电磁场与微波实验报告(极化波)
- 格式:doc
- 大小:162.00 KB
- 文档页数:5
内蒙古工业大学信息工程学院实验报告课程名称:电磁场与电磁波实验名称:反射实验和极化波的产生与检测实验类型:验证性■综合性□设计性□实验室名称:电磁场与电磁波实验室班级:电子10-1班学号:201010203008 姓名:苏宝组别:同组人:成绩:实验日期: 2013年5月21 电磁场与电磁波实验实验一:反射实验实验目的熟悉dh926ad型数据采集仪、dh926b型微波分光仪的使用方法掌握分光仪验证电磁波反射定律的方法实验设备与仪器dh926ad型数据采集仪 dh926b型微波分光仪dh1121b型三厘米固态信号源金属板实验原理电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。
如图所示,平行极化的均匀平面波以角度? 入射到良介质表面时,入射波、反射波和折射波可用下列式子表示为平行极化波的斜入射示意图实验内容与步骤系统构建时,如图1,开启dh1121b型三厘米固态信号源。
dh926b型微波分光仪的两喇叭口面应互相正对,它们各自的轴线应在一条直线上,指示两喇叭位置的指针分别指于工作平台的0-180刻度处。
将支座放在工作平台上,并利用平台上的定位销和刻线对正支座,拉起平台上四个压紧螺钉旋转一个角度后放下,即可压紧支座。
反射全属板放到支座上时,应使金属板平面与支座下面的小圆盘上的90-90这对刻线一致,这时小平台上的0刻度就与金属板的法线方向一致。
将dh926ad型数据采集仪提供的usb电缆线的两端根据具体尺寸分别连接图1 反射实验到数据采集仪的usb口和计算机的usb口,此时,dh926ad型数据采集仪的usb指示灯亮(蓝色),表示已连接好。
然后打开dh926ad型数据采集仪的电源开关,电源指示灯亮(红色),将数据采集仪的通道电缆线两端分别连接到dh926b型微波分光仪分度转台底部的光栅通道插座和数据采集仪的相应通道口上(本实验应用软件默认为通道1)。
电磁场与微波技术实验报告班级:学号:姓名:目录目录 (2)实验2 微带分支线匹配器 (3)一、实验目的: (3)二、实验原理 (3)三、实验内容 (3)四、实验步骤 (3)实验三四分之一波长阻抗变换器 (15)实验目的 (15)实验原理 (15)单节4λ阻抗变换器 (16)多节4λ阻抗变换器 (16)实验内容 (17)实验步骤 (18)实验4 低通滤波器 (31)实验目的 (31)实验原理 (31)低通原型滤波电路 (32)Richards变换 (32)Kuroda变换 (33)实验内容 (33)实验步骤 (33)总结 (41)完成任务 (41)问题及解决 (41)心得与体会 (41)实验2 微带分支线匹配器一、实验目的:1.熟悉支节匹配器的匹配原理2. 了解微带线的工作原理和实际应用3.掌握Smith图解法设计微带线匹配网络二、实验原理支节匹配器是在主传输线上并联适当的电纳(或者串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。
单支节匹配器,调谐时主要有两个可调参量:距离d和由并联开路或短路短截线提供的电纳。
匹配的基本思想是选择d,使其在距离负载d处向主线看去的导纳Y是Y0+jB 形式。
然后,此短截线的电纳选择为-jB,根据该电纳值确定分支短截线的长度,这样就达到匹配条件。
双支节匹配器,通过增加一支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配(但是双支节匹配不是对任意负载阻抗都能匹配的,即存在一个不能得到匹配的禁区)。
三、实验内容已知:输入阻抗Zin=75欧负载阻抗Zl=(64+j35)欧特性阻抗Z0=75欧介质基片εr=2.55,H=1mm假定负载在2G赫兹时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离d1=四分之一波长,两分支线之间的距离为d2=八分之一波长。
画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz至2.2GHz 的变化四、实验步骤(一):单支节匹配在史密斯圆图上找到等反射系数圆和g=1圆的交点,有两个点与其匹配。
电磁场与微波测量实验报告实验五极化实验题目:电磁场与微波测量实验学院:电子工程学院班级:20132112xx撰写人:xx组内成员:xxxx一、实验目的1、培养综合性设计电磁波实验方案的能力;2、验证电磁波的马吕斯定律。
二、预习内容线极化波的相关概念和电磁波的马吕斯定律。
三、实验设备1、S426型分光仪:用于验证平面波的传播特点,包括不同媒质分界面时发生的反射和折射等诸多问题。
分光仪的部分组件名称和简要介绍如下:2、DH1121B型三厘米固态信号源该信号源是一种使用体效应管做震荡源的微波信号源,由振荡器、隔离器和主机组成。
三厘米固态振荡器发出的信号具有单一的波长(出厂时信号调在λ=32.02mm上),当发射喇叭口面的宽边与水平面平行时,发射信号电矢量的偏振方向是垂直的。
可变衰减器用来改变微波信号幅度的大小,衰减器的度盘指示越大,对微波信号的衰减也越大。
晶体检波器可将微波信号变成直流信号或低频信号(当微波信号幅度用低频信号调制时)。
四、实验原理平面电磁波是横波,它的电场强度矢量E和波长的传播方向垂直。
如果E在垂直于传播方向的平面内沿着一条固定的直线变化,这样的横电磁波叫线极化波。
在光学中也叫偏振波。
偏振波电磁场沿某一方向的能量有一定关系。
这就是光学中的马吕斯定律:I=I o cos2∅,式中I为偏振波的强度,∅为I与I O间的夹角。
五、实验步骤1、调整仪器,使分光仪两喇叭口面相互平行并与地面垂直,其轴线在同一条直线上;2、调整旋转短波导的轴承环至0度,然后打开三厘米固态信号源,电流表偏转一定角度,调节射天线上方的可变衰减器使表头指示接近满度,记下电流表数值(实验中取值为94);3、旋转发射喇叭,每转10度记下一组电流表的读数,直到∅=90°;4、将实测值与理论值相比较,进行总结,得出结论。
六、实验结果及分析1、实验数据:2、结论由数据可看出,在一定误差允许的范围下,实验值跟理论值还是比较接近的,所以利用马吕斯定律来计算偏振光强度的方法是可行的,马吕斯定律得到了验证。
电磁波的极化实验报告电磁波的极化实验报告引言电磁波是一种横波,它由电场和磁场交替变化而形成。
电磁波的极化是指电场或磁场在空间中的振动方向。
在本次实验中,我们将通过实验验证电磁波的极化现象,并探讨其应用。
实验目的1. 了解电磁波的极化现象。
2. 掌握电磁波的极化实验方法。
3. 探究电磁波极化的应用领域。
实验材料1. 一台光源。
2. 一块偏振片。
3. 一块检偏片。
4. 一块反射板。
5. 一块透射板。
6. 一块电磁波检测器。
实验步骤1. 将光源打开,使其发出光线。
2. 将偏振片放置在光源前方,调整其方向,使光线通过。
3. 将反射板放置在光线前方,观察光线的反射情况。
4. 将透射板放置在光线前方,观察光线的透射情况。
5. 使用电磁波检测器对透射光进行检测,记录实验数据。
实验结果通过实验观察和数据记录,我们得出以下结论:1. 当光线通过偏振片时,只有与偏振片方向一致的光线能够通过,其余光线被吸收或反射。
2. 当光线经过反射板时,光线的振动方向发生了改变。
3. 当光线经过透射板时,光线的振动方向保持不变。
4. 使用电磁波检测器对透射光进行检测时,可以观察到电磁波的强度变化。
讨论与分析通过以上实验结果,我们可以得出以下结论:1. 偏振片可以选择性地通过特定方向的光线,这是由于光的电场振动方向与偏振片的分子结构相互作用导致的。
2. 反射板可以改变光线的振动方向,这是由于光线在反射时与反射板表面发生相互作用而导致的。
3. 透射板可以保持光线的振动方向不变,这是由于透射板的分子结构不会对光线的振动方向产生影响。
4. 电磁波的强度可以通过电磁波检测器进行测量,这为电磁波的研究提供了重要的实验手段。
应用领域电磁波的极化现象在许多领域都有着广泛的应用,例如:1. 光学领域:偏振片的应用可以实现光的偏振控制,用于光学仪器、光通信等领域。
2. 电子显示:液晶显示屏通过控制光的极化方向来实现图像的显示,这是电磁波极化应用的典型例子。
电磁场与微波技术实验心得(优秀范文五篇)第一篇:电磁场与微波技术实验心得电磁场与微波技术实验报告我们班连续观摩了三个《电磁场与微波技术》课程的实验,通过观看视频,老师讲解和演示,以及自己的一些操作,使我们加深了对这三个实验的一些了解。
实验一、电磁波极化在这个实验我们主要了解电磁波极化、天线极化的概念;了解电磁波的分解与合成原理;了解圆极化波产生的基本原理。
这个实验主要用到的仪器是微波分光仪,里面包含支座、分度转台、喇叭天线、可变衰减器、晶体检波器、视频电缆及微安表、读书机构、栅网组件、三厘米信号源、分光介质板。
实验内容:首先连接好实验仪器,三厘米固态信号源工作在等幅状态,按下电压按键使三位半数字表显示电压的示数,信号源的输出端通过同轴线连接到微波分光仪,此时的电信号通过同轴转波导经过隔离器、可变衰减器到达辐射天线的辐射喇叭(Pr0),辐射喇叭辐射出的波经过栅网组件的反射和吸收到达接收喇叭(Pr3),经由晶体检波器,通过同轴线与微安表相连。
垂直栅网(Pr1)与辐射喇叭在同一条水平线上,通过长铝质支柱固定在基座上;水平栅网(Pr2)正对着辐射喇叭,并与垂直栅网成直角,通过读数机构和短铝质支柱固定在基座上。
接收喇叭与辐射喇叭成45º角。
然后开始实验,打开信号源开关,这时转动接收喇叭Pr3,当Pr3喇叭E面与垂直栅网平行时收到E⊥波,经几次调整辐射喇叭Pr0的转角使Pr3接收到的|E∥|=|E⊥|,实现圆极化的幅度相等要求。
然后接收喇叭Pr3在E∥和E⊥之间转动,将出现任意转角下的|Eα|≤|E∥|(或E⊥)。
这时改变Pr2水平栅网位置,使Pr3接收的波具有|Eα|=|E∥|=|E⊥|,从而实现了E∥和E⊥两个波的相位差为±90º,得到圆极化波。
实验心得:通过老师的细心讲解以及在老师的指导下,我们进行了一些简单的操作,熟悉了实验仪器的名称,以及一些仪器的作用以及工作原理,如三厘米信号源, 它是一种使用体效应管作振荡源的微波信号源,能输出等幅信号及方波调制信号。
信息与通信工程学院电磁场与微波技术实验报告班级:姓名:学号序号:日期:1实验二:分支线匹配器一、实验目的掌握支节匹配器的工作原理;掌握微带线的基本概念和元件模型;掌握微带线分支线匹配器的设计和仿真。
二、实验原理支节匹配器支节匹配器是在主传输线上并联适当的电纳(或者串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。
单支节匹配器:调谐时,主要有两个可调参量:距离d 和分支线的长度l。
匹配的基本思想是选择d,使其在距离负载d 处向主线看去的导纳Y 是Y0 + jB 形式,即Y = Y0 +jB ,其中Y0 = 1/Z0。
并联开路或短路分支线的作用是抵消Y 的电纳部分,使总电纳为Y0,实现匹配,因此,并联开路或短路分支线提供的电纳为−jB ,根据该电纳值确定并联开路或短路分支线的长度l,这样就达到匹配条件。
双支节匹配器:通过增加一支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配(注意双支节匹配不是对任意负载阻抗都能匹配的,即存在一个不能得到匹配的禁区)。
微带线微带线是有介质εr(εr > 1) 和空气混合填充,基片上方是空气,导体带条和接地板之间是介质εr,可以近似等效为均匀介质填充的传输线,等效介质电常数为εe ,介于1 和εr 之间,依赖于基片厚度H 和导体宽度W。
而微带线的特性阻抗与其等效介质电常数为εe 、基片厚度H 和导体宽度W 有关。
三、实验内容已知:输入阻抗Z in = 75 Ω 负载阻抗Z L = (64 + j35) Ω特性阻抗Z0 = 75 Ω介质基片εr = 2.55,H = 1mm,导体厚度T 远小于介质基片厚度H。
2假定负载在2GHz 时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离d1 = λ/4 ,两分支线之间的距离为d2 = λ/8。
画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz 至2.2GHz 的变化。
电磁波极化实验报告电磁波极化实验报告引言:电磁波极化是电磁波振动方向的特性,对于电磁波的传播和应用具有重要意义。
本实验旨在通过实验方法探究电磁波的极化现象,并分析其在不同介质中的传播规律。
实验一:线偏振光的产生与检测实验目的:通过实验验证线偏振光的产生与检测原理。
实验步骤:1. 将一束自然光通过一块偏振片,调整偏振片的方向,观察透过偏振片后的光强变化。
2. 用另一块偏振片作为分析器,将其与第一块偏振片的透射轴垂直,观察透过分析器后的光强变化。
实验结果与分析:通过调整偏振片的方向,我们观察到透过偏振片后的光强发生了变化。
当两块偏振片的透射轴垂直时,透过分析器的光强最弱,几乎完全消失。
这说明通过偏振片后的光已经被线偏振。
实验二:电磁波的振动方向与介质的关系实验目的:通过实验探究电磁波的振动方向与介质的关系。
实验步骤:1. 将一束自然光通过一块偏振片,调整偏振片的方向,观察透过偏振片后的光强变化。
2. 将透过偏振片的光照射到不同介质(如玻璃、水等)中,再次观察光强的变化。
实验结果与分析:通过调整偏振片的方向,我们观察到透过偏振片后的光强发生了变化。
当光照射到不同介质中时,光强的变化情况也不同。
这说明电磁波的振动方向与介质的性质有关。
实验三:电磁波的反射与折射实验目的:通过实验研究电磁波在反射和折射过程中的极化现象。
实验步骤:1. 将一束线偏振光照射到一块玻璃板上,调整入射角度,观察反射光的强度和方向。
2. 将线偏振光从空气中射入玻璃板,观察折射光的强度和方向。
实验结果与分析:通过实验观察,我们发现反射光和折射光的振动方向与入射光的振动方向有关。
当入射角度变化时,反射光和折射光的振动方向也发生了变化。
这说明电磁波在反射和折射过程中会发生极化现象。
实验四:电磁波的旋光现象实验目的:通过实验研究电磁波的旋光现象。
实验步骤:1. 将一束线偏振光通过一块旋光片,观察透过旋光片后的光强变化。
2. 改变旋光片的转动方向和角度,再次观察光强的变化。
微波偏振实验报告微波偏振实验报告篇一:电磁场与微波实验六报告——偏振实验偏振实验1. 实验原理平面电磁波是横波,它的电场强度矢量E和波长的传播方向垂直。
如果E在垂直于传播方向的平面内沿着一条固定的直线变化,这样的横电磁波称为线极化波,在光学中也称偏振波。
电磁场沿某一方向的能量有sin2φ的关系,这就是光学中的马吕斯定律: I=I0cs2φ,式中I0为初始偏振光的强度,I为偏振光的强度,φ是I与I0之间的夹角。
2. 实验步骤系统构建图由于喇叭天线传输的是由矩形波导发出的TE10波,电场的方向为与喇叭口天线相垂直的系列直线,中间最强。
D H926B型微波分光仪的两喇叭天线口面互相平行,并与地面垂直,其轴与偏振实验线在一条直线上。
由于接收喇叭口天线是和一段旋转短波导连在一起的,在旋转波导的轴承环的90度范围内,每隔5度有一刻度,所以接收喇叭天线的转角可从此处读到。
在主菜单页面点击“偏振实验”,单击“K” 进入“输入采集参数”界面。
本实验默认选取通道3作为光栅通道插座和数据采集仪的数据接口。
采集点数可根据提示选取。
顺时针或逆时针(但只能沿一个方向)匀速转动微波分光仪的接收喇叭,就可以得到转角与接收指示的一组数据。
终止采集过程后,按下“计算结果”按钮,系统软件将本实验根据实际采集过程处理得到的理论和实际参数。
注意事项:①为避免小平台的影响,最好将其取下。
②实验用到了接收喇叭天线上的光栅通道(光传感头),应将该通道与数据采集仪通道3用电缆线连接。
③转动接收喇叭天线时应注意不能使活动臂转动。
④由于轴承环处的螺丝是松的,读取电压值时应注意,接收喇叭天线可能会不自觉偏离原来角度。
最好每隔一定读数读取电压值时,将螺丝重新拧紧。
⑤接收喇叭天线后的圆盘有缺口,实验过程中应注意别将该缺口转动经过光栅通道,否则在该处软件将读取不到数据。
极化波实验报告极化波实验报告引言:极化波是一种在物理学和电磁学中广泛应用的概念。
通过对极化波的实验研究,我们可以更好地理解光的行为和性质。
本实验旨在通过观察和测量不同极化状态下的光波,探索极化波的特性和应用。
实验目的:1. 理解极化波的概念和基本原理;2. 学习使用实验仪器测量和观察极化波;3. 探索极化波在实际应用中的作用和意义。
实验原理:极化波是指在某一特定方向上振动的电磁波。
它的振动方向可以是沿着光的传播方向,也可以是与传播方向垂直的方向。
常见的极化状态包括线偏振、圆偏振和未极化。
实验材料和仪器:1. 光源:使用一台稳定的白光源;2. 偏振片:包括线偏振片和圆偏振片;3. 透射光源:用于观察光的极化状态;4. 偏振片旋转器:用于调节偏振片的角度;5. 光强测量仪:用于测量不同极化状态下的光强。
实验步骤:1. 将白光源放置在实验台上,并打开电源;2. 在光源前方放置一个线偏振片,并调整其角度,观察光通过后的效果;3. 使用偏振片旋转器旋转线偏振片,记录不同角度下透射光的强度;4. 更换为圆偏振片,并重复步骤3,观察并记录不同角度下的透射光强度;5. 将线偏振片和圆偏振片叠加使用,观察光的极化状态变化;6. 根据实验数据,绘制光强随角度变化的曲线,分析不同极化状态下的光强变化规律。
实验结果与讨论:通过实验观察和测量,我们得到了不同极化状态下的光强随角度变化的曲线。
根据实验结果,我们可以得出以下结论:1. 线偏振光:当线偏振片的振动方向与光的振动方向垂直时,透射光强度最弱,当两者平行时,透射光强度最强;2. 圆偏振光:在圆偏振片旋转一周的过程中,透射光的强度保持不变,但振动方向会随着旋转而改变;3. 未极化光:未极化光是由各种方向的振动方向组成的光,其透射光强度在旋转过程中保持不变。
极化波在现实生活中有着广泛的应用。
例如,在液晶显示器中,通过调节电场的方向,可以改变液晶分子的排列方式,从而控制光的极化状态,实现显示效果。
实验报告
课程名称: 电磁场与微波技术实验 指导老师: 谢银芳、王子立 成绩:
实验名称: 极化波 实验类型: 验证型实验 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得
一、实验目的和要求
1、研究线极化波,圆极化波和椭圆极化波的产生和各自的特点。
2、了解线极化波,圆极化波和椭圆极化波特性参数的测量方法。
3、通过对三种线性极化波的研究,加深对电磁场极化特性的认识与理解。
二、实验内容和原理
原理:平面电磁波的极化是指电磁波传播时,空间某点电场强度矢量E 随时间变化的规律。
若 E 的末端轨迹在一条直线上时,称为线极化波; 若E 末端的轨迹是圆(或椭圆),称为圆(或椭圆)极化波。
若圆运动轨迹与波的传播方向符合右手(或左手)螺旋规则时,则称为右旋(或左旋)圆极化波。
而椭圆极化波末端为椭圆形。
线极化波、圆极化波和椭圆极化波都可由两个同频率的正交线极化波组合而成。
设同频率的两个正交线极化波为:
()()
j kz x x xm j kz y y ym E E e E E e ψψ----==
当,x y xm ym E E ψψψ===±时,是线极化波 当,2
x y xm ym E E π
ψψ-=±
=±时,是圆极化波
当x y ψψ-介于线极化波与圆极化波时,是椭圆极化波
内容:1.圆极化波的调整与测量 2.线极化波的调整与测量 3.椭圆极化波的调整与测量
三、主要仪器设备
如下图所示,其中辐射喇叭由固态信号源、衰减器及矩形喇叭组成。
其中固态信号源工作频率为f =9375MHz 。
接收喇叭由矩形喇叭,检波器,,微安表等组成。
其它装置基本上与实验一相同。
四、实验步骤和结果记录
1、圆极化波
根据圆极化波的要求,两相同频率的正交场相干波必须幅度相等,相位差2
π
±。
因此,
先使发射喇叭的转角为o
45左右,分别将接收喇叭垂直与水平放置,收到2m 1m E E 和,然后转动接收喇叭到任意一个角度,则将会出现大于或者小于1m E 值的情况。
然后慢慢移动2r P 的位置,知道接收喇叭在各个角度上的输出指示值都相等。
这样就实现了
2
kz kz 21π
ψ±
=-=∆,记此时2r P 的位置为0l ,依照表格记录相关数据。
P r0:α=50.0° P r2:l 0=25.214mm
P r3:|E m1|=|E m2|∝I=3.46
圆极化波调整与测试数据记录:
2、线极化波
在前面产生圆极化波实验的基础上,调整r 2P 的位置0l ,使x y ψψπ-=±即可产生线极化波。
调整r 2P 的位置使10/8l l λ=± ,所以把
的位置往前调整 /8λ就产生了线极
化波。
当转动角度为0、10、20、......170度时记录测量数据填入表二中。
P r0:α=50.0° P r2:l 1=29.685mm
当max I I =时,θr =θ0=110°max I I ==4.06A μ
3、椭圆极化波
在前两部分实验的基础上,改变
的位置,使120l l l <<即可产生椭圆极化波。
当r3P 转动角度为0、10、20、......170度时记录测量数据填入表三中并计算出椭圆极化波的椭圆度e
选择保持Pr0 的转角不变为α=50° 移动金属栅网位置到0208
l l l λ
<<+,测得2l =27.492mm
椭圆极化波实验数据记录如下:
五、实验数据记录和处理
实验数据记录见上文表格。
数据处理结果见上文表格。
实验处理过程:对于一个读数22
()I A μ
为了求其正比于I 2
的E ,需要将读数开根号即可。
椭圆度:对于圆极化波,椭圆度e=I min /I max ,求出e=0.81>0.8的实验要求,因此,实验达到目的。
在圆极化波中,数据呈现先增大后减小再增大的趋势,我们进行了分析,认为这是因为调试的时候,没有严格地将椭圆的长轴短轴与接收面的垂直水平对应起来。
这个在实验中是不规范的,以后应该注意。
对于圆极化波,因为所有的数值相差不大,所以,我们有充分的理由相信,它是一个在误差允许范围内的圆极化波。
对于线极化波,因为需要对比实验读数和角度余弦的关系,为了更加方便地看出其线性关系,所以,我们作了一张比较图,图像结果如下:
可以看出,它们的趋势大致相同,但是存在一定的误差,在误差允许范围内,可以认为线极化波已经达到(实验理论应为两线重合)。
对于椭圆极化波,本身是比较随意的,因为除了两种特殊的极化波:线极化波和圆极化波,其他都是椭圆极化波,这里就不作多的分析。
对于该椭圆,椭圆度为:e=0.609.
六、收获与体会
第二次的实验明显比第一次复杂很多,但是也不难理解,该实验的条理、思路非常清晰,这将有利于我们理解波的叠加等问题。
本实验很繁琐,调试的时候需要一定的耐心,但是更需要的是调试的技巧,我们两个人协作,一个人调整,一个人监督数据的变化,细微地调整,终于功夫不负有心人调了出来。
另外,实验前面的数据对后面实验结果影响较大,所以,在实验开始的时候需要特别认真。
由于本实验是在调节出圆极化波的基础上来调节出线极化波的,所以对圆极化波的调节有比较高的要求。
实际测量中发射喇叭的角度α并不等于45度,根据装置的差异会有一定的微调,大致在50度左右。
在调节圆极化波的过程中,要将介质板角度、发射喇叭偏转角度和移动平台的调整调节结合起来。
这样才能得到较为理想的圆极化波。
另外在测量的过程中要注意对其他组别的实验装置的电磁波的屏蔽,否则会产生较大的误差。