投影寻踪评价模型
- 格式:ppt
- 大小:438.50 KB
- 文档页数:20
第19期第52卷第19期2013年10月湖北农业科学Hubei Agricultural SciencesVol.52No.19Oct.,2013收稿日期:2013-01-05作者简介:李学法(1965-),男,山东聊城人,高级工程师,主要从事总图设计与环保研究,(电话)0531-********(电子信箱)sdlixuefa@。
水质评价是根据某些水质指标值通过建立数学模型,对某水体的等级进行综合评判,为水体的科学管理和污染防治提供决策依据[1-3]。
由于水质类型往往由多个非线性指标来决定,采用传统的数据分析方法建立水质评价模型时由于受到过于数字化的限制,难以找到数据的内在规律,因此需要建立多因子评价体系的水质评价模型[4-6]。
研究选取溶解氧、高锰酸盐指数、五日生化需氧量、氨氮、总磷、总氮6个指标作为评价因子,建立投影寻踪法的水质评价模型,借助粒子群算法确定投影过程中最佳投影方向,从而确定各评价因子权重,将高维数据投影到一维空间上进行水质综合评价。
1材料与方法此次研究的数据来源于潘家口水库1996-2005年的水质监测年平均值。
根据实际情况选取溶解氧、高锰酸盐指数、五日生化需氧量、氨氮、总磷、总氮6个指标作为潘家口水库水质的评价因子。
投影寻踪水质评价模型的建立步骤如下:1)评价指标集的归一化处理;2)线性投影;3)建立投影目标函数;4)优化投影方向;5)建立水质综合评价模型;6)评价待测样本。
粒子群优化算法(PSO)的思路为计算微粒对于空间位置的适应度,从而找到最优位置。
2结果与分析2.1水质评价过程水质评价标准参照GB 3838-2002《地表水环境质量标准》[7],每个评价指标分为5个等级(表1)。
表1中水质评价有6个指标,每个指标分5个等级,因此属于六维数据。
为提高模型的精度,将评基于粒子群优化算法的投影寻踪水质评价模型李学法1袁周迎红2(1.山东电力工程咨询院有限公司,济南250013;2.无锡商业职业技术学院,江苏无锡214153)摘要:利用投影寻踪法来评价水质,利用粒子群优化算法来求解最优函数问题,计算速度快,精度高。
投影寻踪方法及应用内容摘要:本文从投影寻踪的研究背景出发,给出了投影寻踪的定义和投影指标,在此基础上得出了投影寻踪聚类模型,随后简单介绍了遗传算法。
最后结合上市公司的股价进行实证分析,并给出结论和建议。
关键词:投影寻踪投影寻踪聚类模型遗传算法一、简介(一)产生背景随着科技的发展,高维数据的统计分析越来越普遍,也越来越重要。
多元分析方法是解决高维数据这类问题的有力工具。
但传统的多元分析方法是建立在总体服从正态分布这个假定基础之上的。
不过实际问题中有许多数据不满足正态假定,需要用稳健的或非参数的方法来解决。
但是,当数据的维数很高时,即使用后两种方法也面临以下困难:第一个困难是随着维数增加,计算量迅速增大。
第二个困难是对于高维数据,即使样本量很大,仍会存在高维空间中分布稀疏的“维数祸根”。
对于核估计,近邻估计之类的非参数法很难使用。
第三个困难是对低维稳健性好的统计方法,用到高维时则稳健性变差。
另一方面,传统的数据分析方法的一个共同点是采用“对数据结构或分布特征作某种假定——按照一定准则寻找最优模拟——对建立的模型进行证实”这样一条证实性数据分析思维方法〔简称CDA法)。
这种方法的一个弱点是当数据的结构或特征与假定不相符时,模型的拟合和预报的精度均差,尤其对高维非正态、非线性数据分析,很难收到好的效果。
其原因是证实性数据分析思维方法过于形式化、数学化,受束缚大。
它难以适应千变万化的客观世界,无法真正找到数据的内在规律,远不能满足高维非正态数据分析的需要。
针对上述困难,近20年来,国际统计界提出采用“直接从审视数据出发—通过计算机分析模拟数据—设计软件程序检验”这样一条探索性数据分析新方法,而PP就是实现这种新思维的一种行之有效的方法。
(二)发展简史PP最早由Kruskal于70年初建议和试验。
他把高维数据投影到低维空间,通过数值计算得到最优投影,发现数据的聚类结构和解决化石分类问题。
1974年Frledman和Tukey加以改正,提出了一种把整体上的散布程度和局部凝聚程度结合起来的新指标进行聚类分析,正式提出了PP概念,并于1976年编制了计算机图像系统PRIM——9。
遗传算法投影寻踪模型近年来,遗传算法在寻优问题中的应用越来越广泛,其中遗传算法投影寻踪模型在MATLAB代码中的实现备受关注。
本文将以此为主题,结合具体的内容,对遗传算法投影寻踪模型进行深入探讨。
一、遗传算法的原理1.1 遗传算法的基本概念遗传算法是一种基于生物进化过程的启发式优化技术,它模拟了自然选择和遗传机制,通过不断的迭代优化过程来寻找最优解。
遗传算法包括选择、交叉、变异等基本操作,其中选择过程通过适应度函数来评价个体的优劣,交叉过程通过染色体的交换来产生新的个体,变异过程通过基因的随机改变来增加种群的多样性。
1.2 遗传算法的应用领域遗传算法广泛应用于优化问题、机器学习、神经网络、信号处理、图像处理等领域,在工程、科学领域有着重要的应用价值。
二、投影寻踪模型的概念2.1 投影寻踪模型的基本原理投影寻踪模型是一种在信号处理领域中常用的算法,其基本原理是通过对信号进行投影变换来实现信号的降维和提取特征。
2.2 投影寻踪模型的应用投影寻踪模型在语音识别、图像处理、数据压缩等方面有着广泛的应用,是一种常见的信号处理技术。
三、MATLAB代码实现3.1 MATLAB环境准备在进行遗传算法投影寻踪模型的实现之前,首先需要在MATLAB环境中准备好相应的工具箱和设置参数。
3.2 遗传算法投影寻踪模型代码编写通过MATLAB的编程能力,可以实现遗传算法投影寻踪模型的代码编写,包括遗传算法的参数设置、适应度函数的定义、种群的初始化、交叉和变异操作的实现等步骤。
3.3 代码调试和优化在编写完整的遗传算法投影寻踪模型代码后,需要进行充分的调试和优化,确保代码的正确性和效率。
四、实验结果分析4.1 实验数据准备在进行实验结果分析之前,需要准备相应的实验数据集,以便进行测试和对比分析。
4.2 结果对比分析通过对遗传算法投影寻踪模型的实验结果进行对比分析,可以评估其算法性能和适用范围,与其他优化算法进行效果比较。
4.3 结果展示与解读最后需要将实验结果进行展示,并对结果进行解读和分析,从数学模型和应用角度分析遗传算法投影寻踪模型的优缺点和改进方向。
2投影寻踪分类模型简介一、投影寻踪分类模型投影寻踪分类模型(Projection Pursuit classification ,简称PPc)的建模过程包括如下几步:步骤1:样本评价指标集的归一化处理。
设各指标值的样本集为{x*(i,j)|i=1,2,…,n; j=1,2,…,p },其中x*(i,j)为第i 个样本第j 个指标值,n,p 分别为样本的个数(样本容量)和指标的数目。
为消除各指标值的量纲和统一各指标值的变化范围,可采用下式进行极值归一化处理:对于越大越优的指标:)(x -)()(x -j)(i,*x =j)(i,x min max min j j x j 对于越小越优的指标: )(x -)(),(*x -(j)x =j)(i,x min max max j j x j i 其中,(j)x max ,)(x min j 分别为第j 个指标值的最大值和最小值,j)(i,x 为指标特征值归一的序列。
步骤2:构造投影指标函数Q(a)。
PP 方法就是把p 维数据{x(i,j)|i=1,2,…,p}综合成以a={a(1),a(2),a(3),…,a(p)}为投影方向的一维投影值z(i)),,()(=)(∑1=j i x j a i z pj i=1,2,…,n然后根据{z(i)|i=1,2,…,n}的一维散布图进行分类。
式(4.2)中α为单位长度向量。
综合投 影指标值时,要求投影值z(i)的散布特征应为:局部投影点尽可能密集,最好凝聚成若干个 点团;而在整体上投影点团之间尽可能散开。
因此。
投影指标函数可以表达成:Q(a)=S z D Z其中,S z 为投影值z(i)的标准差,D z 为投影值z(i)的局部密度,即: 1-E(z))-)((=∑1=2n i z S n i z∑∑1=1=)j)r(i,-u(R ×j))r(i,-(=n j n i Z R D其中,E( z)为序列{z(i)|i=1,2,…,n}的平均值;R 为局部密度的窗口半径,它的选取既要使包 含在窗口内的投影点的平均个数不太少,避免滑动平均偏差太大,又不能使它随着n 的增大 而增加太高,R 可以根据试验来确定; r(i,j)表示样本之间的距离, z(j)-)(=),(i z j i r ;u(t)为一单位阶跃函数,当t ≥0时,其值为1,当t<0时其函数值为0。