自动控制系统的发展历史
- 格式:doc
- 大小:47.50 KB
- 文档页数:7
自动控制系统的发展历史
自动控制系统由古代蒸汽机发展而来,一直至今一直在持续发展。
古代,机械式自动控制系统主要是通过机械开关、压力罐和油封等实现自动控制的,但由于技术限制,其发展受到限制。
20世纪30年代,受到信息技术的发展,有机械、电气、液压和电动四大系统合力推动自动控制系统的发展,构成了现代自动控制系统的基础。
20世纪40年代,研究者开始将电子技术引入自动控制领域,以解决传统机械技术所无法解决的问题。
他们利用电子技术发展出数字自动控制系统,把电子元件、逻辑控制器和计算机连接起来,使计算机系统更加智能化。
为自动控制系统的发展奠定了坚实的基础。
20世纪50年代,研究者将微处理器、微计算机、大规模集成电路和空间结构等精密电子元件引入自动控制系统,构成了更加完善的数字自动控制系统,并实现了计算机网络系统的发展。
这使自动控制系统拥有了更好的可靠性、可准确控制比较大的运行系统。
大量的自动控制设备研制成功,自动控制技术应用于工业生产,大大提高了工业生产的效率。
20世纪60年代,随着计算机和电子技术的高速发展,自动控制系统的性能也在不断改善。
PLC发展历史PLC,即可编程逻辑控制器(Programmable Logic Controller),是一种专门用于工业自动化控制的电子设备。
它通过编程来实现自动化控制,广泛应用于工厂、机械设备、交通系统等领域。
下面将详细介绍PLC的发展历史。
1. 早期自动化控制系统在20世纪60年代之前,工厂和机械设备的控制主要依靠电气继电器和电路来完成。
这种控制方式存在着路线复杂、维护难点、可靠性低等问题,无法满足快速变化的生产需求。
2. 第一代PLC的浮现20世纪60年代末,PLC问世,标志着自动化控制进入了一个新的时代。
第一代PLC由德国西门子公司研发,它采用了数字电子技术和微处理器,通过编程来实现控制功能。
与传统的继电器控制相比,PLC具有编程灵便、可靠性高、易于维护等优势。
3. PLC的发展与应用扩展随着技术的不断进步,PLC在20世纪70年代得到了广泛的应用。
PLC的功能不断增强,支持更复杂的控制逻辑和更多的输入输出点。
同时,PLC的体积也不断减小,成本逐渐降低,使得更多的企业和行业能够采用PLC进行自动化控制。
4. PLC的网络化与开放性20世纪80年代,PLC开始向网络化和开放性发展。
PLC可以通过通信接口与其他设备进行数据交换,实现了分布式控制和远程监控。
此外,PLC的编程环境也得到了改善,采用了更友好的图形化编程界面,使得工程师能够更方便地进行编程和调试。
5. PLC的智能化与集成化21世纪初,PLC进一步智能化和集成化。
PLC开始支持更多的通信协议和网络标准,能够与其他自动化设备实现无缝对接。
此外,PLC还具备了更强大的计算和处理能力,能够处理更复杂的控制算法和任务。
6. PLC的未来发展趋势随着工业4.0和物联网的兴起,PLC的发展前景非常广阔。
未来,PLC将更加注重与云计算、大数据、人工智能等先进技术的结合,实现更智能、更高效的自动化控制。
同时,PLC还将进一步提升在安全性、可靠性和可维护性等方面的性能,以满足不断变化的工业需求。
自动控制系统的发展历史1。
自动控制技术的早期发展以反馈控制为其主要研究内容的自动控制理论的历史,若从目前公认的第一篇理论论文, J。
C.Maxwell 在1868年发表的“论调节器”算起,至今不过一百多年。
然而控制思想与技术的存在至少已有数千年的历史了。
“控制”这一概念本身即反映了人们对征服自然与外在的渴望,控制理论与技术也自然而然地在人们认识自然与改造自然的历史中发展起来。
具有反馈控制原理的控制装置在古代就有了.这方面最有代表性的例子当属古代的计时器“水钟"(在中国叫作“刻漏",也叫“漏壶”).据古代锲形文字记载和从埃及古墓出土的实物可以看到,巴比伦和埃及在公元前1500年以前便已有很长的水钟使用历史了。
约在公元前三世纪中叶,亚历山大里亚城的斯提西比乌斯(Ctesibius)首先在受水壶中使用了浮子(phellossive tympanum).按迪尔斯(Diels)本世纪初复原的样品,注入的水是由圆锥形的浮子节制的。
而这种节制方式即已含有负反馈的思想(尽管当时并不明确)。
[1]中国有着灿烂的古代文明。
中国古代的科学家们对水钟十分得重视,并进行了长期的研究。
据<〈周礼〉>记载,约在公元前 500年,中国的军队中即已用漏壶作为计时的装置。
约在公元120年,著名的科学家张衡 (78—139,东汉)又提出了用补偿壶解决随水头降低计时不准确问题的巧妙方法。
在他的“漏水转浑天仪”中,不仅有浮子,漏箭,还有虹吸管和至少一个补偿壶.最有名的中国水钟“铜壶滴漏”由铜匠杜子盛和洗运行建造于公元1316年(元代延祐三年),并一直连续使用到1900年.现保存在广州市博物馆中,但仍能使用。
[2][3] 北宋时期,苏颂等于1086年-1090年在开封建成“水运仪象台”。
仪象台上的浑仪附有窥管,能够相当准确地跟踪天体的运行,“使它自动地保持在窥管的视场中"。
这种仪象台的动力装置中就利用了“从定水位漏壶中流出的水,并由擒纵器(天关、天锁)加以控制”.苏颂把时钟机械和观测用浑仪结合起来,这比西方罗伯特.胡克早六个世纪。
PLC发展历史PLC(Programmable Logic Controller)是一种专门用于工业控制的计算机,它可以自动化控制生产过程中的机器和设备。
PLC的发展历史可以追溯到上个世纪60年代,经过多年的发展,如今已经成为工业自动化领域中不可或缺的重要设备。
本文将从PLC的发展历史、技术特点、应用领域、发展趋势和未来展望等方面进行详细介绍。
一、PLC的发展历史1.1 20世纪60年代:PLC的起源PLC最早起源于20世纪60年代,当时工业自动化需求增加,传统的继电器控制系统已经无法满足要求。
于是,PLC应运而生,作为一种新型的可编程控制器,开始在工业领域得到广泛应用。
1.2 20世纪70-80年代:PLC的快速发展在70-80年代,PLC经历了快速的发展阶段,随着微电子技术的不断进步,PLC的性能得到了大幅提升,功能也越来越强大。
PLC开始逐渐取代传统的继电器控制系统,成为工业控制的主流设备。
1.3 21世纪至今:PLC的智能化发展随着信息技术的快速发展,PLC在21世纪也在不断智能化升级,采用了更先进的控制算法和网络通信技术,实现了更高效的工业自动化控制。
PLC已经成为工业领域不可或缺的重要设备。
二、PLC的技术特点2.1 可编程性PLC具有很强的可编程性,用户可以通过编程软件对PLC进行程序设计和逻辑控制,实现各种复杂的控制功能。
PLC的可编程性使得工业控制更加灵活和高效。
2.2 实时性PLC具有很高的实时性,能够实时监测和响应生产过程中的各种信号和事件,保证工业生产的稳定性和可靠性。
实时性是PLC在工业控制中的重要特点之一。
2.3 可靠性PLC具有很高的可靠性,采用了工业级的硬件和软件设计,能够在恶劣环境下稳定运行,保证工业生产的连续性和安全性。
可靠性是PLC在工业控制中的重要优势之一。
三、PLC的应用领域3.1 制造业在制造业领域,PLC被广泛应用于各种生产线和机械设备的控制,如汽车制造、电子制造、食品加工等领域,实现了生产过程的自动化和智能化。
plc发展历程
PLC(Programmable Logic Controller,可编程逻辑控制器)是一种专门用于工业自动化控制的数字计算机。
在其历史发展过程中,经历了以下几个阶段:
1.早期阶段(1960年代至1970年代)
在20世纪60年代和70年代,PLC的前身是由通用电气公司(GE)研发的“模块化数字控制器”。
这些控制器主要用于汽车制造和其他离散制造行业中的工业自动化控制。
它们的设计目的是替代传统的继电器逻辑控制系统,并提供更高的可靠性和灵活性。
2.发展阶段(1980年代至1990年代)
在20世纪80年代和90年代,PLC开始逐步取代传统的继电器控制系统,并成为工业自动化领域的标准控制设备。
这个时期,PLC的硬件结构得到了改进,使其更加紧凑、高效,并具有更多的输入输出(I/O)点数。
此外,PLC的编程环境也得到了改善,从使用继电器逻辑图到使用更高级的编程语言(如梯形图和结构化文本语言)。
3.成熟阶段(2000年代至今)
进入21世纪,PLC技术继续发展并成熟。
随着计算机技术的进步,PLC的处理能力和功能不断扩展。
现代PLC具备更强大的数据处理能力、更多的通信接口、更高的可靠性和可管理性。
此外,PLC还集成了更多的功能模块,如数据采集、远程监控和故障诊断等功能,以适应工业自动化的不断变化和升级。
总的来说,PLC经历了从初级的数字控制器到成熟的工业自动化设备的发展过程。
它的应用领域也从最初的汽车制造业扩展到各个行业,如制造业、化工、电力、交通等。
随着工业自动化的不断发展,将继续推动PLC技术的创新和进步。
PLC发展历史PLC(可编程逻辑控制器)是一种用于工业自动化控制的电子设备。
它可以接收输入信号并根据预设的程序进行逻辑运算和输出控制信号,以实现自动化过程控制。
PLC的发展历史可以追溯到20世纪60年代,以下是PLC发展历史的详细描述。
1. 早期自动化控制系统20世纪早期,工业生产过程主要依靠机械设备和电气元件进行控制。
然而,这种控制方式存在许多局限性,包括不灵便、难以维护和调整等问题。
为了解决这些问题,工程师们开始研究并开辟一种更灵便、可编程的自动化控制系统。
2. 发展初期20世纪60年代初,PLC的雏形开始浮现。
当时,计算机技术的进步为PLC的发展提供了基础。
最早的PLC由可编程记忆器和逻辑运算单元组成,用于控制离散工业过程。
这些早期的PLC主要用于汽车工业和创造业的控制系统。
3. 发展成熟期20世纪70年代,PLC的发展进入成熟期。
随着集成电路技术的发展,PLC的体积变小,功能更加强大。
此时,PLC已经可以处理更复杂的控制任务,并具备了更多的输入输出接口。
PLC的应用范围逐渐扩大,涉及到更多的行业和领域。
4. 技术革新20世纪80年代,随着计算机技术的不断进步,PLC的性能和功能得到了进一步提升。
微处理器的应用使得PLC的运算速度更快,存储容量更大。
同时,PLC 的编程环境也得到了改善,使得工程师们能够更方便地编写和调试PLC的程序。
5. 网络化和智能化20世纪90年代,PLC开始向网络化和智能化方向发展。
PLC与其他设备的通信变得更加方便,可以通过网络进行远程监控和控制。
此外,PLC还具备了更强大的数据处理和故障诊断能力,能够更好地满足工业自动化的需求。
6. 现代PLC进入21世纪,PLC已经成为工业自动化领域中不可或者缺的设备。
现代PLC 具备了更高的性能、更丰富的功能和更强的可靠性。
PLC系统不仅可以控制生产过程,还可以进行数据采集、分析和优化。
此外,PLC还能够与其他智能设备和系统进行无缝集成,实现更高效、更智能的工业自动化控制。
PLC发展历史PLC(Programmable Logic Controller,可编程逻辑控制器)是一种专门用于工业自动化控制的电子设备。
它可以根据预先设定的程序,对输入信号进行逻辑运算和控制输出信号,实现对生产过程的自动控制。
PLC的发展历史可以追溯到20世纪60年代,下面将为您详细介绍PLC的发展历程。
1. 早期自动化控制系统在PLC出现之前,工业自动化控制主要依靠继电器控制系统。
这些系统使用大量的继电器和电气元件,布线复杂,维护困难。
由于继电器的可靠性和寿命限制,系统的可靠性和可扩展性受到限制。
2. 第一代PLC第一代PLC于20世纪60年代末问世。
它们采用固定的硬连线逻辑,由专门的工程师进行编程和调试。
这些PLC具有较低的处理能力和存储容量,通常只能处理简单的逻辑控制任务。
然而,它们的出现极大地简化了自动化控制系统的设计和维护工作。
3. 第二代PLC随着计算机技术的快速发展,第二代PLC在20世纪70年代初出现。
这些PLC采用了可编程的存储器和微处理器技术,使得程序的编写和修改更加方便。
此外,第二代PLC还具备更高的处理能力和存储容量,能够处理更复杂的控制任务。
4. 第三代PLC第三代PLC在20世纪80年代初出现,它们采用了更先进的微处理器和存储器技术。
这些PLC具有更高的速度和更大的存储容量,能够处理更复杂的控制逻辑和算法。
此外,第三代PLC还引入了模块化设计,使得系统的扩展和维护更加灵活和方便。
5. 现代PLC随着计算机技术的不断进步,现代PLC具备了更强大的处理能力、更大的存储容量和更高的可靠性。
现代PLC通常采用开放式结构,支持多种通信接口和网络协议,可以与其他设备进行数据交换和远程监控。
此外,现代PLC还具备更友好的用户界面和更强大的编程工具,使得工程师能够更快速、更高效地进行程序开发和调试。
6. PLC在工业自动化中的应用PLC在工业自动化中的应用非常广泛。
它们可以用于控制机械设备、生产线、工艺过程等。
PLC发展历史引言概述:PLC(可编程逻辑控制器)是一种专门用于工业自动化控制的电子设备。
它在工业领域中起着至关重要的作用,经历了多年的发展和演变。
本文将详细介绍PLC的发展历史,包括其起源、发展阶段、应用领域和未来趋势。
一、起源1.1 发明背景:20世纪60年代,随着工业自动化的兴起,传统的继电器控制方式已经无法满足工业生产的需求。
1.2 发明者:PLC的发明可以追溯到1968年,由美国的发明家理查德·莫尔(Richard Morley)首次提出。
1.3 初期应用:最初,PLC主要用于汽车创造业和工业生产线的控制,以提高生产效率和质量。
二、发展阶段2.1 第一代PLC:1970年代,PLC开始商业化生产,采用基于硬线逻辑的控制方式,功能相对简单。
2.2 第二代PLC:1980年代,PLC开始采用微处理器,具备更强的计算能力和灵便性,支持更复杂的控制任务。
2.3 第三代PLC:1990年代,PLC的集成化程度大幅提升,支持更多的输入输出点,具备更强大的通信能力。
三、应用领域3.1 创造业:PLC广泛应用于各类创造业,包括汽车、电子、食品等,用于生产线的自动化控制和监测。
3.2 能源行业:PLC在电力、石油、天然气等能源行业中被广泛应用,用于设备的监控和控制。
3.3 建造领域:PLC在建造领域中用于楼宇自动化系统,包括照明、空调、安防等设备的集中控制。
四、未来趋势4.1 智能化发展:随着人工智能和物联网技术的发展,PLC将更加智能化,具备自学习和自适应能力。
4.2 云平台应用:PLC将与云计算技术结合,实现远程监控和数据分析,提高生产效率和质量。
4.3 安全性提升:PLC的安全性将得到进一步提升,防止黑客攻击和数据泄露。
五、结论PLC作为工业自动化领域的核心控制设备,经历了多年的发展和演变。
从最初的简单控制到如今的智能化系统,PLC在提高生产效率、降低成本和改善产品质量方面发挥着重要作用。
PLC发展历史PLC(可编程逻辑控制器)是一种用于自动化控制系统的电子设备,它可以根据预先编写的程序来控制机器和工业过程。
PLC的发展历史可以追溯到20世纪60年代,下面将详细介绍PLC的发展历程。
1. 创始阶段(1960年代)PLC最早起源于美国的汽车制造业。
当时,汽车制造商面临着生产线上的控制问题,他们希望能够使用一种更灵活和可编程的控制系统来替代传统的继电器控制。
于是,美国的一家公司在1968年推出了第一款商用PLC,这标志着PLC的诞生。
2. 发展阶段(1970年代-1980年代)在PLC诞生后的几年里,PLC逐渐受到了工业界的认可和采用。
1971年,德国的一家公司推出了第一款可编程控制器,这进一步推动了PLC的发展。
随着技术的不断进步,PLC的功能得到了扩展,它开始具备了更强大的处理能力和更多的输入输出(I/O)点。
在1980年代,PLC的市场需求不断增加。
PLC开始广泛应用于各个行业,包括制造业、化工业、电力行业等。
PLC的生产商也越来越多,市场竞争激烈,不同公司推出了各种不同功能和规格的PLC产品。
3. 现代阶段(1990年代至今)随着计算机技术的飞速发展,PLC的功能和性能得到了进一步提升。
1990年代,PLC开始具备了更强大的处理器和更大的存储容量,使得它能够处理更复杂的控制任务。
同时,PLC开始与其他自动化设备进行联网,实现了更高级的控制和监控功能。
2000年代以来,PLC的发展进入了一个全新的阶段。
随着工业互联网的兴起,PLC开始与云计算、大数据等技术相结合,实现了更智能化的控制。
PLC的应用范围也进一步扩大,包括智能家居、物流仓储、能源管理等领域。
总结PLC的发展历史可以追溯到20世纪60年代,经过几十年的发展,它已经成为工业自动化领域中不可或缺的设备。
从最初的简单控制器到现代的智能化系统,PLC不断演进和创新,为各个行业提供了更高效、更可靠的自动化解决方案。
随着技术的不断进步,我们可以期待PLC在未来的发展中发挥更重要的作用,推动工业自动化向更高水平发展。
自动控制系统的发展历史1。
自动控制技术的早期发展以反馈控制为其主要研究内容的自动控制理论的历史,若从目前公认的第一篇理论论文, J。
C。
Maxwell 在1868年发表的“论调节器”算起,至今不过一百多年。
然而控制思想与技术的存在至少已有数千年的历史了。
“控制"这一概念本身即反映了人们对征服自然与外在的渴望,控制理论与技术也自然而然地在人们认识自然与改造自然的历史中发展起来.具有反馈控制原理的控制装置在古代就有了。
这方面最有代表性的例子当属古代的计时器“水钟"(在中国叫作“刻漏”,也叫“漏壶”)。
据古代锲形文字记载和从埃及古墓出土的实物可以看到,巴比伦和埃及在公元前1500年以前便已有很长的水钟使用历史了.约在公元前三世纪中叶,亚历山大里亚城的斯提西比乌斯(Ctesibius)首先在受水壶中使用了浮子(phellossive tympanum).按迪尔斯(Diels)本世纪初复原的样品,注入的水是由圆锥形的浮子节制的.而这种节制方式即已含有负反馈的思想 (尽管当时并不明确).[1]中国有着灿烂的古代文明。
中国古代的科学家们对水钟十分得重视,并进行了长期的研究。
据<〈周礼>〉记载,约在公元前 500年,中国的军队中即已用漏壶作为计时的装置。
约在公元120年,著名的科学家张衡(78—139,东汉)又提出了用补偿壶解决随水头降低计时不准确问题的巧妙方法。
在他的“漏水转浑天仪"中,不仅有浮子,漏箭,还有虹吸管和至少一个补偿壶。
最有名的中国水钟“铜壶滴漏”由铜匠杜子盛和洗运行建造于公元1316年(元代延祐三年),并一直连续使用到1900年.现保存在广州市博物馆中,但仍能使用。
[2][3]北宋时期,苏颂等于1086年-1090年在开封建成“水运仪象台"。
仪象台上的浑仪附有窥管,能够相当准确地跟踪天体的运行,“使它自动地保持在窥管的视场中”。
这种仪象台的动力装置中就利用了“从定水位漏壶中流出的水,并由擒纵器(天关、天锁)加以控制”。
苏颂把时钟机械和观测用浑仪结合起来,这比西方罗伯特.胡克早六个世纪.[4]公元235(三国时期)的马均及公元477年(刘宋时期)祖冲之等还曾制造过具有开环控制特点的指南车.并发明了齿轮及差动齿轮机[5][27][29].另外,我国在公元前350年已经用在结构上与水轮相似的水臼来碾米;在公元前50年用水轮来引水灌溉;在公元前31年在锻冶场里使用水动风箱等.大大地减轻了人们的劳动[29]。
十八世纪,随着人们对动力的需求,各种动力装置也成为人们研究的重点。
1750年,安得鲁。
米克尔(1719-1811)为风车引入了“扇尾”传动装置,使风车自动地面向风。
随后,威廉。
丘比特对自动开合的百叶窗式翼板进行改进,使其能够自动地调整风车的传动速度.这种可调整的调节器在1807年取的专利权。
18世纪的风车中还成功地使用了离心调速器。
托马斯.米德(1787年)和斯蒂芬.胡泊(1789年)获得这种装置的专利权。
[6][29]和风车技术并行,十八世纪也是蒸气机取得突破发展的时期,并成为机械工程最瞩目的成就。
托马斯.纽可门和约翰。
卡利(又译为考力)是史学界公认的蒸气机之父。
到十八世纪中叶,已有好几百台纽可门式蒸气机在英格兰北部和中部地区、康沃尔和其他国家服务,但由于其工作效率太低,难以推广。
1765年俄国的波尔祖诺夫(И。
И.Полэунов)发明了蒸汽机锅炉的水位自动调节器(这在俄国被认为是世界上的第一个自动调节器)[21][23].1760年-1800年,詹姆斯。
瓦特对蒸气机进行了彻底得改造,终于使其得到广泛的应用。
在瓦特的改良工作中,1788年,他给蒸气机添加了一个“节流”控制器即节流阀,它由一个离心“调节器”操纵,类似于磨房机工早已用来控制风力面分机磨石松紧的装置。
“调节器”或“飞球调节器”用于调节蒸气流,以便确保引擎工作时速度大致均匀。
这是当时反馈调节器最成功的应用。
[7] 瓦特是一位实干家,他没有对调节器进行理论分析,后来J。
C。
Maxwell从微分方程角度讨论了调节器系统可能产生的不稳定现象,从而开始了对反馈控制动力学问题的理论研究.[8]2。
自动控制基本理论(经典部分)的发展简史2。
1 稳定性理论的早期发展人们很早就开始关注稳定性的问题。
牛顿可能是第一个关注动态系统稳定性的人。
1687年,牛顿在他的《数学原理》中对围绕引力中心做圆周运动的质点进行了研究。
他假设引力与质点到中心距离的 q 次方成正比.牛顿发现,假设q〉-3 ,则在小的扰动后,质点仍将保留在原来的圆周轨道附近运动。
而当q≤—3时,质点将会偏离初始的轨道,或者按螺旋状的轨道离开中心趋向无穷远,或者将落在引力中心上[26]。
在牛顿引力理论建立之后,天文学家曾不断努力以图证明太阳系的稳定性。
特别地,拉格朗日和拉普拉斯在这一问题上做了相当的努力。
1773年,24岁的拉普拉斯“证明了行星到太阳的距离在一些微小的周期变化之内是不变的”。
并因此成为法国科学院副院士[28]。
虽然他们的论证今天看来并不严格,但他们的工作对后来李亚普诺夫的稳定性理论有很大的影响[26]。
直到十九世纪中期,稳定性理论仍集中在对保守系统研究上。
主要是天文学的问题。
在出现控制系统的镇定问题后,科学家们开始考虑非保守系统的稳定性问题。
Clerk Maxwell是第一位利用特征方程的系数来判断系统稳定性的人[26].James Clerk Maxwell是第一个对反馈控制系统的稳定性进行系统分析并发表论文的人[8].在他1868年的论文“论调节器”(Maxwell J C.On Governors。
Proc。
Royal Society of London,vol.16:270-283,1868)中,导出了调节器的微分方程,并在平衡点附近进行线性化处理,指出稳定性取决于特征方程的根是否具有负的实部。
麦氏在论文中对三阶微分方程描述的Thomson s governor,Jenkin s governor 以及具有五阶微分方程的Maxwell s governor进行了研究,并给出了系统的稳定性条件。
Maxwell的工作开创了控制理论研究的先河。
[9][10]同一时期在俄国,1872年И.А。
维什聂格拉斯基(1831-1895)也对蒸汽机的稳定性问题进行了研究.И。
А.维什聂格拉斯基的论文“论调整器的一般原理”1876年发表在法国科学院院报上。
И.А.维什聂格拉斯基同样利用线性化方法简化问题,用线性微分方程描述由调整对象和调整器组成的系统。
这使问题大大简化。
1878年И。
А。
维什聂格拉斯基还对非线性继电器型调整器进行了研究.И.А.维什聂格拉斯基在苏联被视为自动调整理论的奠基人。
[23] Maxwell是一位天才的科学家,在许多方面都有极高的造诣。
他同时还是物理学中电磁理论的创立人(见其论文“A dynamical theory of the electromagnetic field”,1864)。
目前的研究表明,Maxwell事实上在1863年9月即已基本完成了其有关稳定性方面的研究工作。
[10]Maxwell在他的论文中还催促数学家们尽快地解决多项式的系数同多项式的根的关系的问题。
由于五次以上的多项式没有直接的求根公式,这给判断高阶系统的稳定性代来了困难。
[9]约在1875年,Maxwell担任了剑桥Adams Prize的评奖委员.这项两年一次的奖授予在该委员会所选科学主题方面竟争的最佳论文。
1877年的Adams Prize 的主题是“运动的稳定性”。
E.J。
Routh在这项竟赛中以其跟据多项式的系数决定多项式在右半平面的根的数目的论文夺得桂冠(Routh E J.A Treatise on the Stability of Motion.London,U。
K.:Macmillan,1877)。
Routh的这一成果现在被称为劳斯判据。
Routh工作的意义在于将当时各种有关稳定性的孤立的结论和非系统的结果统一起来,开始建立有关动态稳定性的系统理论.[26] Edward John Routh 1831年1月20日出生在加拿大的魁北克。
他父亲是一位在Waterloo服役的英国军官。
Routh 11岁那年回到英国,在de Morgan指导下学习数学。
在剑桥学习的毕业考试中,他获得第一名。
并得到了“Senior Wrangler"的荣誉称号。
(Clerk Maxwell排在了第二位.尽管Clerk Maxwell当时被称为最聪明的人。
)毕业后Routh开始从事私人数学教师的工作。
从1855年到1888年Routh教了600多名学生,其中有27位获得“SEnior Wrangler"称号.建立了无可匹敌的业绩。
Routh于1907年6月7日去世,享年76岁.[25] Routh之后大约二十年,1895年,瑞士数学家A. Hurwitz在不了解Routh工作的情况下,独立给出了跟据多项式的系数决定多项式的根是否都具有负实部的另一中方法(Hurwitz A。
On the conditions under which an equation has only roots with negative real parts。
Mathematische Annelen,vol.46:273—284,1895)。
Hurwitz的条件同Routh的条件在本质上是一致的.[9]因此这一稳定性判据现在也被称为Routh-Hurwitz稳定性判据[1].1892年,俄罗斯伟大的数学力学家A。
M。
Lyapunov(1857。
5.25—1918。
11。
3)发表了其具有深远历史意义的博士论文“运动稳定性的一般问题”(The General Problem of the Stability of Motion,1892)。
在这一论文中,他提出了为当今学术界广为应用且影响巨大的李亚普诺夫方法,也即李亚普诺夫第二方法或李亚普诺夫直接方法。
这一方法不仅可用于线性系统而且可用于非线性时变系统的分析与设计。
已成为当今自动控制理论课程讲授的主要内容之一。
[11][12]Lyapunov在稳定性方面的研究受到Routh和Poincare等工作的影响。
[12,14]Lyapunov是一位天才的数学家。
他是一位天文学家的儿子。
曾从师于大数学家P.L。
Chebyshev(车比晓夫),和A。
A.Markov(马尔可夫)是同校同学(李比马低两级),并同他们始终保持着良好的关系。
他们共同在概率论方面做出过杰出的成绩。
在概率论中我们可以看到关于矩的马尔可夫不等式、车比晓夫不等式和李亚普诺夫不等式.李还在相当一般的条件下证明了中心极限定理。