C的度数为x.试探索y与x应满足什么要求时,△ABC存在关于点B的伴侣分割线.9. 如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C,B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.解析:第(2)题分别以点C,M,N为直角顶点分三类进行讨论,利用全等三角形和勾股定理求CM或CN的长,利用面积公式进行计算.10. 如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)11. 在等腰Rt△ABC中,∠C=90°,AC=1,过点C作直线l∥AB,F是l上的一点,且AB=AF,求点F 到直线BC的距离.12. 如图,已知抛物线y =ax 2+bx +c(a ≠0)经过A(-1,0),B(3,0),C(0,-3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)点M 是直线l 上的动点,且△MAC 为等腰三角形,求出所有符合条件的点M 的坐标.13. 如图,在△ABC 中,AB =AC ,∠BAC =90°,BD 是∠ABC 的平分线,CE ⊥BD ,垂足是E ,BA 和CE 的延长线交于点F.(1) 在图中找出与△ABD 全等的三角形,并证明你的结论; (2) 证明:BD =2EC.参考答案: 1. C2. D 【解析】∠BCA=12(180°-∠A)=75°,∠BCD =∠BCA-∠DCA=∠BCA-∠A=75°-30°=45°.3. C【解析】作PQ⊥MN 于Q ,由PM =PN 知PQ 垂直平分MN∴MQ=1.∠AOB=60°,OP =12,∴OQ =12OP =6,OM=OQ -MQ =6-1=5. 4. C【解析】 如图,以BC 为边作等腰直角三角形△EBC,延长BE 交AD 于F ,得△ABF 是等腰直角三角形,作EG⊥CD 于G ,得△EGC 是等腰直角三角形,在矩形ABCD 中剪去△ABF,△BCE ,△ECG 得到四边形EFDG ,此时剩余部分的面积最小,最小值为4×6-12×4×4-12×3×6-12×3×3=2.5,故选C.5. C 【解析】∵AB=AC ,AD 是∠BAC 的平分线,∴AD ⊥BC ,BD =CD ,∴BD =AB 2-AD 2=4,∴BC =2BD =8,故选C. 6. 20° 【解析】过点A 作AD∥l 1,根据平行线的性质可得∠BAD=∠β.AD∥l 2,从而得到∠DAC=∠α=40°.再根据等边△ABC 可得到∠BAC=60°,∴∠β=∠BAD=∠BAC-∠DAC=60°-40°=20°.7. 12° 【解析】设∠A=x ,∵AP 1=P 1P 2=P 2P 3=…=P 13P 14=P 14A ,∴∠A =∠AP 2P 1=∠AP 13P 14=x ,∴∠P 2P 1P 3=∠P 13P 14P 12=2x ,∴∠P 3P 2P 4=∠P 12P 13P 11=3x ,……,∠P 7P 6P 8=∠P 8P 9P 7=7x ,∴∠AP 7P 8=7x ,∠AP 8P 7=7x.在△AP 7P 8中,∠A +∠AP 7P 8+∠AP 8P 7=180°,即x +7x +7x =180°,解得x =12°.8. 解:(1)画图正确,角度标注正确,如图① (2)考虑直角顶点,只有点A ,B ,D 三种情况.当点A 为直角顶点时,如图②,此时y =90°-x.当点B 为直角顶点时,再分两种情况:若∠DBC=90°,如图③,此时y =90°+12(90°-x)=135°-12x.若∠ABD=90°,如图④,此时y =90°+x.当点D 为直角顶点时,又分两种情况:若△ABD 是等腰三角形,如图⑤,此时y =45°+(90°-x)=135°-x.若△DBC 是等腰三角形,如图⑥,此时x =45°,45°<y <90°9. 解:(1)把点A(4,0),B(1,3)代入抛物线y =ax 2+bx 中,得⎩⎪⎨⎪⎧0=16a +4b ,3=a +b ,解得⎩⎪⎨⎪⎧a =-1,b =4,∴抛物线表达式为:y =-x 2+4x (2)点C 的坐标为(3,3),点B 的坐标为(1,3),以点C ,M ,N 为顶点的三角形为等腰直角三角形时,分三类情况讨论:①以点M 为直角顶点且M 在x 轴上方时,如图2,CM =MN ,∠CMN=90°,则△CBM≌△MHN,∴BC =MH =2,BM =HN =3-2=1,∴M(1,2),N(2,0),由勾股定理得MC =22+12=5,∴S △CMN =12×5×5=52;②以点M 为直角顶点且M 在x 轴下方时,如图3,作辅助线,构建如图所示的两直角三角形:Rt △NEM 和Rt △MDC ,得Rt △NEM ≌Rt △MDC ,∴MD =ME =2,EM =CD =5,由勾股定理得CM =22+52=29,∴S △CMN=12×29×29=292;③以点N 为直角顶点且N 在y 轴左侧时,如图4,CN =MN ,∠MNC =90°,作辅助线,同理得CN =32+52=34,∴S △CMN =12×34×34=17;④以点N 为直角顶点且N 在y 轴右侧时,作辅助线,如图5,同理得CN =32+12=10,∴S △CMN =12×10×10=5;⑤以C 为直角顶点时,不能构成满足条件的等腰直角三角形.综上所述,△CMN 的面积为52或292或17或510. 解:满足条件的所有等腰三角形如下图所示:解析:利用等腰三角形的性质,分别以长度为3的边为等腰三角形的底边和腰长进行分类.11. 解:①如图a ,延长AC ,作FD⊥BC 于点D ,FE ⊥AC 于点E ,易得四边形CDFE 是正方形,则CD =DF=FE =EC.∵在等腰直角△ABC 中,AC =BC =1,AB =AF ,∴AB =AC 2+BC 2=12+12=2,∴AF = 2.在Rt △AEF 中,(1+EC)2+EF 2=AF 2,即 (1+DF)2+DF 2=(2)2,解得DF =3-12;②如图b ,延长BC ,作FD⊥BC 于点D ,延长CA ,作FE⊥CA 于点E ,易得四边形CDFE 是正方形,则CD =DF =FE =EC.在Rt △AEF 中,(EC -1)2+EF 2=AF 2,即(FD -1)2+FD 2=(2)2,解得FD =3+12.综上可知,点F 到BC 的距离为3+12或3-1212. 解:(1)将A(-1,0),B(3,0),C(0,-3)代入抛物线y =ax 2+bx +c 中,得⎩⎪⎨⎪⎧a -b +c =0,9a +3b +c =0,c =-3,解得⎩⎪⎨⎪⎧a =1,b =-2,c =-3,故抛物线的解析式为y =x 2-2x -3 (2)如图,抛物线的对称轴为x =-b 2a=1,设M(1,m),已知A(-1,0),C(0,-3),则MA 2=m 2+4,MC 2=(3+m)2+1=m 2+6m +10,AC 2=10.①若MA =MC ,则MA 2=MC 2,得m 2+4=m 2+6m +10,解得m =-1;②若MA =AC ,则MA 2=AC 2,得m 2+4=10,得m =±6;③若MC =AC ,则MC 2=AC 2,得m 2+6m +10=10,得m 1=0,m 2=-6,当m =-6时,M ,A ,C 三点共线,不构成三角形,不合题意,故舍去.综上可知,符合条件的M 点的坐标为 (1,6)(1,-6)(1,-1)(1,0)13. 解:(1)△ABD≌△ACF,证明:∵AB =AC ,∠BAC =90°,∴∠FAC =∠BAC=90°,∵BD ⊥CE ,∠BAC =90°,∠ADB =∠EDC,∴∠ABD =∠ACF,∴△ABD ≌△ACF(ASA)(2)∵△ABD≌△ACF,∴BD =CF ,∵BD ⊥CE ,∴∠BEF =∠BEC,∵BD 是∠ABC 的平分线,∴∠FBE =∠CBE,∵BE =BE ,∴△FBE ≌△CBE(ASA),∴CF =2CE ,∴BD =2CE2019-2020学年数学中考模拟试卷一、选择题1.在下列图形中,既是轴对称图形,又是中心对称图形的是( )A .直角三角形B .正五边形C .正方形D .平行四边形2.某篮球运动员在连续7场比赛中的得分(单位:分)依次为21,16,17,23,20,20,23,则这组数据的平均数与中位数分别是( ) A .20分,17分B .20分,22分C .20分,19分D .20分,20分3.如图是二次函数y =ax 2+bx+c 的部分图象,由图象可知,满足不等式ax 2+bx+c >0的x 的取值范围是( )A.﹣1<x <5B.x >5C.x <﹣1且x >5D.x <﹣1或x >54.把a 移到根号内得( )B. C.5.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径OB =6cm ,高OC =8cm .则这个圆锥漏斗的侧面积是( )A .30cm 2B .30πcm 2C .60πcm 2D .120cm 26.甲,乙工程队分别承接600米,800米的道路修建工程,已知乙比甲每天多修建12米,结果甲比乙提早1天完成,问甲每天修建多少米?设甲每天修建x 米,根据题意可列出方程是( ) A .x 600=80012x -﹣1 B .x 600=80012x -+1C .x 600=80012x +﹣1 D .x 600=80012x ++1 7.如图,在平面直角坐标系中,线段AB 的端点坐标为A (-2,4),B (4,2),直线y=kx-2与线段AB 有交点,则K 的值不可能是( )A .-5B .-2C .3D .58.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点D (5,3)在边AB 上,以C 为中心,把△CDB 旋转90°,则旋转后点D 的对应点D′的坐标是( )A .(2,10)B .(﹣2,0)C .(2,10)或(﹣2,0)D .(10,2)或(﹣2,0)9.如图,D 、E 分别是ABC ∆的边AB 、BC 上的点,DE AC ,AE 、CD 相交于点O ,则下列结论一定正确的是( )A .BD EOAD AO= B .CO CECD CB= C .AB COBD OD= D .BD ODBE OE= 10.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有( )A.6B.5C.4D.711.下列计算中,正确的是( )A 2±B .2+=C .a 2•a 4=a 8D .(a 3)2=a 612.现有一组数据:165、160、166、170、164、165,若去掉最后一个数165,下列说法正确的是( ) A .平均数不变,方差变大 B .平均数不变,方差不变 C .平均数不变,方差变小 D .平均数变小,方差不变二、填空题13.已知 5 个数据:8,8,x ,10,10.如果这组数据的某个众数与平均数相等,那么这组数据的中位数是 __________.14.在平面直角坐标系xOy 中,点A (4,3)为⊙O 上一点,B 为⊙O 内一点,请写出一个符合条件要求的点B 的坐标______.15.若关于x 的一元二次方程x 2﹣4x+m =0有实数根,则实数m 满足_____.16.如果2(2+(a ,b 为有理数),那么a+b 等于_____.17.如图,矩形ABCD 中,4AB =,6AD =,点E 为AD 中点,点P 为线段AB 上一个动点,连接EP ,将APE ∆沿PE 折叠得到FPE ∆,连接CE ,CF ,当ECF ∆为直角三角形时,AP 的长为_____.18.从0,1,2,3这四个数字中任取3个数,取得的3个数中不含2的概率是________ 三、解答题19.某校在一次大课间活动中,采用了四种活动形式:A :跑步;B :跳绳;C :做操;D :游戏,全校学生都选择了一种形式参与活动,小明对同学们选择的活动形式进行了随机抽样调查,并绘制了不完整的两幅统计图(如图):(1)本次共调查了多少名学生?(2)跳绳B 对应扇形的圆心角为多少度?(3)学校在每班A 、B 、C 、D 四种活动形式中,随机抽取两种开展活动,求每班抽取的两种形式恰好是“做操”和“跳绳”的概率.20.某公司可投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品,公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为8元/件,此产品年销售量y (万件)与售价x (元/件)之间满足函数关系式y =﹣x+28.(1)求这种产品第一年的利润W 1(万元)与售价x (元/件)满足的函数关系式; (2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为6元/件,为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过14万件,请计算该公司第二年的利润W 2至少为多少万元.21.在□ABCD 中,经过A 、B 、C 三点的⊙O 与AD 相切于点A ,经过点C 的切线与AD 的延长线相交于点P ,连接AC .(1)求证:AB =AC ;(2)若AB =4,⊙O PD 的长.22.观察下列式子:0×2+1=12……①1×3+1=22……②2×4+1=32……③3×5+1=42……④…… (1)第⑤个式子____,第⑩个式子_____;(2)请用含n(n 为正整数)的式子表示上述的规律,并证明. 23.已知AB 为O 的直径,EF 切O 于点D ,过点B 作BH EF ⊥于点H ,交O 于点C ,连接BD .(Ⅰ)如图①,若BDH 65∠=︒,求ABH ∠的大小; (Ⅱ)如图②,若C 为BD 的中点,求ABH ∠的大小.24.如图,在等腰△ABC 中,AB =BC ,点D 是AC 边的中点,延长BD 至点E ,使得DE =BD ,连结CE .(1)求证:△ABD ≌△CED .(2)当BC =5,CD =3时,求△BCE 的周长.25.如图,AB是半⊙O的直径,点C,D为半圆O上的点,AE||OD,过点D的⊙O的切线交AC的延长线于点E,M为弦AC中点(1)填空:四边形ODEM的形状是;(2)①若CEkCM=,则当k为多少时,四边形AODC为菱形,请说明理由;②当四边形AODC为菱形时,若四边形ODEM的面积为O的半径.【参考答案】***一、选择题二、填空题13.或 1014.(2,2).15.4m≤16.1017.1或9 418.1 4三、解答题19.(1) 本次共调查了300名学生;(2) 36︒;(3)1 6【解析】【分析】(1)用A类学生数除以它所占的百分比即可得到总人数(2)先算出B类的总数,再利用B的总数除以总的调查人数在乘以360°即可得到答案(3)利用画树状图可知一共有十二种结果,而做操”和“跳绳”的结果数为2,即可得到答案【详解】(1)120÷40%=300(人),所以本次共调查了300名学生;(2)喜欢B类的人数为300﹣120﹣60﹣90=30(人),所以跳绳B对应扇形的圆心角=360°×30300=36°;(3)画树状图为:共有12种等可能的结果数,其中每班抽取的两种形式恰好是“做操”和“跳绳”的结果数为2,所以每班抽取的两种形式恰好是“做操”和“跳绳”的概率=21 126.【点睛】此题综合考查了扇形统计图,条形统计图,画树状图等,解题关键在于对图形性质的理解20.(1)W1=﹣x2+36x﹣304.(2)该产品第一年的售价是18元.(3)该公司第二年的利润W2至少为92万元.【解析】【分析】(1)根据总利润=每件利润×销售量﹣投资成本,列出式子即可;(2)构建方程即可解决问题;(3)根据题意求出自变量的取值范围,再根据二次函数的性质即可解决问题.【详解】(1)W1=(x﹣8)(﹣x+28)﹣80=﹣x2+36x﹣304;(2)由题意:20=﹣x2+36x﹣304.解得:x=18,答:该产品第一年的售价是18元;(3)∵公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过14万件.∴14≤x≤18,W2=(x﹣6)(﹣x+28)﹣20=﹣x2+34x﹣188,∵抛物线的对称轴x=17,又14≤x≤18,∴x=14时,W2有最小值,最小值=92(万元),答:该公司第二年的利润W2至少为92万元.【点睛】本题考查二次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,学会构建方程或函数解决问题.21.(1)见解析,(2【解析】【分析】(1)连接AO并延长交BC于点E,交⊙O于点F,由切线的性质可得∠FAP=90°,根据平行四边形的性质可得∠AEB=90°,由垂径定理点BE=CE,根据垂直平分线的性质即可得AB=AC;(2)连接FC,OC,设OE=x,则EF x,根据AF为直径可得∠ACF=90°,利用勾股定理可得CF的长,利用勾股定理可证明OC2-OE2=CF2-EF2,即可求出x的值,进而可得EC、BC的长,由平行线性质可得∠PAC=∠ACB,由切线长定理可得PA=PC,即可证明∠PAC=∠PCA,由AB=AC可得∠ABC=∠ACB,利用等量代换可得∠ABC=∠PAC,即可证明△PAC∽△ABC,根据相似三角形的性质可求出AP的长,根据PD=AP-AD即可得答案.【详解】(1)连接AO并延长交BC于点E,交⊙O于点F.∵AP是⊙O的切线,AF是⊙O的直径,∴AF⊥AP,∴∠FAP=90°.∵四边形ABCD是平行四边形,∴AD∥BC.∴∠AEB=∠FAP=90°,∴AF⊥BC.∵AF是⊙O的直径,AF⊥BC,∴BE=CE.∵AF⊥BC,BE=CE,∴AB=AC.(2)连接FC,OC.设OE=x,则EF x.∵AF是⊙O的直径,∴∠ACF=90°.∵AC=AB=4,AF=∴在Rt△ACF中,∠ACF=90°,∴CF2.∵在Rt△OEC中,∠OEC=90°,∴CE2=OC2-OE2.∵在Rt△FEC中,∠FEC=90°,∴CE2=CF2-EF2.∴OC2-OE2=CF2-EF2.即2-x2=22x)2.解得x=5.∴EC5.∴BC=2EC.∵四边形ABCD是平行四边形,∴AD=BC=5.∵AD∥BC,∴∠PAC=∠ACB.∵PA,PC是⊙O的切线,∴PA=PC.∴∠PAC=∠PCA.∵AB=AC,∴∠ABC=∠ACB.∴∠PAC=∠ABC,∠PCA=∠ACB.∴△PAC∽△ABC,∴APAB=ACBC.∴AP=ACBC·AB=∴PD=AP-AD.【点睛】本题考查切线的性质、圆周角定理的推论、垂径定理、平行四边形的性质及相似三角形的判定与性质,直径所对的圆周角是直角;圆的切线垂直于过切点的半径;垂直于弦的直径平分弦,且平分弦所对的两条弧;有两个角对应相等的两个三角形相似;熟练掌握相关性质及定理是解题关键.22.(1)4×6+1=52,9×11+1=102;(2)(n﹣1)(n+1)+1=n2;证明见解析.【解析】【分析】(1)根据已知等式中的规律即可得;(2)根据整数的平方等于前一个整数与后一个整数乘积与1的和可得,利用整理的运算法则即可验证.【详解】(1)第⑤个式子为4×6+1=52,第⑩个式子9×11+1=102;故答案为:4×6+1=52,9×11+1=102;(2)第n个式子为(n﹣1)(n+1)+1=n2,证明:左边=n2﹣1+1=n2,右边=n 2,∴左边=右边,即(n ﹣1)(n+1)+1=n 2.【点睛】本题主要考查数字的变化规律,解题的关键是根据已知等式得出(n ﹣1)(n+1)+1=n 2的规律,并熟练加以运用.23.(Ⅰ)∠ABH=50°;(Ⅱ)60ABH ∠=︒.【解析】【分析】(Ⅰ)连接OD ,由切线性质可得OD ⊥EF ,根据锐角互余的关系可求出∠ODB 和∠DBH 的度数,根据等腰三角形的性质可求出∠OBD 的度数,根据∠ABH=∠ABD+∠DBH 即可得答案;(Ⅱ) 连接OD ,OC ,由C 为BD 的中点可得DOC BOC ∠∠=,由平行线性质可得DOC OCB ∠∠=,根据等腰三角形的性质可得OCB OBC ∠∠=,即可证明△OCB 是等边三角形,即可得答案.【详解】(Ⅰ)连接OD .∵EF 切O 于点D ,∴OD EF ⊥.∵BDH 65=︒,BH EF ⊥,∴ODB DBH 25∠∠==︒.∵OB OD =,∴ABD ODB 25∠∠==︒.∴ABH ABD DBH 50∠∠∠=+=︒.(Ⅱ)连接OD ,OC .由(Ⅰ)可得OD//BH ,∴DOC OCB ∠∠=,∵C 为BD 的中点,∴DOC BOC ∠∠=.∴OCB BOC ∠∠=.∵OB OC =,∴OCB OBC ∠∠=.∴ΔOCB 为等边三角形,∴ABH 60∠=︒.【点睛】本题考查了切线的性质、等腰三角形的性质及等边三角形的判定,圆的切线垂直于经过切点的半径;运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.24.(1)见解析;(2)△BCE的周长为18.【解析】【分析】(1)利用全等三角形的判定定理SAS证得结论;(2)利用勾股定理求得BD=4,然后利用三角形的周长公式解答.【详解】(1)证明:∵AB=BC,点D是AC边的中点,∴AD=CD,∠ADB=∠CDE=90°.又∵DE=BD,∴△ABD≌△CED(SAS);(2)解:∵BD===4,∴BE=2BD=8.又∵CE=AB=BC=5,∴BC+CE+BE=5+5+8=18,即△BCE的周长为18.【点睛】本题考查了全等三角形的判定与性质,在应用全等三角形的判定时,要注意三角形间的公共边、公共角或对顶角,必要时添加适当辅助线构造三角形.25.(1)四边形AODC为菱形,见解析;(2)①当k为1时,四边形AODC为菱形.理由见解析;②⊙O的半径为.【解析】【分析】(1)运用切线定理、垂径定理、平行线的性质证明四个角均为90°,即可说明四边形ODEM为矩形;(2)①当k为1时,四边形AODC为菱形.连接CD,CO.由四边形AODC为菱形,可得AO=OD=CD=AC,由OM垂直平分AC,得到OA=OC,所以OA=OC=AC,因此△OAC为等边三角形,于是∠CAO=60°,∠CDO =60°,∠ECD=30°,所以CE=12CD=12AC,又CM=12AC,因此CE=CM,即CECM=1,所以当k为1时,四边形AODC为菱形;②由四边形ODEM 的面积为可知OD•MO=43,由①四边形AODC 为菱形时,∠MAO =60°,所以OMOA=sin ∠MAO =sin60°,MO ,因此OD•MO=OA•2OA =,所以OA =. 【详解】(1)∵DE 是⊙O 的切线,∴OD ⊥DE ,∠ODE =90°,∵M 为弦AC 中点,∴OM ⊥AC ,∠OME =90°,∵AE||OD ,∴∠E =90°,∠MOD =90°,∴四边形ODEM 是矩形;(2)①当k 为1时,四边形AODC 为菱形.理由如下:连接C D ,CO .∵四边形AODC 为菱形,∴AO =OD =CD =AC ,∵OM 垂直平分AC ,∴OA =OC ,∴OA =OC =AC ,∴△OAC 为等边三角形,∴∠CAO =60°,∠CDO =60°,∴∠ECD =30°,∴CE =12CD =12AC , ∵CM =12AC , ∴CE =CM , ∴1CE CM= , 当k 为1时,四边形AODC 为菱形;②∵四边形ODEM 的面积为,∴OD•MO=由①四边形AODC 为菱形时,∠MAO =60°,∴sin sin 60OM MAO OA ︒=∠= ,MO ,OA⋅=,∴OD•MO=2∴OA=∴⊙O的半径为【点睛】本题是圆的综合题,熟练掌握矩形、菱形、三角函数、垂径定理等是解题的关键.2019-2020学年数学中考模拟试卷一、选择题1.在-2,3.14,5π,这6个数中,无理数共有( ) A .4个 B .3个 C .2个 D .1个2.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径OB =6cm ,高OC =8cm .则这个圆锥漏斗的侧面积是( )A .30cm 2B .30πcm 2C .60πcm 2D .120cm 23.若数轴上表示﹣2和3的两点分别是点A 和点B ,则点A 和点B 之间的距离是( )A .﹣4B .﹣2C .3D .54.在平面直角坐标系xOy 中,以点(3,4)为圆心,4为半径的圆一定A .与x 轴和y 轴都相交B .与x 轴和y 轴都相切C .与x 轴相交、与y 轴相切D .与x 轴相切、与y 轴相交. 5.如图,在中,,分别是上两点,,点分别是的中点,则的长为( )A.10B.8C.D.206.将一图形绕着点O 顺时针方向旋转70后,再绕着点O 逆时针方向旋转120,这时如果要使图形回到原来的位置,需要将图形绕着点O 什么方向旋转多少度?( )A .逆时针方向,50B .顺时针方向,50C .顺时针方向,190D .逆时针方向,1907.某医疗器械公司接到400件医疗器械的订单,由于生产线系统升级,实际每月生产能力比原计划提高了30%,结果比原计划提前4个月完成交货.设每月原计划生产的医疗器械有x 件,则下列方程正确的是( )A .400400(130%)x x -+=4B .400400(130%)x x-+=4C .400400(130%)x x --=4D .4004004(130%)x x-=- 8.下列运算正确的是( )A .236a a a ⋅=B .22423a a a +=C .236(2)2a a -=-D .422()a a a ÷-= 9.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为F ,连接DF ,则下列四个结论中,错误的是( )A.△AEF ~△CABB.CF=2AFC.DF=DCD.tan ∠CAD=3410.如图,正方形ABCD 的顶点A (1,1),B (3,1),规定把正方形ABCD“先沿x 轴翻折,再向左平移1个单位”为一次变换,这样连续经过2019次变换后,正方形ABCD 的顶点C 的坐标为( )A .(﹣2018,3)B .(﹣2018,﹣3)C .(﹣2016,3)D .(﹣2016,﹣3)11.在体育模拟考中,某6人小组的1000米长跑得分(单位:分)分别为:10,9,8,10,10,9,则这组数据的众数和中位数分别是( )A .9分,8分B .9分,9.5分C .10分,9分D .10分,9.5分12.如图,已知BC 是圆柱底面的直径,AB 是圆柱的高,在圆柱的侧面上,过点A 、C 嵌有一圈路径最短的金属丝,现将圆柱侧面沿AB 剪开,所得的圆柱侧面展开图是( )A .B .C .D .二、填空题13.抛物线y=(2x﹣1)2+t与x轴的两个交点之间的距离为4,则t的值是_____.14.用不等号“>”或“<”连接:sin50°_____cos50°.15.已知x﹣y=2,则x2﹣y2﹣4y=_____.16.如图,将矩形OABC置于一平面直角坐标系中,顶点A,C分别位于x轴,y轴的正半轴上,点B的坐标为(5,6),双曲线y=kx(k≠0)在第一象限中的图象经过BC的中点D,与AB交于点E,P为y轴正半轴上一动点,把△OAP沿直线AP翻折,使点O落在点F处,连接FE,若FE∥x轴,则点P的坐标为___.17.如图,在△ABC中,∠C=90°,∠A=30°,a∥b,点B在直线b上,∠1=138°,则∠2=______度.18.如图,正方形ABCD的边长为4,⊙B的半径为2,P为⊙B上的动点,则PD+12PC的最小值等于_____.三、解答题19.随着通讯技术的迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了名学生,在扇形统计图中“QQ”的扇形圆心角的度数为;(2)将条形统计图补充完整;(3)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.20.如图,在Rt△ABC中,∠C=90°,D是AC边上一点,tan∠DBC=43,且BC=6,AD=4.求cosA的值.21.已知函数y=y1+y2,其中y1与x成反比例,y2与x﹣2成正比例,函数的自变量x的取值范围是x≥12,且当x=1或x=4时,y的值均为32.请对该函数及其图象进行如下探究:(1)解析式探究:根据给定的条件,可以确定出该函数的解析式为:.(2)函数图象探究:①根据解析式,补全下表:②根据表中数据,在如图所示的平面直角坐标系中描点,并画出函数图象.(3)结合画出的函数图象,解决问题:①当x=34,214,8时,函数值分别为y1,y2,y3,则y1,y2,y3的大小关系为:;(用“<”或“=”表示)②若直线y=k与该函数图象有两个交点,则k的取值范围是,此时,x的取值范围是.22.东北大米主要种植于黑龙江省、吉林省、辽宁省的广大平原地区,种植在极其肥沃的黑土地中,吸收了足够的氮、磷、钾等多种矿物元素,阳光雨露充足,又有纯净无污染的灌溉用水,生长周期比较长,一般五个月左右.东北大米颗粒饱满,质地坚硬,色泽清白透明;饭粒油亮,香味浓郁;蒸煮后出饭率高,粘性较小,米质较脆.刘阿姨到超市购买东北大米,第一次按原价购买,用了105元.几天后,遇上这种大米8折出售,她用140元又买了一些,两次共购买了40kg.这种东北大米的原价是多少?23.解不等式组1531xx x+≤⎧⎨->⎩①②请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得_________;(Ⅱ)解不等式②,得_________;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为________.24.解方程:213xx x+=-.25.先化简,再求值:2221(1)244x xx x x+++÷--+,其中x=3.【参考答案】*** 一、选择题二、填空题13.-1614.>15.416.(0,53)或(0,15).17.12 18.5 三、解答题19.(1)100,108°;(2)补图见解析;(3)1 3【解析】【分析】(1)由20÷20%可得这次统计共抽查人数,根据圆心角公式可得结果;(2)先求喜欢用短信的人数,再画图;(3)用树状图方法求概率.【详解】解:(1)20÷20%=100;所以这次统计共抽查了100名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数=360°×30100=108°; (2)喜欢用短信的人数为:100×5%=5人, 补充图形,如图所示:(3)画树状图为:共有9种等可能的结果数,甲乙两名同学恰好选中同一种沟通方式的结果数为3, 所以恰好选用“微信”联系的概率=39=13.【点睛】考核知识点:从统计图表获取信息,求概率.20.5【解析】 【分析】先在Rt △BDC 中,利用锐角三角函数的定义求出CD 的长,由AC=AD+DC 求出AC 的长,然后在Rt △ABC 中,根据勾股定理求出AB 的长,从而求出 cosA 的值. 【详解】解:在Rt △BDC 中, tan ∠DBC=43, 且BC=6 , ∴ tan ∠DBC=DC BC =6DC =43, ∴CD=8, ∴AC=AD+DC=12,在Rt △ABC 中,,∴ cosA =ACAB =. 【点睛】本题主要考查解直角三角形.熟练掌握三角函数的定义是解题的关键.21.(1)2112y x x =+-;(2)①见解析;②见解析;(3)①y 2<y 1<y 3;②1<k≤134,12≤x≤8. 【解析】 【分析】(1)根据题意设11k y x=,y 2=k 2(x ﹣2),则12(2)ky k x x =+-,即可解答(2)将表中数据代入2112y x x =+-,即可解答 (3)①由(2)中图象可得:(2,1)是图象上最低点,在该点左侧,y 随x 增大而减小;在该点右侧y 随x 增大而增大,即可解答 ②观察图象得:x≥12,图象最低点为(2,1),再代入即可 【详解】 (1)设11k y x=,y 2=k 2(x ﹣2),则12(2)ky k x x =+- ,由题意得:1212323242k k k k ⎧-=⎪⎪⎨⎪+=⎪⎩ ,解得:12212k k =⎧⎪⎨=⎪⎩,∴该函数解析式为2112y x x =+- , 故答案为:2112y x x =+-, (2)①根据解析式,补全下表:②根据上表在平面直角坐标系中描点,画出图象.(3)①由(2)中图象可得:(2,1)是图象上最低点,在该点左侧,y 随x 增大而减小;在该点右侧y 随x 增大而增大, ∴y 2<y 1<y 3,故答案为:y 2<y 1<y 3, ②观察图象得:x≥12,图象最低点为(2,1), ∴当直线y =k 与该图象有两个交点时,1<k≤134, 此时x 的范围是:12≤x≤8. 故答案为:1<k≤134,12≤x≤8. 【点睛】此题考查待定系数法求反比例函数的解析式,列出方程式解题关键 22.这种大米的原价是每千克7元. 【解析】 【分析】设这种大米的原价是每千克x 元,根据第一次按原价购买,用了105元.几天后,遇上这种大米8折出售,她用140元又买了一些,两次共购买了40kg ,列出方程即可解答 【详解】解:设这种大米的原价是每千克x 元, 根据题意,得105140400.8x x+=, 解得:x =7.经检验,x =7是原方程的解. 答:这种大米的原价是每千克7元. 【点睛】此题考查分式方程的应用,解题关键在于列出方程 23.(Ⅰ)4x ≤;(Ⅱ)12x >;(Ⅲ)见解析;(Ⅳ)142x <≤. 【解析】 【分析】(Ⅰ)直接移项即可得出答案;(Ⅱ)移项,两边同时除以2,即可得答案;(Ⅲ)根据解集在数轴上的表示方法表示出①②的解集即可;(Ⅳ)根据数轴找出两个解集的公共部分即可. 【详解】 (Ⅰ)15x +≤ 移项得:x≤4, 故答案为:x≤4 (Ⅱ) 31x x -> 移项得:2x>1, 解得:x>12,故答案为:x>12(Ⅲ)不等式①和②的解集在数轴上表示如图所示:(Ⅳ) 由数轴可得①和②的解集的公共解集为142x <≤, 故原不等式的解集为:142x <≤, 故答案为:142x <≤ 【点睛】本题考查的是一元一次不等式组的整数解,会求一元一次不等式组的解集是解决此类问题的关键.求不等式组的解集,借助数轴找公共部分或遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了. 24.x =65. 【解析】 【分析】根据分式方程的解法求解即可. 【详解】去分母得:2x ﹣6+x 2=x 2﹣3x , 解得:x =65, 检验x =65是原方程的解. 【点睛】本题主要考查分式方程的解法,注意根的验证. 25.3 【解析】 【分析】先算括号内的加法,把除法变成乘法,算乘法,再代入求出即可. 【详解】2221(1)244x x x x x +++÷--+ 2222(2)21x x x x x -++-=⋅-+ 2(1)(2)21x x x x x +-=⋅-+ =x (x ﹣2)=x2﹣2x,当x=3时,原式=32﹣2×3=3.【点睛】本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.。
2019年中考数学一轮复习精品提分练习第四单元三角形第十八课时等腰三角形与直角三角形基础达标训练1. 若等腰三角形的两边长为3和7,则该等腰三角形的周长为( )A. 10B. 13C. 17D. 13或172. (2017滨州)如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B 的大小为( )A. 40°B. 36°C. 30°D. 25°第2题图第3题图3. (2017荆州)如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为( )A. 30°B. 45°C. 50°D. 75°4. 如图,等边△OAB的边长为2,则点B的坐标为( )A. (1,1)B. (3,1)C. (3,3)D. (1,3)第4题图第5题图5. 如图,在△ABC中,AB=AC,∠A=36°,BD、CE是角平分线,则图中的等腰三角形共有( )A. 8个B. 7个C. 6个D. 5个6. (2017大连)如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是AB的中点,CD=DE=a,则AB的长为( )A. 2aB. 22aC. 3aD. 43 3a第6题图第7题图7. 如图,在△ABC中,D是BC上一点,AB=AD,E、F分别是AC、BD的中点,EF=2,则AC的长是( )A. 3B. 4C. 5D. 6第8题图8. (2017滨州)如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为( )A. 2+ 3B. 2 3C. 3+ 3D. 3 39. 关注数学文化(2017荆州)《九章算术》中的“折竹抵地”问题:今有竹高一丈,来折抵地,去根六尺,问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为( )A. x 2-6=(10-x )2B. x 2-62=(10-x )2C. x 2+6=(10-x )2D. x 2+62=(10-x )210. (2017丽水)等腰三角形的一个内角为100°,则顶角的度数是________.11. (2017淮安)如图,在Rt △ABC 中,∠ACB =90°,点D ,E 分别是AB ,AC 的中点,点F 是AD 的中点,若AB =8,则EF =________.第11题图 第12题图12. (2017益阳)如图,在△ABC 中,AB =AC ,∠BAC =36°,DE 是线段AC 的垂直平分线,若BE =a ,AE =b ,则用含a 、b 的代数式表示△ABC 的周长为________.13. (2017绥化)在等腰△ABC 中,AD ⊥BC 交直线BC 于点D ,若AD =12BC ,则△ABC 的顶角的度数为________.14. (2017淄博)在边长为4的等边三角形ABC 中,D 为BC 边上的任意一点,过点D 分别作DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,则DE +DF =________.15. 在△ABC 中,BC =2,AB =23,AC =b ,且关于x 的方程x 2-4x +b =0有两个相等的实数根,则AC 边上的中线长为________.16. (2017常德)如图,已知Rt △ABE 中,∠A =90°,∠B =60°,BE =10,D 是线段AE 上的一动点,过D 作CD 交BE 于C ,并使得∠CDE =30°,则CD 长度的取值范围是________.第16题图第17题图17. 如图,在等腰Rt△ABC中,∠ABC=90°,AB=CB=2,点D为AC的中点,点E,F分别是线段AB,CB上的动点,且∠EDF=90°,若ED的长为m,则△BEF的周长是________(用含m的代数式表示).18. (6分)(2017北京)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D.求证:AD=BC.第18题图19. (8分)在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.第19题图能力提升训练1. (2017海南)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可能( )条.A. 3 B. 4 C. 5 D. 6第2题图2. (2017台州)如图,已知等腰三角形ABC,AB=AC. 若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是( )A. AE=ECB. AE=BEC. ∠EBC=∠BACD. ∠EBC=∠ABE3. 如图,△ABC是等边三角形,BD平分∠ABC,点E在BC的延长线上,且CE=1,∠E=30°,则BC=________.第3题图第4题图4. (2017杭州)如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连接AE,则△ABE的面积等于________.5. 若点P是△ABC内一点,且它到三角形三个顶点的距离之和最小,则P点叫△ABC的费马点(Fermat point).已经证明:在三个内角均小于120°的△ABC中,当∠APB=∠APC=∠BPC=120°时,P就是△ABC的费马点.若点P是腰长为2的等腰直角三角形DEF的费马点,则PD+PE+PF =________.拓展培优训练1. (2017杭州)如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,第1题图线段BE的垂直平分线交边BC于点D. 设BD=x,tan∠ACB=y,则( )A. x-y2=3B. 2x-y2=9C. 3x-y2=15D. 4x-y2=212. 已知等腰三角形顶角为36°,则底与腰的比值等于________.答案1. C 【解析】当3为底边时,其它两边都为7,3、7、7可以构成三角形,周长为17;当3为腰时,其他两边为3和7,∵3+3=6<7,∴不能构成三角形,故舍去,∴该等腰三角形的周长为17.2. B 【解析】设∠C=x,∵AD=DC,∴∠DAC=∠C=x,∴∠ADB=2x,∵AB=BD,∴∠BAD=∠ADB=2x,∴∠B=180°-4x,∵BA=AC,∴∠B=∠C,∴180°-4x=x,解得x =36°,∴∠B=∠C=36°.3. B 【解析】∵∠A=30°,AB=AC,∴∠ABC=∠ACB=75°,又∵l为AB的垂直平分线,∴DB=DA,∴∠DBA=∠A=30°,∴∠CBD=∠CBA-∠DBA=75°-30°=45°.第4题解图4. D 【解析】如解图,过点B 作BC ⊥AO 于点C ,∵△AOB 是等边三角形,∴OC =12AO =1,∴在Rt △BOC 中,BC =OB 2-OC 2=3,∴B 点的坐标为(1,3).5. A 【解析】∵AB =AC ,∠A =36°,∴∠ABC =∠ACB =12(180°-∠A )=72°,∵BD ,CE 是角平分线,∴∠ABD =∠DBC =12∠ABC =36°,∠ACE =∠ECB =36°,∴∠A =∠ABD =∠ACE ,∠DBC =∠ECB ,∴∠BDC =180°-∠ACB -∠DBC =180°-72°-36°=72°,同理∠BEC =72°,∴∠BDC =∠ACB ,∠BEC =∠E B C ,∴∠EOB =180°-∠BEC -∠EBD =180°-72°-36°=72°,同理∠DOC =72°,∴∠BEO =∠BOE ,∠CDO =∠COD ,即等腰三角形有△OBC ,△ADB ,△AEC ,△BEC ,△BDC ,△ABC ,△EBO ,△DCO ,共8个.6. B 【解析】在Rt △CDE 中,CD =DE =a ,∴DE =CD 2+DE 2=a 2+a 2=2a ,∵点E 为Rt △ACB 斜边AB 的中点,∴CE =AE =BE =12AB ,∴AB =2CE =22a .第7题解图7. B 【解析】如解图,连接AF ,∵AB =AD ,F 是BD 的中点,∴AF ⊥BD ,∵在Rt △ACF 中,∠AFC =90°,E 是AC 的中点,EF =2,∴AC =2E F =4.8. A 【解析】设AC =x ,∵AC ⊥BC ,∠ABC =30°,∴AB =2x ,BC =3x ,∵AB =BD ,∴BD =2x ,∴CD =BC +BD =(2+3)x ,∵tan ∠DAC =CD AC ,∴tan ∠DAC =(2+3)xx=2+ 3.第9题解图9. D 【解析】如解图,在直角三角形ABC 中,利用勾股定理,列方程为x 2+62=(10-x )2. 10. 100° 【解析】由三角形内角和定理可知,若等腰三角形的一个内角为100°,则这个内角为顶角,此时两底角均为40°,即该三角形顶角的度数是100°.11. 2 【解析】在Rt △ABC 中,∠ACB =90°,点D 是AB 的中点,∴CD =12AB =4,∵点E是AC 的中点,点F 是A D 的中点,∴EF 是△ADC 的中位线,∴EF =12CD =2.12. 2a +3b 【解析】∵在△ABC 中,AB =AC ,∠BAC =36°,∴∠ABC =∠ACB =72°,∵DE 垂直平分AC ,∴CE =AE ,∠ECA =∠A =36°,∴∠BEC =∠A +∠ECA =72°,∴∠BEC=∠B ,∴CE =BC =b ,∴△ABC 的周长为AB +A C +BC =2AB +BC =2(a +b )+b =2a +3b . 13. 30°,90°或150° 【解析】如解图,第13题解图解图①中△ABC 是等腰直角三角形,∴顶角是90°,解图②中AC =BC ,在直角三角形ADC 中,AD =12AC ,∴∠ACD =30°,∴∠ACB =180°-∠ACD =150°,解图③中,AC =BC ,在直角三角形ADC 中,AD =12AC ,∴∠ACD =30°,综上所述,△ABC 顶角的度数分别是30°,90°或150°.14. 2 3 【解析】假设点D 与点B 重合,可得DE +DF 为等边三角形AC 边上的高,再由等边三角形的边长为4,根据勾股定理得AC 边上的高为2 3.15. 2 【解析】∵方程x 2-4x +b =0有两个相等的实数根,∴Δ=16-4b =0,解得b =4,又∵BC =2,AB =23,AC =b =4,∴AB 2+BC 2=(23)2+22=42=AC 2,∴∠B =90°,∴AC 边上的中线长为2.第16题解图16. 0<CD≤5 【解析】如解图,取BE 的中点F ,连接AF ,∵∠A =90°,则AF =EF =12BE=5,∴∠EAF =∠E =30°,又∵∠CDE =30°,∴∠CDE =∠EAF ,∴CD ∥AF ,∴CD AF =ED EA,当D 与A 重合时,CD 取最大值为5;当D 接近于E 时,DE 越小,CD 越小,∵线段CD 不能为0,∴0<CD ≤5.17. 2+2m 【解析】如解图,连接BD ,∵∠C =∠EBD ,BD =CD ,∠CDF =∠BDE ,∴△BED ≌△CFD ,∴BE =CF ,DE =DF ,则BE +BF +EF =BC +EF =2+EF ,在Rt △DEF 中,DE =DF =m ,∴EF =2m ,则△BEF 的周长是2+ 2 m .第17题解图18. 证明:∵AB =AC ,∠A =36°,∴在△ABC 中,∠ABC =∠C =12(180°-∠A )=72°,又∵BD 为∠ABC 的平分线,∴∠ABD =∠CBD =12∠ABC =36°=∠A ,∴△ABD 是以点D 为顶点的等腰三角形, ∴AD =BD ,∵∠CBD =36°,∠C =72°,∴∠BDC =180°-∠CBD -∠C =72°=∠C , ∴△BCD 是以点B 为顶点的等腰三角形, ∴BC =BD , ∴AD = BC .19. 解:设BD =x ,则CD =14-x ,根据勾股定理可得,AD 2=AB 2-BD 2=AC 2-CD 2,即152-x 2=132-(14-x )2, 解得x =9,∴AD 2=152-x 2=152-92=144, ∵AD >0,∴AD =12,∴S △ABC =12×BC ×AD =12×14×12=84. 能力提升训练1. B 【解析】符合条件的直线共有4条:(1)如解图①,在边BC 上截取CE =CA ,BF =BA ,连接AE 、AF ,得到等腰三角形△CEA ,△BAF ;(2)如解图②,分别作AB 、AC 的中垂线交BC 于点M 、N ,连接AM ,AN ,得到等腰三角形△MAB ,△NCA ,综上所述,直线AE 、AF 、AM 、AN 均满足题意.2. C 【解析】由题图知,BC =BE ,∴∠BCE =∠BE C ,∵AB =AC ,∴∠BCA =∠CBA ,∴∠BCE =∠BEC =∠CBA ,∵∠EBC =180°-∠BCE -∠BEC ,∠BAC =180°-∠BCA -∠CBA ,∴∠EBC =∠BAC .3. 2 【解析】∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,BA =BC ,∵BD 平分∠ABC ,∴∠DBC =∠E =30°,BD ⊥AC ,∴∠BDC =90°,∴BC =2DC ,∵∠ACB =∠E +∠CDE ,∴∠CDE =∠E =30°,∴CD =CE =1,∴BC =2CD =2.第4题解图4. 78 【解析】如解图,过A 作AH ⊥BC ,∵AB =15,AC =20,∠BAC =90°,∴由勾股定理得,BC =152+202=25,∵AD =5,∴DC =20-5=15,∵DE ⊥BC ,∠BAC =90°,∴△CDE ∽△CBA ,∴CE CA =CD CB ,∴CE =1525×20=12,∴BE =BC -CE =13.∴BC ·AH =AB ·AC ,AH =AB ·AC BC =15×2025=12,∴S △ABE =12×12×13=78.第5题解图 5. 3+1 【解析】如解图,等腰Rt △DEF 中,DE =DF =2,过点D 作DM ⊥EF 于点M ,过E 、F 分别作∠MEP =∠MFP =30°,从而可找到点P ,则DM =EM =12EF =12×2=1,在Rt △PEM 中,PM =tan30°·EM =33,∴PE =233,∴DP =1-33,PF =233,∴PD +PE +PF =3+1.拓展培优训练1. B 【解析】如解图,连接DE ,过点A 作AF ⊥BC ,垂足为F ,过E 作EG ⊥BC ,垂足为G ,∵AB =AC ,AF ⊥BC ,BC =12,∴BF =FC =6,又∵E 是AC 的中点,EG ⊥BC ,∴EG ∥AF ,∴CG =FG =12CF =3,∵在Rt △CEG 中,tanC =EG CG,∴EG =CG ×tanC =3y ,∴DG =BF +FG -BD =6+3-x =9-x ,∵HD 是BE 的垂直平分线,∴BD =DE =x ,∵在R t △EGD 中,由勾股定理得,ED 2=DG 2+EG 2,∴x 2=(9-x)2+(3y )2,化简整理得2x -y 2=9.第1题解图2.5-12 【解析】如解图,设等腰△ABC 底边为a ,腰为b ,作∠B 的平分线交AC 于D ,则∠B =12(180°-36°)=72°,∴△BCD 、△DAB 均为等腰三角形,则BD =AD =BC =a ,而CD =b -a ,由△BCD ∽△ABC ,∴BC AB =CD BC ,即a b =b -a a, ∴(ab )2+(ab )-1=0,解得a b =5-12或-5-12(舍去).第2题解图。
2019年中考数学练习专项练习:等腰三角形与直角三角形一、选择题1.如图,AD=BC=BA,那么∠1与∠2之间的关系是()A. ∠1=2∠2B. 2∠1+∠2=180°C. ∠1+3∠2=180°D. 3∠1-∠2=180°2.Rt△ABC中,CD是斜边AB上的高,∠B=30°,AD=2cm,则AB的长度是()A. 2cmB. 4cmC. 8cmD. 16cm3.如图,AB=AC=AD,若∠BAD=80°,则∠BCD=()A. 80°B. 100°C. 140°D. 160°4.O为锐角△ABC的∠C平分线上一点,O关于AC、BC的对称点分别为P、Q,则△POQ一定是()A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰直角三角形5.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为( )A.25°B.50°C.60°D.30°6.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A. -1B. +1C. -1D. +17.在平面直角坐标系中,已知A(1,1),要在坐标轴上找一点P,使得△PAO为等腰三角形,这样的P 点有几个()A. 9B. 8C. 7D. 68.如图,有一块直角三角形纸片,两条直角边AC=6cm,BC=8cm.若将直角边AC沿直线折叠,使它落在斜边AB上,且与AE重合,则CD等于()A. 2cmB. 3cmC. 4cmD. 5cm9.如图,在矩形ABCD中,AB=4,AD=6,点F是AB的中点,E为BC边上一点,且EF⊥ED,连结DF,M 为DF的中点,连结MA,ME.若AM⊥ME,则AE的长为()A. 5B.C.D.A. B. C. D.二、填空题11.已知直角三角形的两边的长分别是3和4,则第三边长为________.12.在△ABC中,AB=AC=17cm,BC=16cm,AD是角平分线,则△ABC的面积为________cm2.13.如图,在△ABC中,AB=AC,∠A=40°,则△ABC的外角∠BCD=________度.14.△ABC中,AB= ,AC=8,∠ACB=30°,则BC的长为________.15.如图,△ABC中,AB=AC,AD⊥BC于D,AE=EC,AD=18,BE=15,则△ABC的面积是________16.如图,△ABC中,AC、BC上的中线交于点O,且BE⊥AD.若BD=10,BO=8,则AO的长为________.17. 由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是________ cm.18.如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了________步路(假设2步为1米),却踩伤了花草.19.如图,在△ABC中,AB=AC=10,点D是BC边上的一动点(不与B、C重合),∠ADE=∠B=∠α,DE交AB于点E,且tan∠α= ,有以下的结论:①△DBE∽△ACD;②△ADE∽△ACD;③△BDE为直角三角形时,BD为8或;④0<BE≤5,其中正确的结论是________(填入正确结论的序号)三、解答题20.如图,在△ABC中,已知AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC=125°.求∠ACB和∠BAC 的度数.21.如图,Rt△ABC中,AC⊥BC,CD⊥AB于D,AC=8,BC=6,求AD的长.22.如图①,在△ABC中,AC=BC,点D为BC的中点,DE⊥AB,垂足为点E,过点B作BG∥AC交DE的延长线于点G.(1)求证:DB=BG;(2)当∠ACB=90°时,如图②,连接AD、CG,求证:AD⊥CG.23.已知:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.(1)求证:AD=BE;(2)求∠AEB的度数;。
中考数学总复习《等腰三角形和直角三角形》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.已知等腰三角形两边的长分别是3和5,求此等腰三角形的周长.小明的解答过程如下:“当3是腰长时,底边长为5,则三角形周长为:3+3+5=11;当5是腰长时,底边长为3,则三角形周长为:3+5+5=13.”小明的解答方法体现的数学思想是( ) A.方程思想B.分类讨论思想C.公理化思想D.转化思想2.(2024·玉林模拟)学完等腰三角形的性质后,小丽同学将课后练习“一个等腰三角形的顶角是36°,求底角的度数”改为“等腰三角形的一个角是36°,求底角的度数”.下面的四个答案,你认为正确的是( )A.36°B.144°C.36°或72°D.72°或144°3.(2024·兰州)如图,在△ABC中,AB=AC,∠BAC=130°,DA⊥AC,则∠ADB=( )A.100°B.115°C.130°D.145°4.一技术人员用刻度尺(单位:cm)测量某三角形部件的尺寸.如图所示,已知∠ACB=90°,点D为边AB的中点,点A,B对应的刻度分别为1,7,则CD=( )A.3.5 cmB.3 cmC.4.5 cmD.6 cm5.(2024·青海)如图,在Rt△ABC中,D是AC的中点,∠BDC=60°,AC=6,则BC的长是( )A.3B.6C.√3D.3√36.(2024·湖南)若等腰三角形的一个底角的度数为40°,则它的顶角的度数为°.7.如图,在△ABC中,AB=AC,AD是BC边的中线,若AB=5,BC=6,则AD的长度为.8.如图,在△ABC中,若AB=AC,AD=BD,∠CAD=24°,则∠C=°.B层·能力提升9.如图,已知△ABC的面积为48,AB=AC=8,点D为BC边上一点,过点D分别作DE ⊥AB于E,DF⊥AC于F,若DF=2DE,则DE长为( )A.2B.3C.4D.610.(2024·南充)如图,已知线段AB,按以下步骤作图:①过点B作BC⊥AB,使BC=12AB,连接AC;②以点C为圆心,以BC长为半径画弧,交AC于点D;③以点A 为圆心,以AD长为半径画弧,交AB于点E.若AE=mAB,则m的值为( )A.√5−12B.√5−22C.√5-1D.√5-211.已知点P是等边△ABC的边BC上的一点,若∠APC=104°,则在以线段AP,BP,CP为边的三角形中,最小内角的大小为( )A.14°B.16°C.24°D.26°12.(2024·新疆)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=8.若点D在直线AB上(不与点A,B重合),且∠BCD=30°,则AD的长为.13.如图,P为等边△ABC内的一点,且P到三个顶点A,B,C的距离分别为6,8,10,则△ABC的面积为.14.问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA=EC.若∠BAE=90°,∠B=45°,求∠DAC的度数.答案:∠DAC=45°.思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由;(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.C层·挑战冲A+15.(2024·滨州)【问题背景】某校八年级数学社团在研究等腰三角形“三线合一”性质时发现:①如图,在△ABC中,若AD⊥BC,BD=CD,则有∠B=∠C;②某同学顺势提出一个问题:既然①正确,那么进一步推得AB=AC,即知AB+BD=AC+CD.若把①中的BD=CD替换为AB+BD=AC+CD,还能推出∠B=∠C 吗?基于此,社团成员小军、小民进行了探索研究,发现确实能推出∠B=∠C,并分别提供了不同的证明方法.小军小民证明:分别延长DB,DC至E,F两点,使得……证明:∵AD⊥BC∴△ADB与△ADC均为直角三角形根据勾股定理,得……【问题解决】(1)完成①的证明;(2)把②中小军、小民的证明过程补充完整.参考答案A层·基础过关1.已知等腰三角形两边的长分别是3和5,求此等腰三角形的周长.小明的解答过程如下:“当3是腰长时,底边长为5,则三角形周长为:3+3+5=11;当5是腰长时,底边长为3,则三角形周长为:3+5+5=13.”小明的解答方法体现的数学思想是(B) A.方程思想B.分类讨论思想C.公理化思想D.转化思想2.(2024·玉林模拟)学完等腰三角形的性质后,小丽同学将课后练习“一个等腰三角形的顶角是36°,求底角的度数”改为“等腰三角形的一个角是36°,求底角的度数”.下面的四个答案,你认为正确的是(C)A.36°B.144°C.36°或72°D.72°或144°3.(2024·兰州)如图,在△ABC中,AB=AC,∠BAC=130°,DA⊥AC,则∠ADB=(B)A.100°B.115°C.130°D.145°4.一技术人员用刻度尺(单位:cm)测量某三角形部件的尺寸.如图所示,已知∠ACB=90°,点D为边AB的中点,点A,B对应的刻度分别为1,7,则CD=(B)A.3.5 cmB.3 cmC.4.5 cmD.6 cm5.(2024·青海)如图,在Rt△ABC中,D是AC的中点,∠BDC=60°,AC=6,则BC的长是(A)A.3B.6C.√3D.3√36.(2024·湖南)若等腰三角形的一个底角的度数为40°,则它的顶角的度数为100°.7.如图,在△ABC中,AB=AC,AD是BC边的中线,若AB=5,BC=6,则AD的长度为4.8.如图,在△ABC中,若AB=AC,AD=BD,∠CAD=24°,则∠C=52°.B层·能力提升9.如图,已知△ABC的面积为48,AB=AC=8,点D为BC边上一点,过点D分别作DE ⊥AB于E,DF⊥AC于F,若DF=2DE,则DE长为(C)A.2B.3C.4D.610.(2024·南充)如图,已知线段AB,按以下步骤作图:①过点B作BC⊥AB,使BC=12AB,连接AC;②以点C为圆心,以BC长为半径画弧,交AC于点D;③以点A 为圆心,以AD长为半径画弧,交AB于点E.若AE=mAB,则m的值为(A)A.√5−12B.√5−22C.√5-1D.√5-211.已知点P是等边△ABC的边BC上的一点,若∠APC=104°,则在以线段AP,BP,CP为边的三角形中,最小内角的大小为(B)A.14°B.16°C.24°D.26°12.(2024·新疆)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=8.若点D在直线AB上(不与点A,B重合),且∠BCD=30°,则AD的长为6或12.13.如图,P为等边△ABC内的一点,且P到三个顶点A,B,C的距离分别为6,8,10,则△ABC的面积为36+25√3.14.问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA=EC.若∠BAE=90°,∠B=45°,求∠DAC的度数.答案:∠DAC=45°.思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由;【解析】(1)∠DAC的度数不会改变.∵EA=EC,∴∠AED=2∠C,①∵∠BAE=90°,BA=BD[180°-(90°-2∠C)]=45°+∠C∴∠BAD=12∴∠DAE=90°-∠BAD=90°-(45°+∠C)=45°-∠C,②由①,②得,∠DAC=∠DAE+∠CAE=45°.(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.【解析】(2)设∠ABC=m°,则∠BAD=12(180°-m°)=90°-12m°,∠AEB=180°-n°-m°∴∠DAE=n°-∠BAD=n°-90°+12m°∵EA=EC,∴∠CAE=12∠AEB=90°-12n°-12m°,∴∠DAC=∠DAE+∠CAE=n°-90°+12m°+90°-12n°-12m°=12n°.C层·挑战冲A+15.(2024·滨州)【问题背景】某校八年级数学社团在研究等腰三角形“三线合一”性质时发现:①如图,在△ABC中,若AD⊥BC,BD=CD,则有∠B=∠C;②某同学顺势提出一个问题:既然①正确,那么进一步推得AB=AC,即知AB+BD=AC+CD.若把①中的BD=CD替换为AB+BD=AC+CD,还能推出∠B=∠C 吗?基于此,社团成员小军、小民进行了探索研究,发现确实能推出∠B=∠C,并分别提供了不同的证明方法.小军小民证明:分别延长DB,DC至E,F两点,使得……证明:∵AD⊥BC∴△ADB与△ADC均为直角三角形根据勾股定理,得……【问题解决】(1)完成①的证明;【证明】(1)∵AD⊥BC∴∠ADB =∠ADC =90°在△ADB 和△ADC 中,{AD =AD∠ADB =∠ADC BD =CD∴△ADB ≌△ADC (SAS) ∴∠B =∠C ;(2)把②中小军、小民的证明过程补充完整. 【证明】(2)小军的证明过程:分别延长DB ,DC 至E ,F 两点,使得BE =BA ,CF =CA ,如图所示∵AB +BD =AC +CD∴BE +BD =CF +CD ,∴DE =DF ∵AD ⊥BC ,∴∠ADE =∠ADF =90° 在△ADE 和△ADF 中,{AD =AD∠ADE =∠ADF DE =DF∴△ADE ≌△ADF (SAS),∴∠E =∠F ∵BE =BA ,CF =CA∴∠E =∠BAE ,∠F =∠CAF∵∠ABC =∠E +∠BAE ,∠ACB =∠F +∠CAF ,∴∠ABC =∠ACB ; 小民的证明过程: ∵AD ⊥BC∴△ADB 与△ADC 均为直角三角形根据勾股定理,得:AD 2+BD 2=AB 2,AD 2+CD 2=AC 2,∴AB 2-BD 2=AC 2-CD 2∴AB2+CD2=AC2+BD2∵AB+BD=AC+CD∴AB-CD=AC-BD∴(AB-CD)2=(AC-BD)2,∴AB2-2AB·CD+CD2=AC2-2AC·BD+BD2∴AB·CD=AC·BD,∴ABAC =BD CD设ABBD =ACCD=k,BD=a,CD=b∴AB=kBD=ka,AC=kCD=kb根据勾股定理AD=√AB2−BD2=√AC2−CD2∴AD=√k2a2−a2=√k2−1aAD=√k2b2−b2=√k2−1b∴a=b,∴AB=AC∴∠B=∠C.第11页共11页。
考点20 等腰三角形、等边三角形和直角三角形一.选择题(共5小题)1.(2019?湖州)如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20° B.35° C.40° D.70°【分析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°﹣∠CAB)=70°.再利用角平分线定义即可得出∠ACE=∠ACB=35°.【解答】解:∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°﹣∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°.故选:B.2.(2019?宿迁)若实数m、n满足等式|m﹣2|+=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12 B.10 C.8 D.6【分析】由已知等式,结合非负数的性质求m、n的值,再根据m、n分别作为等腰三角形的腰,分类求解.【解答】解:∵|m﹣2|+=0,∴m﹣2=0,n﹣4=0,解得m=2,n=4,当m=2作腰时,三边为2,2,4,不符合三边关系定理;当n=4作腰时,三边为2,4,4,符合三边关系定理,周长为:2+4+4=10.故选:B.3.(2019?扬州)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC【分析】根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选:C.4.(2019?淄博)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为()A.4 B.6 C.D.8【分析】根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.【解答】解:∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=6,故选:B.5.(2019?黄冈)如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=()A.2 B.3 C.4 D.2【分析】根据直角三角形的性质得出AE=CE=5,进而得出DE=3,利用勾股定理解答即可.【解答】解:∵在Rt△ABC中,∠ACB=90°,CE为AB边上的中线,CE=5,∴AE=CE=5,∵AD=2,∴DE=3,∵CD为AB边上的高,∴在Rt△CDE中,CD=,故选:C.二.填空题(共12小题)6.(2019?成都)等腰三角形的一个底角为50°,则它的顶角的度数为80°.【分析】本题给出了一个底角为50°,利用等腰三角形的性质得另一底角的大小,然后利用三角形内角和可求顶角的大小.【解答】解:∵等腰三角形底角相等,∴180°﹣50°×2=80°,∴顶角为80°.故填80°.7.(2019?长春)如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为37 度.【分析】根据等腰三角形的性质以及三角形内角和定理在△ABC中可求得∠ACB=∠ABC=74°,根据等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD=∠ACB=37°.【解答】解:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=∠ACB=37°.故答案为:37.8.(2019?哈尔滨)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC 的度数为130°或90°.【分析】根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC的度数.【解答】解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为:130°或90°.9.(2019?吉林)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为36 度.【分析】根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可.【解答】解:∵△ABC中,AB=AC,∴∠B=∠C,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,∴∠A:∠B=1:2,即5∠A=180°,∴∠A=36°,故答案为:36.10.(2019?淮安)若一个等腰三角形的顶角等于50°,则它的底角等于65 °.【分析】利用等腰三角形的性质及三角形内角和定理直接求得答案.【解答】解:∵等腰三角形的顶角等于50°,又∵等腰三角形的底角相等,∴底角等于(180°﹣50°)×=65°.故答案为:65.11.(2019?娄底)如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC于点F,DE=3cm,则BF= 6 cm.,又S△ABC=AC?BF,将AC=AB 【分析】先利用HL证明Rt△ADB≌Rt△ADC,得出S△ABC=2S△ABD=2×AB?DE=AB?DE=3AB代入即可求出BF.【解答】解:在Rt△ADB与Rt△ADC中,,∴Rt△ADB≌Rt△ADC,,∴S△ABC=2S△ABD=2×AB?DE=AB?DE=3AB∵S△ABC=AC?BF,∴AC?BF=3AB,∵AC=AB,∴BF=3,∴BF=6.故答案为6.12.(2019?桂林)如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是 3 .【分析】首先根据已知条件分别计算图中每一个三角形每个角的度数,然后根据等腰三角形的判定:等角对等边解答,做题时要注意,从最明显的找起,由易到难,不重不漏.【解答】解:∵AB=AC,∠A=36°∴△ABC是等腰三角形,∠ABC=∠ACB==72°,BD平分∠ABC,∴∠EBD=∠DBC=36°,∴在△ABD中,∠A=∠ABD=36°,AD=BD,△ABD是等腰三角形,在△ABC中,∠C=∠ABC=72°,AB=AC,△ABC是等腰三角形,在△BDC中,∠C=∠BDC=72°,BD=BC,△BDC是等腰三角形,所以共有3个等腰三角形.故答案为: 313.(2019?徐州)边长为a的正三角形的面积等于.【分析】根据正三角形的性质求解.【解答】解:过点A作AD⊥BC于点D,∵AD⊥BC∴BD=CD=a,∴AD==a,面积则是:a?a=a2.14.(2019?黑龙江)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3,如此下去,则S n= ()n.【分析】由AB1为边长为2的等边三角形ABC的高,利用三线合一得到B1为BC的中点,求出BB1的长,利用勾股定理求出AB1的长,进而求出第一个等边三角形AB1C1的面积,同理求出第二个等边三角形AB2C2的面积,依此类推,得到第n个等边三角形AB n C n的面积.【解答】解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=1,AB=2,根据勾股定理得:AB1=,∴第一个等边三角形AB1C1的面积为×()2=()1;∵等边三角形AB1C1的边长为,AB2⊥B1C1,∴B1B2=,AB1=,根据勾股定理得:AB2=,∴第二个等边三角形AB2C2的面积为×()2=()2;依此类推,第n个等边三角形AB n C n的面积为()n.故答案为:()n.15.(2019?湘潭)如图,在等边三角形ABC中,点D是边BC的中点,则∠BAD= 30°.【分析】根据等腰三角形的三线合一的性质和等边三角形三个内角相等的性质填空.【解答】解:∵△ABC是等边三角形,∴∠BAC=60°,AB=AC.又点D是边BC的中点,∴∠BAD=∠BAC=30°.故答案是:30°.16.(2019?天津)如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF的中点,连接DG,则DG的长为.【分析】直接利用三角形中位线定理进而得出DE=2,且DE∥AC,再利用勾股定理以及直角三角形的性质得出EG以及DG的长.【解答】解:连接DE,∵在边长为4的等边△ABC中,D,E分别为AB,BC的中点,※精品试卷※∴DE是△ABC的中位线,∴DE=2,且DE∥AC,BD=BE=EC=2,∵EF⊥AC于点F,∠C=60°,∴∠FEC=30°,∠DEF=∠EFC=90°,∴FC=EC=1,故EF==,∵G为EF的中点,∴EG=,∴DG==.故答案为:.17.(2019?福建)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= 3 .【分析】根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,D为AB的中点,∴CD=AB=×6=3.故答案为:3.三.解答题(共2小题)18.(2019?绍兴)数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)※精品试卷※例2等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.【分析】(1)由于等腰三角形的顶角和底角没有明确,因此要分类讨论;(2)分两种情况:①90≤x<180;②0<x<90,结合三角形内角和定理求解即可.【解答】解:(1)若∠A为顶角,则∠B=(180°﹣∠A)÷2=50°;若∠A为底角,∠B为顶角,则∠B=180°﹣2×80°=20°;若∠A为底角,∠B为底角,则∠B=80°;故∠B=50°或20°或80°;(2)分两种情况:①当90≤x<180时,∠A只能为顶角,∴∠B的度数只有一个;②当0<x<90时,若∠A为顶角,则∠B=()°;若∠A为底角,∠B为顶角,则∠B=(180﹣2x)°;若∠A为底角,∠B为底角,则∠B=x°.当≠180﹣2x且180﹣2x≠x且≠x,即x≠60时,∠B有三个不同的度数.综上所述,可知当0<x<90且x≠60时,∠B有三个不同的度数.19.(2019?徐州)(A类)已知如图,四边形ABCD中,AB=BC,AD=CD,求证:∠A=∠C.(B类)已知如图,四边形ABCD中,AB=BC,∠A=∠C,求证:AD=CD.※精品试卷※【分析】(A类)连接AC,由AB=AC、AD=CD知∠BAC=∠BCA、∠DAC=∠DCA,两等式相加即可得;(B类)由以上过程反之即可得.【解答】证明:(A类)连接AC,∵AB=AC,AD=CD,∴∠BAC=∠BCA,∠DAC=∠DCA,∴∠BAC+∠DAC=∠BCA+∠DCA,即∠A=∠C;(B类)∵AB=AC,∴∠BAC=∠BCA,又∵∠A=∠C,即∠BAC+∠DAC=∠BCA+∠DCA,∴∠DAC=∠DCA,∴AD=CD.推荐下载。
♦♦♦学生用书(后跟详细参考答案和教师用书)♦♦♦把握命题趋势,提高复习效率,提升解题能力,打造中考高分!2019年中考备战数学专题复习精品资料第四章 几何初步与三角形第十七讲 等腰三角形与直角三角形★★★核心知识回顾★★★知识点一、等腰三角形 1.等腰三角形的定义:有两边 的三角形叫做等腰三角形,其中 的三角形叫做等边三角形,也叫正三角形。
2.等腰三角形的性质:(1)等腰三角形的两腰 的两个底角 ,简称为 ; (2)等腰三角形的顶角平分线、 、 。
(3)等腰三角形是轴对称图形,它有条对称轴,是3.等腰三角形的判定:(1)定义法:有两边相等的三角形是等腰三角形 ;(2)判定定理:有两 相等的三角形是等腰三角形,简称 ;1.等边三角形:三条边都相等的三角形是等边三角形。
2.等边三角形的性质:(1)等边三角形的每个内角都 ,都等于 。
(2)等边三角形也是 对称图形,它有 条对称轴。
3.等边三角形的判定:(1)三条边相等的三角形是等边三角形。
(2)三个角相等的三角形是等边三角形。
(3)一个角是 度的 三角形是等边三角形; (4)有两个角等于 度的三角形是等边三角形。
知识点三、直角三角形:1.勾股定理及其逆定理:(1)勾股定理:直角三角形的两条直角边的平方和等于斜边的平方,即若一个直角三角形的两直角边为a、b,斜边为c,则a、b、c满足。
(2)勾股定理的逆定理:若一个三角形两边的平方和等于第三边的平方,则这个三角形为直角三角形,即若一个三角形的三边a、b、c满足,则这个三角形是直角三角形。
2.直角三角形的性质:除勾股定理外,直角三角形还有如下性质:(1)直角三角形两锐角;(2)直角三角形斜边的中线等于;(3)在直角三角形中如果有一个锐角是30°,那么它所对边是的一半3.直角三角形的判定:除勾股定理的逆定理外,直角三角形还有如下判定方法:(1)定义法:有一个角是的三角形是直角三角形(2)有两个角的三角形是直角三角形(3)勾股定理的逆定理:若一个三角形两边的平方和等于第三边的平方,则这个三角形为直角三角形,即若一个三角形的三边a、b、c满足,则这个三角形是直角三角形。
2018-2019学年初三数学专题复习三角形一、单选题1.如图,BC⊥AC,BD⊥AD,且BC=BD,可说明三角形全等的方法是()A. SASB. AASC. SSAD. HL2.一个三角形的三个内角的度数之比为1:2:3,这个三角形一定是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 无法判定3.以下列各组线段为边,能组成三角形的是()A. 1,2,3B. 2,3,5C. 4,6,8D. 5,6,124.在下图中,正确画出AC边上高的是( )A. B.C. D.5.三角形三边垂直平分线的交点是三角形的()A. 外心B. 内心C. 重心D. 垂心6.如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加一个条件是()A. AD∥BCB. DF∥BEC. ∠A=∠CD. ∠D=∠B7.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,若AB=9cm,则△DEB的周长是()A. 6cmB. 7cmC. 8cmD. 9 cm8.如图所示为一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②,…,依此类推,若正方形①的面积为64,则正方形⑤的面积为()A. 2B. 4C. 8D. 169.钝角三角形的高线在三角形外的数目有()A. 3B. 2C. 1D. 010.以下列各组线段为边,能组成三角形的是()A. 3cm,2cm,1cmB. 2cm,6cm,8cmC. 4cm,5cm,10cmD. 2cm,4cm,5cm11.如图五角星的五个角的和是()A.B.C.D.12. 长度分别为,,的三条线段能组成一个三角形,的值可以是()A. B. C. D.13.如图Rt△ABC中,AB=BC=4,D为BC的中点,在AC边上存在一点E,连接ED,EB,则△BDE周长的最小值为()A. 2B. 2C. 2+2D. 2+214.如图,等腰△ABC中,AB=AC,∠B=40°,AC边的垂直平分线交BC于点E,连接AE,则∠BAE的度数是()A. 45°B. 50°C. 55°D. 60°15.根据下列条件,能唯一画出△ABC的是( )A. AB=3,BC=4,AC=8B. AB=3,BC=4,∠A=30°C. ∠A=60°,∠B=45°,AB=6D. ∠C=90°,AB=616.如图,在△ABC中,∠A=20°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是()A. 24°B. 25°C. 30°D. 36°17.如图,∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,则∠EAB的度数是( )A. 65°B. 55°C. 45°D. 35°18.△ABC中,∠A、∠B、∠C的对边分别是a、b、c,下列说法中,错误的是()A. 如果∠C﹣∠B=∠A,那么∠C=90°B. 如果∠C=90°,那么c2﹣b2=a2C. 如果(a+b)(a﹣b)=c2,那么∠C=90°D. 如果∠A=30°∠B=60°,那么AB=2BC二、填空题19.如图,∠BAC=90°,AB=AC,CE⊥AD于E,BF⊥AD于F,若AF=8cm,EF=5cm,则BF=________,CE=________.20.有一组勾股数,其中的两个分别是8和17,则第三个数是________21.如图,四边形EFGH与四边形ABCD是全等图形,若AD=5,∠B=70°.则EH=________ ,∠F=________ .22.如图,∠A=15°,AB=BC=CD=DE=EF,则∠MEF=________.23. 如图,△ABC中,AC=5,BC=12,AB=13,CD是AB边上的中线.则CD=________.三、解答题24.如图,点B、E、C、F在同一条直线上,BE=CF,∠A=∠D,∠1=∠2.求证:AC=DE.25.如图,A、B两点分别位于一个假山两边,请你利用全等三角形的知识设计一种测量A、B间距离的方案,并说明其中的道理.(1)测量方案:(2)理由:26.已知在△ABC中,∠ABC=∠ACB,∠1=∠2,求证:AD平分∠BAC。
第三节 等腰三角形与直角三角形勾股定理1.(2019遵义六中二模)如图,已知△ABC 为等边三角形,BD 为中线,延长BC 至E ,使CE =CD =1,连接DE ,则DE 等于( B )A.32 B. 3 C. 3 D.122.(2019遵义中考)我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图①).图②由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3,若正方形EFGH 的边长为2,则S 1+S 2+S 3=__12__.特殊三角形的判定与性质3.(2019遵义中考)如图,在△ABC 中,AB =BC ,∠ABC =110°,AB 的垂直平分线DE 交AC 于点D ,连接BD ,则∠ABD=__35°__.4.(2019遵义二中一模)等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为__63°或27°__.5.(2019遵义中考)如图,在▱ABCD 中,BD ⊥AD ,∠A =45°,E ,F 分别是AB ,CD 上的点,且BE =DF ,连接EF 交BD 于点O.(1)求证:BO =DO ;(2)若EF⊥AB,延长EF 交AD 的延长线于点G ,当FG =1时,求AD 的长. 解:(1)∵四边形ABCD 是平行四边形, ∴DC ∥AB ,∴∠ODF =∠OBE. 在△ODF 与△OBE 中, ∵⎩⎪⎨⎪⎧∠ODF=∠OBE,∠DOF =∠BOE,DF =BE ,∴△ODF≌△OBE(AAS),∴BO=DO;(2)∵BD⊥AD,∴∠ADB=90°.∵∠A=45°,∴∠DBA=∠A=45°. ∵EF⊥AB,∴∠G=∠A=45°.∴△ODG是等腰直角三角形.∵AB∥CD,EF⊥AB,∴DF⊥OG,∴OF=FG,△DFG是等腰直角三角形.∵△OBE≌△ODF,∴OE=OF,∴GF=OF=OE,即2FG=EF.∵△DFG是等腰直角三角形,∴DF=FG=1,∴DG=DF2+FG2=2.∵AB∥CD,∴ADDG=EFFG,即AD2=21,∴AD=22.,中考考点清单)等腰三角形的性质与判定1.等腰三角形有两边相等的三角形是等腰三角形,相等的两边叫腰,第三边为底等腰三角形顶角的平分线、底边上的高和底边的中线互相重合;面积: S△ABC=如果一个三角形有两个角相等,那么这个三角形是等腰三角形,其中,两个相等的角所对的边相等(简称“2.等边三角形三边相等的三角形是等边三角形等边三角形三边相等(即等边三角形三角相等,且每一个角都等于__60°__);°的等腰三角形是等边三角形直角三角形的性质与判定直角三角形的性质与判定近5年考查2次,设问方式为:①求面积;②求线段长度.结合的背景有:①与平行四边形结合;②以赵爽弦图为背景.3.直角三角形__中线__等于斜边的一半角所对应的直角边等于斜边的一半12AC);勾股定理:如果直角三角形两直角边分别为a2+b2=c2;,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30续表90°的三角形是直角三角形;一条边的中线等于这条边的一半的三角形是直角三角形;有两个角互余的三角形是直角三角形4.等腰直角三角形,中考重难点突破)等腰三角形的相关计算【例1】如图,在等腰△ABC 中,AB =AC ,AB 的垂直平分线MN 交AC 于点D ,且∠DBC=15°,则∠A=________【解析】由线段垂直平分线定理知AD =BD ,∴∠A =∠ABD,又∵AB=AC ,∴∠ABC =∠ACB,设∠A =x ,则x +2(x +15°)=180°,∴∠A =x =50°.【答案】50°1.(2019连云港中考)如图,已知等腰三角形ABC 中,AB =AC ,点D ,E 分别在边AB ,AC 上,且AD =AE ,连接BE ,CD ,交于点F.(1)判断∠ABE 与∠ACD 的数量关系,并说明理由; (2)求证:过点A ,F 的直线垂直平分线段BC. 解:(1)∠ABE=∠ACD.理由如下:在△ABE 和△ACD 中,⎩⎪⎨⎪⎧AB =AC ,∠A =∠A,AE =AD ,∴△ABE ≌△ACD ,∴∠ABE =∠ACD; (2)∵AB=AC ,∴∠ABC =∠ACB,由(1)可知∠ABE=∠ACD,∴∠FBC =∠FCB, ∴FB =FC ,又∵AB=AC ,∴点A ,F 均在线段BC 的垂直平分线上, 即直线AF 垂直平分线段BC.2.(2019成都中考)【问题背景】如图①,等腰△ABC 中,AB =AC ,∠BAC =120°,作AD⊥BC 于点D ,则D 为BC 的中点,∠BAD =12∠BAC=60°,于是BC AB =2BDAB= 3.【迁移应用】如图②,△ABC 和△ADE 都是等腰三角形,∠BAC =∠DAE=120°,D ,E ,C 三点在同一条直线上,连接BD.(1)求证:△ADB≌△AEC;(2)请直接写出线段AD ,BD ,CD 之间的等量关系式;【拓展延伸】如图③,在菱形ABCD 中,∠ABC =120°,在∠ABC 内作射线BM ,作点C 关于BM 的对称点E ,连接AE 并延长交BM 于点F ,连接CE ,CF.(1)证明:△CEF 是等边三角形; (2)若AE =5,CE =2,求BF 的长.解:迁移应用:(1)∵∠BAC=∠DAE=120°,∴∠DAB=∠CAE,在△DAE和△EAC中,⎩⎪⎨⎪⎧DA=EA,∠DAB=∠EAC,AB=AC,∴△DAB≌△EAC;(2)CD=3AD+BD;拓展延伸:(1)如答图中,作BH⊥AE于H,连接BE.∵四边形ABCD是菱形,∠ABC=120°,∴△ABD,△BDC是等边三角形,∴BA=BD=BC.∵E,C关于BM对称,∴BC=BE=BD=BA,FE=FC,∴A,D,E,C四点共圆,∴∠ADC=∠AEC=120°,∴∠FEC=60°,∴△EFC是等边三角形;(2)∵AE=5,EC=EF=2,∴AH=HE=2.5,FH=4.5,在Rt△BHF中,∵∠BFH=30°,∴HFBF=cos30°,∴BF=4.532=3 3.直角三角形的相关计算【例2】(2019江岸中考)如图,AB=AC,FD⊥BC于D,DE⊥AB于E,若∠AFD=145°,则∠EDF=______°.【解析】本题主要考查直角三角形相关计算.【答案】553.(2019广丰中考)如图,矩形ABCD中,AB=1,AD=2,E是AD中点,P在射线BD上运动,若△BEP为等腰三角形,则线段BP的长度等于35.,(第3题图)),(第4题图))4.(2019临海中考)如图,在Rt △ABC 中,∠A =30°,斜边AC 的垂直平分线交AB 于D ,交AC 于E ,连接CD ,若BD =1,则AD 的长是__2__.2019-2020学年数学中考模拟试卷一、选择题1.在△ABC 中,高AD 和BE 所在的直线交于点H ,且BH =AC ,则∠ABC 等于( ) A.45°B.120°C.45°或135°D.45°或120°2.三角形两边长分别为3和6,第三边是方程2680x x -+=的解,则这个三角形的周长是( ) A .11B .13C .11或13D .不能确定3.“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式CH 4,乙烷的化学式是C 2H 6,丙烷的化学式是C 3H 8,…,设碳原子的数目为n (n 为正整数),则它们的化学式都可以用下列哪个式子来表示( ) A.C n H 2n+2B.C n H 2nC.C n H 2n ﹣2D.C n H n+34.某花卉培育基地2018年郁金香产量为4万株,预计2020年郁金香产量达到6万株,求郁金香产量的年平均增长率.设郁金香产量的年平均增长率为x ,则可列方程为( ) A .4(1+x)2=6 B .4(1-x)2=6C .4(1+2x)=6D .4(1+x 2)=65.函数ky x=与y =﹣kx 2﹣k (k≠0)在同一直角坐标系中的大致图象可能是( ) A . B .C .D .6.若关于x 的分式方程2142x m xx x ++=--有增根,则m 的值是( ) A .2m =或6m =B .2m =C .6m =D .2m =-或6m =-7.正方形ABCD 与正五边形EFGHM 的边长相等,初始如图所示,将正方形绕点F 顺时针旋转使得BC 与FG 重合,再将正方形绕点G 顺时针旋转使得CD 与GH 重合…按这样的方式将正方形依次绕点H 、M 、E 旋转后,正方形中与EF 重合的是( )A .AB B .BC C .CD D .DA8.下列立体图形中,主视图是三角形的是( )A .B .C .D .9.如图,E 、F 分别是矩形ABCD 边AB 、CD 上的点,将矩形ABCD 沿EF 折叠,使A 、D 分别落在A '和D '处,若150∠=︒,则2∠的度数是( )A .65︒B .60︒C .50︒D .40︒10.下列式子运算正确的是( )1=-==D.(331=-11.2019年1月3日上午10时26分,嫦娥四号探测器成功着陆在月球背面,开启了月球探测的新篇章,中国人迈开了走向星辰大海的第一步.如图是某正方体的展开图,在原正方体上“星”字所在面相对的面上的汉字是( )A .走B .向C .大D .海12.如图,正方形ABCD 的对称中心在坐标原点,AB ∥x 轴,AD ,BC 分别与x 轴交于E ,F ,连接BE ,DF ,若正方形ABCD 的顶点B ,D 在双曲线y =ax上,实数a 满足a 1﹣a =1,则四边形DEBF 的面积是( )A.12B.32C.1 D.2二、填空题13.用一组,a b ab=”是错误的,这组值可以是a=____,b=_____.14.15.若方程x+5=7﹣2(x﹣2)的解也是方程6x+3k=14的解,则常数k=_____.16.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n个图中所贴剪纸“○”的个数为_____个.17.计算:(﹣1)2=_____.18.已知a+b=8,ab=12,则222a bab+-=_____.三、解答题19.如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.(1)利用尺规作∠NAB的平分线与PQ交于点C;(2)若∠ABP=60°,求∠ACB的度数.20.如图1,平面内有一点P到△ABC的三个顶点的距离分别为PA、PB、PC,若有PA2=PB2+PC2则称点P 为△ABC关于点A的勾股点.(1)如图2,在4×5的网格中,每个小正方形的长均为1,点A 、B 、C 、D 、E 、F 、G 均在小正方形的顶点上,则点D 是△ABC 关于点 的勾股点;在点E 、F 、G 三点中只有点 是△ABC 关于点A 的勾股点.(2)如图3,E 是矩形ABCD 内一点,且点C 是△ABE 关于点A 的勾股点, ①求证:CE =CD ;②若DA =DE ,∠AEC =120°,求∠ADE 的度数.(3)矩形ABCD 中,AB =5,BC =6,E 是矩形ABCD 内一点,且点C 是△ABE 关于点A 的勾股点, ①若△ADE 是等腰三角形,求AE 的长;②直接写出AE+56BE 的最小值. 21.某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息. a. 实心球成绩的频数分布表如下:b. 实心球成绩在7.07.4x ≤<这一组的是:a7.0 7.0 7.0 7.1 7.1 7.1 7.2 7.2 7.3 7.3 c. 一分钟仰卧起坐成绩如下图所示:根据以上信息,回答下列问题: (1) ①表中m 的值为__________;②一分钟仰卧起坐成绩的中位数为__________;(2)若实心球成绩达到7.2米及以上时,成绩记为优秀. ①请估计全年级女生实心球成绩达到优秀的人数;②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如下:其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E 的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.22.我国古代第一部数学专著《九章算术》中有这样一道题:今有上禾7束,减去其中之实1斗,加下禾2束,则得实10斗.下禾8束,加实1斗和上禾2束,则得实10斗,问上禾、下禾1束得实多少? 译文为:今有上等禾7捆结出的粮食,减去1斗再加上2捆下等禾结出的粮食,共10斗;下等禾8捆结出的粮食,加上1斗和上等禾2捆结出的粮食,共10斗,问上等禾和下等禾1捆各能结出多少斗粮食?(斗为体积单位)23.如图,将BOA ∠放在每个小正方形的边长为1的网格中,点O 、A 均落在格点上,角的一边OA 与水平方向的网格线重合,另一边OB 经过格点B .(Ⅰ)tan BOA ∠等于__________;(Ⅱ)如果BOC ∠为BOA ∠内部的一个锐角,且2tan 3BOC ∠=,请在如图所示的网格中,借助无刻度的直尺画出COA ∠,使得COA BOA BOC ∠=∠-∠,并简要说明COA ∠是如何找到的(不要求证明)__________________________________________________________________________________________________________________________________________________. 24.如图,在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠与x 轴交于点(2,0)A -,(4,0)B ,与直线3y =x 32-交于点(0,3)C -,直线3y =x 32-与x 轴交于点D . (1)求该抛物线的解析式.(2)点P是抛物线上第四象限上的一个动点,连接PC,PD,当PCD∆的面积最大时,求点P的坐标.(3)将抛物线的对称轴向左平移3个长度单位得到直线l,点E是直线l上一点,连接OE,BE,若直线l上存在使sin BEO∠最大的点E,请直接写出满足条件的点E的坐标;若不存在,请说明理由.25.如图,AB是半⊙O的直径,点C,D为半圆O上的点,AE||OD,过点D的⊙O的切线交AC的延长线于点E,M为弦AC中点(1)填空:四边形ODEM的形状是;(2)①若CEkCM=,则当k为多少时,四边形AODC为菱形,请说明理由;②当四边形AODC为菱形时,若四边形ODEM的面积为O的半径.【参考答案】***一、选择题二、填空题13.1-答案不唯一 1答案不唯一14.015.2 316.3n+217.318.8三、解答题19.(1)作图见解析;(2)∠ACB=30°.【解析】【分析】(1)根据角平分线的一般作法可得;(2)根据平行线性质求解.【详解】解:(1)①以点A为圆心,以任意长为半径作弧交AN于点F,交AB于点D;②分别以F,D为圆心,以大于12FD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点C.如图所示:(2)∵MN∥PQ,∴∠NAB=∠ABP=60°,∵AC平分∠NAB,∴∠ABC=30°,∵∠ABP=∠BAC+∠ACB,∴∠ACB=30°.【点睛】考核知识点:平行线性质,角平分线作图.20.(1)B,F;(2)①见解析,②∠ADE=40°;(3)①AE,②AE+56BE 5.328.【解析】【分析】(1)求AD2=5,DC2=5,DB2=10,得AD2+DC2=DB2,即点D是△ABC关于点B的勾股点;求出FA2,FB2,FC2,得到FA2+FB2=FC2,即点F是△ABC关于点A的勾股点.(2)①由矩形性质得∠ADC=90°,可得AD2+DC2=AC2;根据勾股数得BC2+EC2=AC2,又因为AD=BC,即得CE=CD.②设∠CED=α,根据∠AEC=120°和CE=CD即∠ADC=90°,可用α表示△ADE的三个内角,利用三角形内角和180°为等量关系列方程,即求出α进而求出∠ADE.(3)由条件“点C是△ABE关于点A的勾股点”仍可得CE=CD=5,作为条件使用.①△ADE是等腰三角形需分3种情况讨论,把每种情况画图再根据矩形性质和勾股定理计算,即能求AE的长.②由画图可知,当BE⊥AC时,AE+56BE取得最小值.过点E分别作AB、BC的垂线,通过勾股定理计算即可求出答案.【详解】解:(1)∵DA2=12+22=5,DB2=12+32=10,DC2=DA2=5 ∴DB2=DC2+DA2∴点D是△ABC关于点B的勾股点∵EA2=42+42=32,EB2=22+52=29,EC2=4∴点E不是△ABC的勾股点∵FA2=32+42=25,FB2=22+42=20,FC2=12+22=5∴FA2=FB2+FC2∴点F是△ABC关于点A的勾股点∵GA2=42+22=20,GB2=22+32=13,GC2=22+22=8∴点G不是△ABC的勾股点故答案为:B;F.(2)①证明:∵点C是△ABE关于点A的勾股点∴CA2=CB2+CE2∵四边形ABCD是矩形∴AB=CD,AD=BC,∠ADC=90°∴CA2=AD2+CD2=CB2+CD2∴CB2+CE2=CB2+CD2∴CE=CD②设∠CED=α,则∠CDE=∠CED=α∴∠ADE=∠ADC﹣∠CDE=90°﹣α∵∠AEC=120°∴∠AED=∠AEC﹣∠CED=120°﹣α∵DA=DE∴∠DAE=∠DEA=120°﹣α∵∠DAE+∠DEA+∠ADE=180°∴2(120°﹣α)+(90°﹣α)=180°解得:α=50°∴∠ADE=90°﹣50°=40°(3)①∵矩形ABCD中,AB=5,BC=6∴AD=BC=6,CD=AB=5∵点C是△ABE关于点A的勾股点∴CE=CD=5i)如图1,若DE=DA,则DE=6过点E作MN⊥AB于点M,交DC于点N∴∠AME=∠MND=90°∴四边形AMND是矩形∴MN=AD=6,AM=DN设AM=DN=x,则CN=CD﹣DN=5﹣x∵Rt△DEN中,EN2+DN2=DE2;Rt△CEN中,EN2+CN2=CE2∴DE2﹣DN2=CE2﹣CN2∴62﹣x2=52﹣(5﹣x)2解得:x=18 5∴EN245==,AM=DN=185∴ME=MN﹣EN=6﹣246 55=∴Rt△AME中,AE5==ii)如图2,若AE=DE,则E在AD的垂直平分线上过点E作PQ⊥AD于点P,交BC于点Q∴AP=DP=12AD=3,∠APQ=∠PQC=90°∴四边形CDPQ是矩形∴PQ=CD=5,CQ=PD=3∴Rt△CQE中,EQ4==∴PE=PQ﹣EQ=1∴Rt△APE中,AE=iii)如图3,若AE=AD=6,则AE2+CE2=AD2+CD2=AC2∴∠AEC=90°取AC中点O,则点A、B、C、D在以O为圆心、OA为半径的⊙O上∴点E也在⊙O上∴点E不在矩形ABCD内部,不符合题意综上所述,若△ADE是等腰三角形,AE.②当BE⊥AC时,AE+56BE取得最小值.过点E分别作ER⊥AB于点R,ES⊥BC于点S,∴四边形BRES是矩形,∠EBS与∠ACB互余∴∠EBS=∠ACD∴tan ∠EBS =tan ∠ACD =65AD CD = ∴tan ∠EBS =65ES BS =设ES =6a ,BS =5a ,则BE ,CS =6﹣5a ,AR =5﹣6a∵Rt △CES 中,CS 2+ES 2=CE 2,即(6﹣5a )2+(6a )2=52解得:a 1=61(舍去),a 2=61,61a 2﹣60a =﹣11∴Rt △ARE 中,AE =∴AE+56BE 5 5.328661≈. 【点睛】本题考查勾股定理、勾股定理逆定理的应用,矩形的性质,等腰三角形的性质,解一元一次方程和一元二次方程,圆的定义和圆周角定理.解题关键是对新定义概念的性质运用,第(3)①题等腰三角形的分类讨论需数形结合把图形画出后再解题,②可利用特殊位置试算得到最小值,计算过程较繁琐复杂. 21.(1)①9;②45;(2)①估计全年级女生实心球成绩达到优秀的人数约为65人;②同意,理由详见解析. 【解析】 【分析】(1)①因为已知检测总人数和其它组的频数,所以可以得到m ; ②结合题意,根据中位数求法即可得到答案;(2)①由题意得到参与测试女生实心球成绩达到优秀(人)的百分比,再乘以150,即可得出答案. ②结合题中数据,即可得出答案. 【详解】解:(1)①因为已知检测总人数为30人,所以m=30-(2+10+6+2+1)=9; ②根据中位数求法,由于数据为30个,所以去第15和16位的平均数,即45; (2)①由题意得到参与测试女生实心球成绩达到优秀(人)的百分比为1330,所以可得131506530⨯=(人).答:估计全年级女生实心球成绩达到优秀的人数约为65人.②同意,理由答案不唯一,如:如果女生E 的仰卧起坐成绩未达到优秀,那么至少,,A D F 有可能两项测试成绩都达到优秀,这与恰有4人两项测试成绩都达到优秀矛盾,因为女生E 的一分钟仰卧起坐成绩达到了优秀. 【点睛】本题考查频数、中位数等,解题的关键是读懂题目信息,掌握频数、中位数的知识. 22.上等禾每捆能结出2536斗粮食,下等禾每捆能结出4152斗粮食. 【解析】 【分析】设上等禾每捆能结出x 斗粮食,下等禾每捆能结出y 斗粮食,根据“今有上等禾7捆结出的粮食,减去1斗再加上2捆下等禾结出的粮食,共10斗;下等禾8捆结出的粮食,加上1斗和上等禾2捆结出的粮食,共10斗”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论. 【详解】解:设上等禾每捆能结出x 斗粮食,下等禾每捆能结出y 斗粮食,由题意得:7121081210x y y x -+=⎧⎨++=⎩ 解得:25364152x y ⎧=⎪⎪⎨⎪=⎪⎩.答:上等禾每捆能结出2536斗粮食,下等禾每捆能结出4152斗粮食. 【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键. 23.取格点C ,画射线OC,则COA ∠即为所求. 【解析】 【分析】(Ⅰ)根据正切的定义计算即可.(Ⅱ)取格点C ,画射线OC 即可.连接BC ,在网格中运用勾股定理得出BC 和OC 的长,再根据正方形的性质得出∠OCB=90︒,利用锐角三角函数即可得出2tan BOC 3∠=,说明OC 符合题意. 【详解】 (Ⅰ)如图,在RtOBM 中,BMtan BOA 5OM∠==故答案为:5(Ⅱ)如图,取格点C ,画射线OC,则COA ∠即为所求.证明:连接BC ,∵BC 是边长为2的正方形的对角线; ∵OC 是边长为3的正方形的对角线;∴∠OCB=90︒,且, ∴BC 2tan BOC OC 3∠==,且COA BOA BOC ∠∠∠=-. ∴COA ∠即为所求.故答案为:取格点C ,画射线OC ,则COA ∠即为所求. 【点睛】此题考查了作图-应用与设计作图、锐角三角函数、正方形的性质、勾股定理等知识,解题的关键是利用数形结合的思想解决问题.24.(1)233384y x x =--;(2)P (3,﹣815);(3)点E 的坐标为(﹣2,2,﹣). 【解析】 【分析】(1)用交点式函数表达式得:y=a (x+2)(x-4)=a (x 2-2x-8),即可求解; (2)由S △PCD =S △PDO +S △PCO -S △OCD ,即可求解;(3)如图,经过点O 、B 的圆F 与直线l 相切于点E ,此时,sin ∠BEO 最大,即可求解. 【详解】解:(1)用交点式函数表达式得:y =a (x+2)(x ﹣4)=a (x 2﹣2x ﹣8), 即﹣8a =﹣3,解得:a =38, 则函数的表达式为:233384y x x =--; (2)y =32x ﹣3,令y =0,则x =2,即点D (2,0),连接OP ,设点P (x ,233384x x --), S △PCD =S △PDO +S △PCO ﹣S △OCD =22133113272(3)323(3)2842288x x x x ⨯-+++⨯⨯-⨯⨯=--+, ∵﹣38<0,∴S △PCD 有最大值, 此时点P (3,﹣815); (3)如图,经过点O 、B 的圆F 与直线l 相切于点E ,此时,sin ∠BEO 最大,过圆心F 作HF ⊥x 轴于点H ,则OH =12OB =2=OA ,OF =EF =4,∴HF =E 的坐标为(﹣2,﹣);同样当点E 在x 轴的上方时,其坐标为(﹣2,);故点E 的坐标为(﹣2,)或(﹣2,﹣. 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、圆的基本知识,三角函数等,其中(3),正确确定点E 的位置,是本题的难点.25.(1)四边形AODC 为菱形,见解析;(2)①当k 为1时,四边形AODC 为菱形.理由见解析;②⊙O的半径为. 【解析】 【分析】(1)运用切线定理、垂径定理、平行线的性质证明四个角均为90°,即可说明四边形ODEM 为矩形; (2)①当k 为1时,四边形AODC 为菱形.连接CD ,CO .由四边形AODC 为菱形,可得AO =OD =CD =AC,由OM垂直平分AC,得到OA=OC,所以OA=OC=AC,因此△OAC为等边三角形,于是∠CAO=60°,∠CDO=60°,∠ECD=30°,所以CE=12CD=12AC,又CM=12AC,因此CE=CM,即CECM=1,所以当k为1时,四边形AODC为菱形;②由四边形ODEM的面积为OD•MO=43,由①四边形AODC为菱形时,∠MAO=60°,所以OMOA=sin∠MAO=sin60°,MO,因此OD•MO=OA•=,所以OA=.【详解】(1)∵DE是⊙O的切线,∴OD⊥DE,∠ODE=90°,∵M为弦AC中点,∴OM⊥AC,∠OME=90°,∵AE||OD,∴∠E=90°,∠MOD=90°,∴四边形ODEM是矩形;(2)①当k为1时,四边形AODC为菱形.理由如下:连接C D,CO.∵四边形AODC为菱形,∴AO=OD=CD=AC,∵OM垂直平分AC,∴OA=OC,∴OA=OC=AC,∴△OAC为等边三角形,∴∠CAO=60°,∠CDO=60°,∴∠ECD=30°,∴CE=12CD=12AC,∵CM=12 AC,∴CE=CM,∴1CECM= , 当k 为1时,四边形AODC 为菱形;②∵四边形ODEM 的面积为,∴OD •MO=由①四边形AODC 为菱形时,∠MAO =60°,∴sin sin 60OM MAO OA ︒=∠= ,MO ,∴OD•MO=OA =,∴OA =∴⊙O 的半径为【点睛】本题是圆的综合题,熟练掌握矩形、菱形、三角函数、垂径定理等是解题的关键.2019-2020学年数学中考模拟试卷一、选择题1.某初中毕业班的每一个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2550张相片,如果全班有x 名学生,根据题意,列出方程为( )A.()12550x x += B.() 12550x x -= C.() 212550x x += D.() 125502x x -=⨯ 2.如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能是( )A. B. C. D.3.剪纸是我国传统的民间艺术,下列剪纸作品中,既是中心对称图形又是轴对称图形的是( )A .B .C .D .4.如图,过△ABC 内任一点P ,作DE ∥BC ,GF ∥AC ,KH ∥AB ,则DE GF KHBC AC AB++=( )A.1B.43C.2D.835.一几何体的三视图如图所示,这个几何体是( )A .四棱锥B .圆锥C .三棱柱D .四棱柱6.已知x x 满足方程240x x c -+=,则c 的值为( )A .8B .8-C .3D .3-7.某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA 的0刻度固定在半圆的圆心O 处,刻度尺可以绕点O 旋转.从图中所示的图尺可读出cos ∠AOB 的值是( )A.34B.710C.45D.358.如图,在ABC ∆中,AB AC =,点D 在AC 上,//DE AB ,若160CDE ∠=︒,则B Ð的度数为( )A .80︒B .75︒C .65︒D .60︒9.在同一直角坐标系中,函数y=kx-k 与ky x=(k≠0)的图象大致是 ( ) A . B .C .D .10.从电线杆离地面8米处拉一根长为10m的缆绳,这条缆绳在地面的固定点距离电线杆底部有( )m.A.2 B.4 C.6 D.811.如图,点A、B、C在半径为2的圆O上,且∠BAC=60°,作OM⊥AB于点M,ON⊥AC于点N,连接MN,则MN的长为()A.1 C.212.如图,正方形ABCD的顶点B、C在x轴的正半轴上,反个比例函数y= kx(k≠0)在第一象限的图象经过点A(m,2)和CD边上的点E(n,23),过点E作直线l∥BD交y轴于点F,则点F的坐标是( )A.(0,- 73) B.(0,-83)C.(0,-3) D.(0,- 103)二、填空题13.如图,直线y=12x与双曲线y=kx(k>0,x>0)交于点A,将直线y=12x向上平移2个单位长度后,与y轴交于点C,与双曲线交于点B,若OA=3BC,则k的值为____.14.从﹣4、﹣3、﹣1、﹣12、0、1这6个数中随机抽取一个数a ,则关于x 的分式方程2ax x -+2322x x x =--的解为整数,且二次函数y =ax 2+3x ﹣1的图象顶点在第一象限的概率是____.15.用棋子按下列方式摆图形,依照此规律,第n 个图形有_____枚棋子.16.16的平方根等于_________. 17.若对x 恒成立,则n=______.18.截止到2018年5月31日,上海世博园共接待游客约8000000人,将数8000000用科学记数法表示为________. 三、解答题19.先化简,再求值:222441,4x x x x x -+⎛⎫-÷= ⎪-⎝⎭其中 20.关于x 的一次函数y =ax+b 与反比例函数y =kx(x >0)的图象交于点A (m ,4)和点B (4,1). (1)求m 的值和反比例函数的解析式; (2)求一次函数的解析式. 21.计算: (1)(12)﹣1﹣2cos60°﹣|3﹣π|; (2)解不等式组:273(1)15(4)2x x x x --⎧⎪⎨-+≥⎪⎩①② 22.端午节是我国的传统节日,益民食品厂为了解市民对去年销量较好的花生粽子、水果粽子、豆沙粽子、红枣粽子(分别用A 、B 、C 、D 表示)这四种不同口味的粽子的喜爱情况,对某居民区的市民进行了抽样调查,并根据调查结果绘制了如下两幅不完整的统计图. (1)本次参加抽样调查的居民有多少人? (2)将两幅统计图补充完整;(3)小明喜欢吃花生粽子和红枣粽子,妈妈为他准备了四种粽子各一个,请用“列表法”或“画树形图”的方法,求出小明同时选中花生粽子和红枣粽子的概率.23.(本题满分8分)扬州市体育中考现场考试内容有三项:50米跑为必测项目;另在立定跳远、实心球(二选一)和坐位体前屈、1分钟跳绳(二选一)中选择两项.(1)每位考生有__________种选择方案;(2)用画树状图或列表的方法求小明与小刚选择同种方案的概率.(友情提醒:各种主案用、、、…或①、②、③、…等符号来代表可简化解答过程)A B C、两种规格的书架,经市场调查发现有线下和线上两种方式,具24.某校为改善办学条件,计划购进A B有情况如下表:、两种书架20个,共花费5520元,求A B、两种书架各购买了多少个;(Ⅰ)如果在线下购买A B、两种书架20个,共花费w元,设其中A种书架购买m个,求W关于m的函(Ⅱ)如果在线上购买A B数关系式;(Ⅲ)在(Ⅱ)的条件下,若购买B种书架的数量不少于A种书架的2倍,请求出花费最少的购买方案,并计算按照该购买方案线上比线下节约多少钱.A B,以点A为旋转中心,把ABO顺时25.在平面直角坐标系中,己知O为坐标原点,点(2,0),(0,4)针旋转,得ACD.DC x轴时,求点C的坐标.(Ⅰ)如图①,当旋转后满足//(Ⅱ)如图②,当旋转后点C恰好落在x轴正半轴上时,求点D的坐标.(Ⅲ)在(Ⅱ)的条件下,边OB 上的一点P 旋转后的对应点为P ',当DP AP '+取得最小值时,求点P 的坐标(直接写出结果即可)【参考答案】*** 一、选择题二、填空题 13.98. 14.16. 15.(31)2n n - 16.±4. 17. 18.三、解答题19.2,1x x+ 【解析】 【分析】先计算括号内的减法,然后把分式的除法转换为乘法的形式,通过约分将分式化为最简形式后,再把x 的值代入进行计算即可. 【详解】解: 222441,4x x x x -+⎛⎫-÷ ⎪-⎝⎭()()()2222,2x x x x x +--=⋅- 2.x x+=当x 时,1= 【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键. 20.(1)m =1,y =4x;(2)y =﹣x+5; 【解析】 【分析】(1)把B 点坐标代入反比例函数解析式,即可求出m 的值,从而求出反比例函数的解析式和m 的值; (2)求得A 点坐标,进而把A 、B 点的坐标代入一次函数y =kx+b 的解析式,就可求出a 、b 的值,从而求得一次函数的解析式. 【详解】(1)∵点B (4,1)在反比例函数y =kx(x >0)的图象上, ∴1=4k , ∴k =4.∴反比例函数的解析式为y =4x∵点A (m ,4)在反比例函数y =4x的图象上, ∴4=4m, ∴m =1.(2)点A (1,4)和点B (4,1)在一次函数y =ax+b 的图象上,∴441a b a b +=⎧⎨+=⎩解得15a b =-⎧⎨=⎩∴一次函数的解析式为y =﹣x+5. 【点睛】本题考查了反比例函数和一次函数的交点问题,能够熟练运用待定系数法求得函数的解析式是解题的关键.21.(1)5π;(2)﹣4<x≤2. 【解析】【分析】(1)原式利用二次根式性质,指数幂、负整数指数幂法则,绝对值的性质以及特殊角的三角函数值计算即可得到结果;(2)先求出两个不等式的解集,再求其公共解.【详解】(1)原式=121232π-⨯+-=5π+;(2)273(1)15(4)2x xx x-<-⎧⎪⎨-+≥⎪⎩①②解不等式①,得x>﹣4,解不等式②,得x≤2,∴不等式组的解集为﹣4<x≤2.【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).22.(1)本次参加抽样调查的居民有600人;(2)见解析;(3)16.【解析】【分析】(1)用喜欢B类的人数除以它所占的百分比得到调查的总人数;(2)先计算出喜欢C类的人数,再计算出喜欢A类的人数的百分比和喜欢C类的人数的百分比,然后补全条形统计图和扇形统计图;(3)画树状图展示所有12种等可能的结果数,找出小明同时选中花生粽子和红枣粽子的结果数,然后根据概率公式求解.【详解】(1)60÷10%=600,所以本次参加抽样调查的居民有600人;(2)喜欢C类的人数为600﹣180﹣60﹣240=120(人),喜欢A类的人数的百分比为180600×100%=30%;喜欢C类的人数的百分比为120600×100%=20%;两幅统计图补充为:(3)画树状图为:共有12种等可能的结果数,其中小明同时选中花生粽子和红枣粽子的结果数为2,所以小明同时选中花生粽子和红枣粽子的概率=212=16.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.也考查了统计图.23.(1)4.(2)1 4【解析】【分析】(1)先列举出毎位考生可选择所有方案:50米跑、立定跳远、坐位体前屈(用A表示);50米跑、实心球、坐位体前屈(用B表示);50米跑、立定跳远、1分钟跳绳(用C表示);50米跑、实心球、1分钟跳绳(用D表示);共用4种选择方案.(2)利用数形图展示所有16种等可能的结果,其中选择两种方案有12种,根据概率的概念计算即可.【详解】(1)毎位考生可选择:50米跑、立定跳远、坐位体前屈(用A表示);50米跑、实心球、坐位体前屈(用B表示);50米跑、立定跳远、1分钟跳绳(用C表示);50米跑、实心球、1分钟跳绳(用D表示);共用4种选择方案.故答案为4.(2)用A、B、C、D代表四种选择方案.(其他表示方法也可)解法一:用树状图分析如下:。
中考数学真题《等腰三角形与直角三角形》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________(25道)一、单选题1.如图,直角ABC 中 30B ∠=︒ 点O 是ABC 的重心 连接CO 并延长交AB 于点E 过点E 作EF AB ⊥交BC 于点F 连接AF 交CE 于点M ,则MO MF的值为( )A .12 B 5C .23 D 32.将一副直角三角板和一把宽度为2cm 的直尺按如图方式摆放:先把60︒和45︒角的顶点及它们的直角边重合 再将此直角边垂直于直尺的上沿 重合的顶点落在直尺下沿上 这两个三角板的斜边分别交直尺上沿于A B 两点,则AB 的长是( )A .23B .232C .2D .233.如图,ABC 是等腰三角形 36AB AC A =∠=︒,.以点B 为圆心 任意长为半径作弧 交AB 于点F 交BC 于点G 分别以点F 和点G 为圆心 大于12FG 的长为半径作弧 两弧相交于点H 作射线BH 交AC 于点D 分别以点B 和点D 为圆心 大于12BD 的长为半径作弧 两孤相交于M N 两点 作直线MN 交AB 于点E 连接DE .下列四个结论:①AED ABC ∠=∠ ①BC AE = ①12ED BC = ①当2AC =时 51AD =.其中正确结论的个数是( )A .1B .2C .3D .44.如图ABC 中 90,4,,ACB AB AC x BAC α︒∠===∠= O 为AB 中点 若点D 为直线BC 下方一点 且BCD △与ABC 相似,则下列结论:①若45α=︒ BC 与OD 相交于E ,则点E 不一定是ABD △的重心 ①若60α=︒,则AD 的最大值为 ①若60,ABC CBD α=︒∽,则OD 的长为 ①若ABC BCD △∽△,则当2x =时 AC CD +取得最大值.其中正确的为( )A .①①B .①①C .①①①D .①①①5.如图,在ABC 中 90,30,2,B A BC D ︒︒∠=∠==为AB 的中点.若点E 在边AC 上 且AD DE AB BC =,则AE 的长为( )A .1B .2C .1D .1或26.如图,在Rt ABC 中 9053C AB BC ∠=︒==,, 以点A 为圆心 适当长为半径作弧 分别交AB AC,于点E F , 分别以点E F ,为圆心 大于12EF 的长为半径作弧 两弧在BAC ∠的内部相交于点G 作射线AG 交BC 于点D ,则BD 的长为( )A .35B .34C .43D .537.5月26日 “2023中国国际大数据产业博览会”在贵阳开幕 在“自动化立体库”中有许多几何元素 其中有一个等腰三角形模型(示意图如图所示) 它的顶角为120︒ 腰长为12m ,则底边上的高是( )A .4mB .6mC .10mD .12m8.如图,ABC 为等边三角形 点D E 分别在边BC AB 上 60ADE ∠=︒ 若4BD DC = 2.4DE =,则AD 的长为( )A .1.8B .2.4C .3D .3.29.下面是“作已知直角三角形的外接圆”的尺规作图过程: 已知:如图1 在Rt ABC △中 90C ∠=︒.求作:Rt ABC △的外接圆.作法:如图2.(1)分别以点A 和点B 为圆心 大于12AB 的长为半径作弧 两弧相交于P Q 两点 (2)作直线PQ 交AB 于点O(3)以O 为圆心 OA 为半径作O O 即为所求作的圆.下列不属于...该尺规作图依据的是() A .两点确定一条直线B .直角三角形斜边上的中线等于斜边的一半C .与线段两个端点距离相等的点在这条线段的垂直平分线上D .线段垂直平分线上的点与这条线段两个端点的距离相等10.如图,在ABC 中 9034ABC AB BC ∠=︒==,, 点D 在边AC 上 且BD 平分ABC 的周长,则BD的长是( )A B C D11.ABC 的三边长a b c 满足2()|0a b c --=,则ABC 是( )A .等腰三角形B .直角三角形C .锐角三角形D .等腰直角三角形12.四边形ABCD 的边长如图所示 对角线AC 的长度随四边形形状的改变而变化.当ABC 为等腰三角形时 对角线AC 的长为( )A .2B .3C .4D .5二 填空题13.将形状 大小完全相同的两个等腰三角形如图所示放置 点D 在AB 边上 ①DEF 绕点D 旋转 腰DF 和底边DE 分别交①CAB 的两腰CA CB 于M N 两点 若CA=5 AB=6 AB=1:3,则MD+12⋅MA DN的最小值为 .14.如图,在Rt ABC △中 90ACB ∠=︒ 点D 为BC 的中点 过点C 作CE AB ∥交AD 的延长线于点E 若4AC = 5CE =,则CD 的长为 .15.如图,在Rt ABC 中 90ACB ∠=︒ 3AC BC == 点D 在直线AC 上 1AD = 过点D 作DE AB ∥直线BC 于点E 连接BD 点O 是线段BD 的中点 连接OE ,则OE 的长为 .16.如图,在ABC 中 90,6C AC BC ∠=︒==.P 为边AB 上一动点 作PD BC ⊥于点D PE AC ⊥于点E ,则DE 的最小值为 .17.如图.四边形ABCD 中 AB AD = BC DC = 60C ∠=︒ AE CD ∥交BC 于点E 8BC = 6AE =,则AB 的长为 .18.如图,已知50ABC ∠=︒ 点D 在BA 上 以点B 为圆心 BD 长为半径画弧 交BC 于点E 连接DE ,则BDE ∠的度数是 度.19.如图,在ABC 中 以A 为圆心 AC 长为半径作弧 交BC 于C D 两点 分别以点C 和点D 为圆心 大于12CD 长为半径作弧 两弧交于点P 作直线AP 交CD 于点E 若5AC = 6CD =,则AE = .20.如图,在ABC 中 以点C 为圆心 任意长为半径作弧 分别交AC BC 于点D E 分别以点DE 为圆心 大于12DE 的长为半径作弧 两弧交于点F 作射线CF 交AB 于点G 若9AC = 6BC = BCG 的面积为8,则ACG 的面积为 .21.如图,CD 为Rt ABC △斜边AB 上的中线 E 为AC 的中点.若8AC = 5CD =,则DE = .22.在 Rt △ABC 中, △ACB =90° AC =6 BC =8 D 是AB 的中点,则 CD = .三 解答题23.在Rt ABC △中 90BAC AD ∠=︒,是斜边BC 上的高.(1)证明:C ABD BA ∽△△(2)若610AB BC ==, 求BD 的长.24.如图,BD 是等边ABC 的中线 以D 为圆心 DB 的长为半径画弧 交BC 的延长线于E 连接DE .求证:CD CE =.25.如图,在四边形ABCD 中 点E 是边BC 上一点 且BE CD = B AED C ∠=∠=∠.(1)求证:EAD EDA ∠=∠(2)若60C ∠=︒ 4DE =时 求AED △的面积.参考答案一、单选题1.如图,直角ABC 中 30B ∠=︒ 点O 是ABC 的重心 连接CO 并延长交AB 于点E 过点E 作EF AB ⊥交BC 于点F 连接AF 交CE 于点M ,则MO MF的值为( )A .12BC .23 D【答案】D 【详解】解:①点O 是①ABC 的重心 ①OC =23CE ①①ABC 是直角三角形 ①CE =BE =AE ①①B =30° ①①F AE =①B =30° ①BAC =60° ①①F AE =①CAF =30° ①ACE 是等边三角形 ①CM =12CE ①OM =23CE ﹣12CE =16CE 即OM =16AE ①BE =AE ①EF①EF ①AB ①①AFE =60° ①①FEM =30° ①MF =12EF ①MF①MO MF1AE故选D .2.将一副直角三角板和一把宽度为2cm 的直尺按如图方式摆放:先把60︒和45︒角的顶点及它们的直角边重合 再将此直角边垂直于直尺的上沿 重合的顶点落在直尺下沿上 这两个三角板的斜边分别交直尺上沿于A B 两点,则AB 的长是( )A.2B.2 C .2 D.【答案】B 【分析】根据等腰直角三角形的性质可得2cm AD CD == 由含30度角直角三角形的性质可得24cm BC CD == 由勾股定理可得BD 的长 即可得到结论.【详解】解:如图,在Rt ACD △中 45ACD ∠=︒①45CAD ACD ∠=︒=∠①2cm AD CD ==在Rt BCD 中 60BCD ∠=︒①30CBD ∠=︒①24cm BC CD == ①)22224223cm BD BC CD --= ①()233cm AB BD AD =-=.故选:B .【点睛】本题考查了勾股定理 等腰直角三角形的性质 含30︒角直角三角形的性质 熟练掌握勾股定理是解题的关键.3.如图,ABC 是等腰三角形 36AB AC A =∠=︒,.以点B 为圆心 任意长为半径作弧 交AB 于点F 交BC 于点G 分别以点F 和点G 为圆心 大于12FG 的长为半径作弧 两弧相交于点H 作射线BH 交AC 于点D 分别以点B 和点D 为圆心 大于12BD 的长为半径作弧 两孤相交于M N 两点 作直线MN 交AB 于点E 连接DE .下列四个结论:①AED ABC ∠=∠ ①BC AE = ①12ED BC = ①当2AC =时 51AD =.其中正确结论的个数是( )A .1B .2C .3D .4【答案】C 【分析】根据等腰三角形两底角相等与36A ∠=︒ 得到72ABC C ∠=∠=︒ 根据角平分线定义得到36ABD CBD ∠=∠=︒ 根据线段垂直平分线性质得到EB ED = 得到EBD EDB ∠=∠ 推出EDB CBD ∠=∠ 得到DE BC ∥ 推出AED ABC ∠=∠ ①正确 根据等角对等边得到AD AE = AD BD = 根据三角形外角性质得到72BDC C ∠=︒=∠ 得到BC BD = 推出BC AE = ①正确 根据AED ABC △∽△ 得到ED AD AD BC AC AD DC ==+ 推出ED = ①错误 根据2AC =时CD AD = 2AD AD =-,推出1AD = ①正确. 【详解】①ABC 中 AB AC = 36A ∠=︒ ①()1180722ABC C A ∠=∠=︒-∠=︒ 由作图知 BD 平分ABC ∠ MN 垂直平分BD ①1362ABD CBD ABC ∠=∠=∠=︒EB ED = ①EBD EDB ∠=∠①EDB CBD ∠=∠①DE BC ∥①AED ABC ∠=∠ ①正确 ADE C ∠=∠①AED ADE ∠=∠①AD AE =①A ABD ∠=∠①AD BD =①72BDC A ABD ∠=∠+∠=︒ ①BDC C ∠=∠①BC BD =①BC AE = ①正确设ED x = BC a =则AD a = BE x =①CD BE x ==①AED ABC △∽△ ①EDADADBC AC AD DC ==+ ①x aa a x =+①220x ax a +-=①0x >①51x -= 即51ED -=①错误 当2AC =时 2CD AD =- ①51CD AD -=512AD AD -=-, ①51AD = ①正确①正确的有①①① 共3个.故选:C .【点睛】本题主要考查了等腰三角形 相似三角形 解决问题的关键是熟练掌握等腰三角形判定和性质 相似三角形的判定和性质 角平分线的定义和线段垂直平分线的性质.4.如图ABC 中 90,4,,ACB AB AC x BAC α︒∠===∠= O 为AB 中点 若点D 为直线BC 下方一点 且BCD △与ABC 相似,则下列结论:①若45α=︒ BC 与OD 相交于E ,则点E 不一定是ABD △的重心 ①若60α=︒,则AD 的最大值为27 ①若60,ABC CBD α=︒∽,则OD 的长为23 ①若ABC BCD △∽△,则当2x =时 AC CD +取得最大值.其中正确的为( )A .①①B .①①C .①①①D .①①①【答案】A 【分析】①有3种情况 分别画出图形 得出ABD △的重心 即可求解 当60α=︒ BD BC ⊥时 AD 取得最大值 进而根据已知数据 结合勾股定理 求得AD 的长 即可求解 ①如图5 若60α=︒ C ABC BD ∽△△ 根据相似三角形的性质求得3CD = 3GE DF == 32CF = 进而求得OD 即可求解 ①如图6 根据相似三角形的性质得出214CD BC =在Rt ABC △中 2216BC x =- 根据二次函数的性质 即可求AC CD +取得最大值时 2x =. 【详解】①有3种情况 如图1 BC 和OD 都是中线 点E 是重心如图2 四边形ABDC 是平行四边形 F 是AD 中点 点E 是重心如图3 点F 不是AD 中点 所以点E 不是重心①正确①当60α=︒ 如图4时AD 最大 4AB =∴2AC BE == BC AE == 6BD ==∴8DE =∴AD =≠∴①错误①如图5 若60α=︒ C ABC BD ∽△△①60BCD ∠=︒ 90CDB ∠=︒ 4AB = 2AC = BC = OE = 1CE =①CD = GE DF ==32CF =①52EF DG == OG①OD =≠①①错误①如图6 ABC BCD ∽△△①CD BC BC AB= 即214CD BC =在Rt ABC △中 2216BC x =- ①()221116444CD x x =-=-+ ①22114(2)544AC CD x x x +=-+=--+ 当2x =时 AC CD +最大为5①①正确.故选:A .【点睛】本题考查了三角形重心的定义 勾股定理 相似三角形的性质 二次函数的性质 分类讨论 画出图形是解题的关键.5.如图,在ABC 中 90,30,2,B A BC D ︒︒∠=∠==为AB 的中点.若点E 在边AC 上 且AD DE AB BC=,则AE 的长为( )A .1B .2C .13D .1或2【答案】D 【分析】根据题意易得3,4==AB AC 然后根据题意可进行求解.【详解】解:①90,30,2B A BC ∠︒∠︒=== ①323,24AB BC AC BC ====①点D 为AB 的中点 ①132AD AB =①AD DE AB BC= ①1DE =①当点E 为AC 的中点时 如图①122AE AC == ①当点E 为AC 的四等分点时 如图所示:①1AE =综上所述:1AE =或2故选D .【点睛】本题主要考查含30度直角三角形的性质及三角形中位线 熟练掌握含30度直角三角形的性质及三角形中位线是解题的关键.6.如图,在Rt ABC 中 9053C AB BC ∠=︒==,, 以点A 为圆心 适当长为半径作弧 分别交AB AC,于点E F , 分别以点E F ,为圆心 大于12EF 的长为半径作弧 两弧在BAC ∠的内部相交于点G 作射线AG 交BC 于点D ,则BD 的长为( )A .35B .34C .43D .53【答案】D 【分析】过点D 作DM AB ⊥于M 由勾股定理可求得4AC = 由题意可证明ADC ADM △≌△,则可得4AM AC == 从而有1BM = 在Rt DMB 中 由勾股定理建立方程即可求得结果.【详解】解:过点D 作DM AB ⊥于M 如图由勾股定理可求得4AC =由题中作图知 AD 平分BAC ∠①DM AB AC BC ⊥⊥,①DC DM =①AD AD =①Rt Rt ADC ADM △≌△①4AM AC ==①1BM AB AM =-=设BD x =,则3MD CD BC BD x ==-=-在Rt DMB 中 由勾股定理得:2221(3)x x +-= 解得:53x = 即BD 的长为为53故选:D .【点睛】本题考查了作图:作角平分线 角平分线的性质定理 全等三角形的判定与性质 勾股定理 利用全等的性质 利用勾股定理建立方程是解题的关键.7.5月26日 “2023中国国际大数据产业博览会”在贵阳开幕 在“自动化立体库”中有许多几何元素 其中有一个等腰三角形模型(示意图如图所示) 它的顶角为120︒ 腰长为12m ,则底边上的高是( )A .4mB .6mC .10mD .12m【答案】B 【分析】作AD BC ⊥于点D 根据等腰三角形的性质和三角形内角和定理可得()1180302B C BAC ∠=∠=︒-∠=︒ 再根据含30度角的直角三角形的性质即可得出答案. 【详解】解:如图,作AD BC ⊥于点DABC 中,120BAC ∠=︒ AB AC =∴()1180302B C BAC ∠=∠=︒-∠=︒AD BC ⊥∴11126m 22AD AB ==⨯=故选B .【点睛】本题考查等腰三角形的性质 三角形内角和定理 含30度角的直角三角形的性质等解题的关键是掌握30度角所对的直角边等于斜边的一半.8.如图,ABC 为等边三角形 点D E 分别在边BC AB 上 60ADE ∠=︒ 若4BD DC =2.4DE =,则AD 的长为( )A .1.8B .2.4C .3D .3.2【答案】C【分析】证明ADC DEB ∽△△ 根据题意得出45BD BC = 进而即可求解.【详解】解:①ABC 为等边三角形①60B C ∠=∠=︒①ADB ADE BDE C DAC ∠=∠+∠=∠+∠ 60ADE ∠=︒①BDE DAC ∠=∠①ADC DEB ∽△△ ①AD ACDE BD =①4BD DC = ①45BD BC =①AD AC DE BD =5445BC BC == ① 2.4DE = ①534AD DE =⨯= 故选:C .【点睛】本题考查了相似三角形的性质与判定 等边三角形的性质 熟练掌握相似三角形的性质与判定是解题的关键.9.下面是“作已知直角三角形的外接圆”的尺规作图过程: 已知:如图 1 在Rt ABC △中 90C ∠=︒.求作:Rt ABC △的外接圆.作法:如图2.(1)分别以点A 和点B 为圆心 大于12AB 的长为半径作弧 两弧相交于P Q 两点 (2)作直线PQ 交AB 于点O(3)以O 为圆心 OA 为半径作O O 即为所求作的圆.下列不属于...该尺规作图依据的是() A .两点确定一条直线B .直角三角形斜边上的中线等于斜边的一半C .与线段两个端点距离相等的点在这条线段的垂直平分线上D .线段垂直平分线上的点与这条线段两个端点的距离相等【答案】D【分析】利用直角三角形斜边中线的性质证明:OC OA OB ==即可.【详解】解:作直线PQ (两点确定一条直线)连接PA PB QA QB OC ,,,,①由作图 PA PB QA QB ==,①PQ AB ⊥且AO BO =(与线段两个端点距离相等的点在这条线段的垂直平分线上).①90ACB ∠=︒ ①12OC AB =(直角三角形斜边中线等于斜边的一半) ①OA OB OC ==①A B C 三点在以O 为圆心 AB 为直径的圆上.①O 为ABC 的外接圆.故选:D .【点睛】本题考查作图-复杂作图 线段的垂直平分线的定义 直角三角形斜边中线的性质等知识 解题的关键熟练掌握基本知识 属于中考常考题型.10.如图,在ABC 中 9034ABC AB BC ∠=︒==,, 点D 在边AC 上 且BD 平分ABC 的周长,则BD 的长是( )A B C D 【答案】C 【分析】如图所示 过点B 作BE AC ⊥于E 利用勾股定理求出5AC = 进而利用等面积法求出125BE =,则可求出95AE = 再由BD 平分ABC 的周长 求出32AD CD ==, 进而得到65DE =,则由勾股定理得BD ==【详解】解:如图所示 过点B 作BE AC ⊥于E①在ABC 中 9034ABC AB BC ∠=︒==,, ①225AC AB +BC ①1122ABC S AC BE BC AC =⋅=⋅△ ①125AB BC BE AC ⋅== ①2295AE AB BE =-= ①BD 平分ABC 的周长①AD AB BC CD +=+ 即34AD CD +=+又①5AD CD AC +==①32AD CD ==, ①65DE AD AE =-= ①2265BD BE DE =+=故选C .【点睛】本题主要考查了勾股定理 正确作出辅助线构造直角三角形是解题的关键.11.ABC 的三边长a b c 满足2()23|320a b a b c ----=,则ABC 是( )A .等腰三角形B .直角三角形C .锐角三角形D .等腰直角三角形【答案】D【分析】由等式可分别得到关于a b c 的等式 从而分别计算得到a b c 的值 再由222+=a b c 的关系 可推导得到ABC 为直角三角形.【详解】解①2()23|320a b a b c ---+-=又①()20230320a b a b c ⎧-≥⎪⎪--⎨-≥⎪⎩①()2000a b c ⎧-=-=⎪⎩①02300a b a b c ⎧-=⎪--=⎨⎪-⎩解得33a b c ⎧=⎪=⎨⎪=⎩ ①222+=a b c 且a b =①ABC 为等腰直角三角形故选:D .【点睛】本题考查了非负性和勾股定理逆定理的知识 求解的关键是熟练掌握非负数的和为0 每一个非负数均为0 和勾股定理逆定理.12.四边形ABCD 的边长如图所示 对角线AC 的长度随四边形形状的改变而变化.当ABC 为等腰三角形时 对角线AC 的长为( )A .2B .3C .4D .5【答案】B 【分析】利用三角形三边关系求得04AC << 再利用等腰三角形的定义即可求解.【详解】解:在ACD 中 2AD CD ==①2222AC -<<+ 即04AC <<当4AC BC ==时 ABC 为等腰三角形 但不合题意 舍去若3AC AB ==时 ABC 为等腰三角形故选:B .【点睛】本题考查了三角形三边关系以及等腰三角形的定义 解题的关键是灵活运用所学知识解决问题.二 填空题13.将形状 大小完全相同的两个等腰三角形如图所示放置 点D 在AB 边上 ①DEF 绕点D 旋转 腰DF 和底边DE 分别交①CAB 的两腰CA CB 于M N 两点 若CA=5 AB=6 AB=1:3,则MD+12⋅MA DN的最小值为 .【答案】23【分析】先求出AD=2 BD=4 根据三角形的一个外角等于与它不相邻的两个内角的和可得①AMD+①A=①EDF+①BDN 然后求出①AMD=①BDN 从而得到①AMD 和①BDN 相似 根据相似三角形对应边成比例可得MA MD BD DN= 求出MA•DN=4MD 再将所求代数式整理出完全平方的形式 然后根据非负数的性质求出最小值即可.【详解】①AB=6 AB=1:3 ①AD=6×13=2 BD=6﹣2=4 ①①ABC 和①FDE 是形状 大小完全相同的两个等腰三角形①①A=①B=①FDE 由三角形的外角性质得 ①AMD+①A=①EDF+①BDN ①①AMD=①BDN①①AMD①①BDN ①MA MD BD DN= ①MA•DN=BD•MD=4MD ①MD+12⋅MA DN =MD+2233()(2323MD MD MD+- =①3MD MD 即3MD+12⋅MA DN 有最小值为23故答案为考点:相似三角形的判定与性质 等腰三角形的性质 旋转的性质 最值问题 综合题.14.如图,在Rt ABC △中 90ACB ∠=︒ 点D 为BC 的中点 过点C 作CE AB ∥交AD 的延长线于点E 若4AC = 5CE =,则CD 的长为 .【答案】32/112/1.5 【分析】先根据AAS 证明BDA CDE △≌△ 推出5==BA CE 再利用勾股定理求出BC 最后根据中点的定义即可求CD 的长. 【详解】解:CE AB ∥∴BAD CED ∠=∠点D 为BC 的中点∴BD CD = 又BDA CDE ∠=∠∴BDA CDE △≌△()AAS∴5==BA CERt ABC △中 90ACB ∠=︒ 4AC =∴3BC === ∴1322CD BC ==. 故答案为:32. 【点睛】本题考查全等三角形的判定与性质 勾股定理 平行线的性质等 证明BDA CDE △≌△是解题的关键.15.如图,在Rt ABC 中 90ACB ∠=︒ 3AC BC == 点D 在直线AC 上 1AD = 过点D 作DE AB ∥直线BC 于点E 连接BD 点O 是线段BD 的中点 连接OE ,则OE 的长为 .541【分析】分两种情况当D 在CA 延长线上和当D 在CA 上讨论 画出图形 连接OC 过点O 作ON BC ⊥于N 利用勾股定理解题即可【详解】解:当在线段上时 连接OC 过点O 作ON BC ⊥于N①当D 在线段AC 上时1AD =2CD AC AD ∴=-=90BCD ∠=︒22222313BD CD BC ∴=+=+点O 是线段BD 的中点1132OC OB OD BD ∴====ON BC ⊥1322CN BN BC ∴===AB DE45COE A CBA CED ∴∠=∠=∠=∠=︒2CE CD ∴==31222NE ∴=-=221ON CO CN =-2222151()2OE ON NE ∴=++=②当D 在CA 延长线上时,则4CD AD AC =+=O 是线段BD 的中点 90BCD ∠=︒12OC OB OD BD ∴=== ON BC ⊥1322CN BN BC ∴=== OB OD =122ON CD ∴== AB DE45CAB COE CBA CED ∴∠=∠=∠=∠=︒4CE CD ∴==35422EN CE CN ∴=-=-=OE ∴==OE ∴【点睛】本题考查等腰直角三角形的判定和性质 勾股定理 正确作出辅助线是解题的关键.16.如图,在ABC 中 90,6C AC BC ∠=︒==.P 为边AB 上一动点 作PD BC ⊥于点D PE AC ⊥于点E ,则DE 的最小值为 .【答案】32【分析】连接CP 利用勾股定理列式求出AB 判断出四边形CDPE 是矩形 根据矩形的对角线相等可得DE CP = 再根据垂线段最短可得CP AB ⊥时 线段DE 的值最小 然后根据直角三角形的面积公式列出方程求解即可.【详解】解:如图,连接CP①90,6C AC BC ∠=︒== ①22226662AB AC BC ++=①PD BC ⊥于点D PE AC ⊥于点E 90ACB ∠=︒①四边形CDPE 是矩形①DE CP =由垂线段最短可得CP AB ⊥时 线段CP 的值最小 此时线段DE 的值最小此时 1122ABC S AC BC AB CP ==△⋅⋅ 代入数据:11666222CP ①32CP =①DE 的最小值为32故答案为:【点睛】本题考查了矩形的判定与性质 垂线段最短的性质 勾股定理 判断出CP AB ⊥时 线段DE 的值最小是解题的关键.17.如图.四边形ABCD 中 AB AD = BC DC = 60C ∠=︒ AE CD ∥交BC 于点E 8BC = 6AE =,则AB 的长为 .【答案】【分析】连接AC BD 交于点O 过点E 作EF AC ⊥ 交AC 于点F 先证明BCD △是等边三角形 AC垂直平分BD 求得30EAC ACD ACB ∠=∠=∠=︒ 6AE EC == 再解三角形求出AO AC CO =-= 4BO = 最后运用勾股定理求得AB 即可.【详解】解:如图:连接AC BD 交于点O又①BC DC = 60C ∠=︒①BCD △是等边三角形①8BD BC CD ===①AB AD = BC DC =①AC BD ⊥ 142BO DO BD === ①1302ACD ACB BCD ∠=∠=∠=︒ 又①AE CD ∥①30EAC ACD ACB ∠=∠=∠=︒.①6AE EC ==过点E 作EF AC ⊥ 交AC 于点F ①3cos30633CF CE =⋅︒==3cos30633AF AE =⋅︒==3cos3083CO BC =⋅︒==①63AC CF AF =+=①634323AO AC CO =-==①在Rt BOA 中 2222(23)427AB BO AO ++= 故答案为:27【点睛】本题属于四边形综合题 主要考查了等边三角形的判定和性质 平行线的性质 垂直平分线 勾股定理 解直角三角形等知识点 正确作出辅助线成为解答本题的关键.18.如图,已知50ABC ∠=︒ 点D 在BA 上 以点B 为圆心 BD 长为半径画弧 交BC 于点E 连接DE ,则BDE ∠的度数是 度.【答案】65【分析】根据题意可得BD BE = 再根据等腰三角形两个底角相等和三角形内角和为180°进行计算即可解答.【详解】解:根据题意可得:BD BE =①BDE BED ∠=∠①18050ABC BDE BED ABC ∠+∠+∠=︒∠=︒,①65BDE BED ∠=∠=︒.故答案为:65.【点睛】本题主要考查了等腰三角形的性质 三角形内角和等知识点 掌握等腰三角形的性质是解答本题的关键.19.如图,在ABC 中 以A 为圆心 AC 长为半径作弧 交BC 于C D 两点 分别以点C 和点D 为圆心 大于12CD 长为半径作弧 两弧交于点P 作直线AP 交CD 于点E 若5AC = 6CD =,则AE = .【答案】4【分析】利用圆的性质得出AP 垂直平分CD 和5AD AC == 运用勾股定理便可解决问题.【详解】解:根据题意可知 以点C 和点D 为圆心 大于12CD 长为半径作弧 两弧交于点P ①AP 垂直平分CD ,即90AED ∠=︒ ①132DE CD == 又①在ABC 中 以A 为圆心 AC 长为半径作弧 交BC 于C D 两点 其中5AC =①5AD AC ==在ADE 中 4AE =故答案为:4.【点睛】本题主要考查圆和三角形的相关性质 掌握相关知识点是解题的关键.20.如图,在ABC 中 以点C 为圆心 任意长为半径作弧 分别交AC BC 于点D E 分别以点DE 为圆心 大于12DE 的长为半径作弧 两弧交于点F 作射线CF 交AB 于点G 若9AC = 6BC = BCG 的面积为8,则ACG 的面积为 .【答案】12【分析】过点B 作BM AC ∥交CG 的延长线于点M 证明ACG BMG ∽ 得出AG AC AC GB BM BC == 根据96ACG BCG S AG AC S GB BC ===32= 即可求解. 【详解】解:如图所示 过点B 作BM AC ∥交CG 的延长线于点M①ACM CMB ∠=∠由作图可得CG 是ACB ∠的角平分线①ACM BCM ∠=∠①BCM CMB ∠=∠①BC BM =①BM AC ∥①ACG BMG ∽ ①AG AC AC GB BM BC== ①96ACG BCG S AG AC S GB BC ===32= ①BCG 的面积为8①ACG 的面积为12故答案为:12.【点睛】本题考查了相似三角形的性质与判定 作角平分线 熟练掌握基本作图以及相似三角形的性质与判定是解题的关键.21.如图,CD 为Rt ABC △斜边AB 上的中线 E 为AC 的中点.若8AC = 5CD =,则DE = .【答案】3【分析】首先根据直角三角形斜边中线的性质得出AB 然后利用勾股定理即可得出BC 最后利用三角形中位线定理即可求解.【详解】解:①在Rt ABC △中 CD 为Rt ABC △斜边AB 上的中线 5CD =①210AB CD ==①6BC①E 为AC 的中点 ①132DE BC == 故答案为:3.【点睛】本题主要考查直角三角形的性质 三角形中位线定理 掌握直角三角形中斜边上的中线等于斜边的一半是解题的关键.22.在 Rt △ABC 中, △ACB =90° AC =6 BC =8 D 是AB 的中点,则 CD = .【答案】5【分析】先根据题意画出图形 再运用勾股定理求得AB 然后再根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】解:如图:①△ACB =90° AC =6 BC =8 ①22226810AB AC BC①①ACB =90° D 为AB 的中点①CD =12AB =12×10=5.故答案为5.【点睛】本题主要考查了运用勾股定理解直角三角形 直角三角形斜边上的中线等于斜边的一半的性质等知识点 掌握“直角三角形斜边上的中线等于斜边的一半”成为解题的关键.三 解答题23.在Rt ABC △中 90BAC AD ∠=︒,是斜边BC 上的高.(1)证明:C ABD BA ∽△△(2)若610AB BC ==, 求BD 的长.【答案】(1)见解析 (2)185BD = 【分析】(1)根据三角形高的定义得出90ADB ∠=︒ 根据等角的余角相等 得出BAD C ∠=∠ 结合公共角B B ∠=∠ 即可得证(2)根据(1)的结论 利用相似三角形的性质即可求解.【详解】(1)证明:①90BAC AD ∠=︒,是斜边BC 上的高.①90ADB ∠=︒ 90B C ∠+∠=︒①90B BAD ∠+∠=︒①BAD C ∠=∠又①B B ∠=∠①C ABD BA ∽△△(2)①C ABD BA ∽△△ ①AB BD CB AB=又610AB BC ==, ①23618105AB BD CB ===. 【点睛】本题考查了相似三角形的性质与判定 熟练掌握相似三角形的性质与判定是解题的关键. 24.如图,BD 是等边ABC 的中线 以D 为圆心 DB 的长为半径画弧 交BC 的延长线于E 连接DE .求证:CD CE =.【答案】见解析【分析】利用三线合一和等腰三角形的性质 证出2E ∠=∠ 再利用等边对等角即可.【详解】证明:BD 为等边ABC 的中线BD AC ∴⊥ 160∠=︒330∴∠=︒BD DE =330E ∴∠=∠=︒2160E ∠+∠=∠=︒230E ∴∠=∠=︒CD CE ∴=【点睛】本题考查了等边三角形 等腰三角形的性质和判定 理解记忆相关定理是解题的关键.25.如图,在四边形ABCD 中 点E 是边BC 上一点 且BE CD = B AED C ∠=∠=∠.(1)求证:EAD EDA ∠=∠(2)若60C ∠=︒ 4DE =时 求AED △的面积.【答案】(1)见解析 (2)3【分析】(1)由B AED ∠=∠求出BAE CED ∠=∠ 然后利用AAS 证明BAE CED ≅ 可得EA ED = 再由等边对等角得出结论(2)过点E 作EF AD ⊥于F 根据等腰三角形的性质和含30︒直角三角形的性质求出DF 和AD 然后利用勾股定理求出EF 再根据三角形面积公式计算即可.【详解】(1)证明:①B AED ∠=∠①180180B AED ︒-∠=︒-∠ 即BEA BAE BEA CED ∠+∠=∠+∠①BAE CED ∠=∠在BAE 和CED △中 B C BAE CED BE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩①()AAS BAE CED ≅①EA ED =①EAD EDA ∠=∠(2)解:过点E 作EF AD ⊥于F由(1)知EA ED =①60C AED ︒∠=∠=①30AEF DEF ∠=∠=︒①4DE = ①122DF DE == ①24AD DF == 22224223EF DE DF =--①11422AED S AD EF =⋅=⨯⨯=【点睛】本题考查了三角形内角和定理 全等三角形的判定和性质 等腰三角形的性质 含30︒直角三角形的性质以及勾股定理等知识 正确寻找证明三角形全等的条件是解题的关键.。
2019届九年级中考数学复习
《直角三角形与等腰三角形》专题精练卷
1.五根小木棒,其长度分别为7、15、20、24、25,现想把它们摆成两个直角三角形,下列图中正确的是().
2. 如图,△ABC中,AB=AC,∠B=70°,则∠A的度数是()
A.70°
B. 55°
C. 50°
D. 40°
3.如图,在△ABC中,∠B=∠C,AB=5,则AC的长为()
A. 2
B. 3
C. 4
D. 5
4.如图,若∠A=60°,AC=20m,则BC大约是(结果精确到0.1m)( )
A.34.64m B.34.6m C.28.3m D.17.3m
5.如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;
②BD、AC互相平分;③四边形ACED是菱形.其中正确的个数是()
A.0 B.1 C.2 D.3
6.如图,在△ABC中,∠C=900,∠B=300,以A为圆心,任意长为半径画弧分别交AB、AC于点M
1的长为半径画弧,两弧交于点P,连结AP并延长交BC于和N,再分别以M、N为圆心,大于MN
2
点D,则下列说法中正确的个数是()个
①AD是∠BAC的平分线;②∠ADC=600 ;③点D在AB的中垂线上;④S△DAC∶S△ABC=1∶3
A.1 B.2 C.3 D.4
7.如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正确
...的是()
A、当弦PB最长时,ΔAPC是等腰三角形2
B、当ΔAPC是等腰三角形时,PO⊥AC.
C、当PO⊥AC时,∠ACP=300.
D、当∠ACP=300,ΔPBC是直角三角形.
8.如图,△ACE是以□ABCD的对角线AC为边的等边三角形,点C与点E关于x轴对称.若E点的
坐标是(7,-,则D点的坐标是.
9.如图,△ABC 中,AB=AC ,DE 垂直平分AB ,BE ⊥AC ,AF ⊥BC ,则∠EFC= °.
10.在等腰△ABC 中,AB=AC ,∠A=50°,则∠B=______________.
11.如图,已知ABC ∆是等边三角形,点B 、C 、D 、E 在同一直线上,且CG=CD ,DF=DE ,则∠E=_ 度.
12. 在△ABC 中,∠C=90°,AB=7,BC=5,则边AC 的长为______________. 13.如图,在ABC ∆中,0,72AB AC ABC =∠=.
(1)用直尺和圆规作ABC ∠的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法); (2)在(1)中作出ABC ∠的平分线BD 后,求BDC ∠的度数.
14.如图,在△ABC 中,∠ACB =900, B A ∠>∠,点D 为边AB 的中点,DE BC ∥交AC 于点E ,CF AB ∥交DE 的延长线于点F . (1)求证:DE EF =;
(2)连结CD ,过点D 作DC 的垂线交CF 的延长线于点G ,求证:B A DGC ∠=∠+∠.
参考答案
1.C
2.D
3.D
4.B
5.D
6.D
7.C
8.(5,0)
9.45
10.650 11.15 12.
13.(1)图略;(2)∵AB=AC ,∠ABC=720 ∴∠ACB=∠ABC=720 又∵BD 平分∠ABC ∴∠DBC=360
在△BDC 中,∠BDC=1800-∠DBC-∠ACB=1800-360-720=720;
14.(1)∵DE//BC ,CF//AB ∴四边形BCFD 是平行四边形 ∴DF=BC 又∵D 为Rt △ACB 斜边的中点,DE//BC ∴
12DE AD BC AB == ∴11
22
DE BC DF == 即点E 为DF 的中点 ∴DE=EF ;(2)如图,设DG 交AC 于M 点,由CF//AB 可得∠A=∠ACG ,∴
∠DMC=∠ACG+∠DGC=∠A+∠DGC 由DG ⊥CD 得∠GDC=900 ∴∠DMC+∠ACD=900 又∵∠DCB+∠ACD=900 ∴∠DMC=∠DCB ∵CD 为Rt △ACB 斜边的中线 ∴CD=BD ∴∠B=∠DCB ∴∠B=∠DMC=∠A+∠DGC。