数学物理方法课后习题答案
- 格式:docx
- 大小:3.69 KB
- 文档页数:2
数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
数学物理方法第四版课后答案《数学物理方法第四版课后答案》第一章:复变函数1.1 复数与复平面题目1:将以下复数写成极坐标形式:a) z = 3 + 4ib) z = -2 - 5ic) z = 5i解答:a) r = √(3^2 + 4^2) = 5, θ = arctan(4/3)∴ z = 5(cos(arctan(4/3)) + i*sin(arctan(4/3)))b) r = √((-2)^2 + (-5)^2) = √(4 + 25) = √29, θ = arctan((-5)/(-2)) = arctan(5/2)∴ z = -√29(cos(arctan(5/2)) + i*sin(arctan(5/2)))c) r = √(0^2 + 5^2) = 5, θ = arctan(0/5) = 0∴ z = 5(cos(0) + i*sin(0)) = 5i题目2:计算以下复数的共轭:a) z = 3 + 4ib) z = -2 - 5ic) z = 5i解答:a) z* = 3 - 4ib) z* = -2 + 5ic) z* = -5i...第二章:常微分方程2.1 一阶微分方程题目1:求解以下一阶线性非齐次微分方程:a) \\frac{dy}{dx} + 2y = e^xb) \\frac{dy}{dx} - y = 3x^2解答:a) 首先求齐次方程的解,即 \\frac{dy}{dx} + 2y = 0观察到该方程的解为 y = Ce^{-2x},其中 C 为任意常数然后考虑非齐次方程的解,即 \\frac{dy}{dx} + 2y = e^x令 y = A e^{-2x},其中 A 为待定常数\\frac{dy}{dx} = -2A e^{-2x},代入方程得到 -2A e^{-2x} + 2A e^{-2x} = e^x解得 A = -\\frac{1}{4}∴ 非齐次方程的解为 y = -\\frac{1}{4} e^{-2x},加上齐次方程的解得到最终解 y = Ce^{-2x} - \\frac{1}{4} e^{-2x}b) 首先求齐次方程的解,即 \\frac{dy}{dx} - y = 0观察到该方程的解为 y = Ce^x,其中 C 为任意常数然后考虑非齐次方程的解,即 \\frac{dy}{dx} - y = 3x^2令 y = A e^x + B,其中 A、B 为待定常数\\frac{dy}{dx} = A e^x,代入方程得到 A e^x - (A e^x + B) = 3x^2解得 B = -3x^2∴ 非齐次方程的解为 y = A e^x - 3x^2,加上齐次方程的解得到最终解 y = Ce^x - 3x^2...通过以上两个例题,可以看出在解一阶线性非齐次微分方程时,首先解齐次方程得到通解,然后根据非齐次项的形式确定待定系数,最后将通解与待定解相加得到最终解。
2. 试解方程:()0,044>=+a a z44424400000,0,1,2,3,,,,i k iiz a a e z aek aez i i ππππωωωωω+=-=====--若令则1.计算:(1)iii i 524321-+-+ (2)y =(3)求复数2⎝⎭的实部u 和虚部v 、模r 与幅角θ(1) 原式=()()()123425310810529162525255i i i i i i +⋅+-⋅+-++=+=-+--(2) 332()102052(0,1,2,3,4)k i e k ππ+==原式(3)2223221cos sin cos sin ,3333212u v 1,2k ,k 0,1,2,23i i i e r ππππππθπ⎛⎫==+=+==-+ ⎪⎝⎭⎝⎭=-===+=±±原式所以:,3.试证下列函数在z 平面上解析,并分别求其导数.(1)()()y i y y ie y y y x e x x sin cos sin cos ++-3.()()()()()()()()cos sin ,cos sin ,cos sin cos ,sin sin cos ,cos sin sin sin ,cos sin cos ,,,x x x x x x x x u e x y y y v e y y x y ue x y y y e y x ue x y y y y y ve y y x y e y y x ve y y y x y yu v u v x y y x u v z f z u iv z u f z =-=+∂=-+∂∂=---∂∂=++∂∂=-+∂∂∂∂∂==-∂∂∂∂=+∂'=∂证明:所以:。
由于在平面上可微所以在平面上解析。
()()()cos sin cos cos sin sin .x x x x vi e x y y y e y i e y y x y e y x x∂+=-++++∂由下列条件求解析函数()iv u z f += (),1,22i i f xy y x u +-=+-=解:()()()()()()()222222222212,2,212,2,,,2112,22111,0,1,1,,221112.222u v x y v xy y x x y v u v y x y x x x x x c x y x f z x y xy i xy y x c f i i x y c c f z x y xy i xy x y ϕϕϕϕ∂∂==+∴=++∂∂∂∂∂''=+=-=-+∴=-=-+∂∂∂⎛⎫=-+++-+ ⎪⎝⎭=-+==+==⎛⎫=-++-++ ⎪⎝⎭而即所以由知带入上式,则则解析函数2. ()21,3,,.ii i i i i e ++试求()()(((()()()2(2)Ln 144(2)4ln32Ln32ln32ln1222Ln 21cos ln sin ,0,1,2,3cos(ln 3)sin(ln 3),0,1,2,i i k k i ii i k i i k i i k i k i k i ii ii eeeei k e e e e i k i eeeππππππππππππ⎛⎫⎛⎫+ ⎪⎪-+++⎝⎭⎝⎭-++-+-⎛⎫⎛⎫++-+ ⎪⎪⎝⎭⎝⎭+====+=±±====+=±±=== 解:()222,0,1,2,cos1sin1.k i i k e e e e i π⎛⎫ ⎪⎝⎭+=±±=⋅=+3. 计算 2,:122c dzc z z z =++⎰()2222220110,1,1,11,220,022z z z z i z i z c z z z c z z ++=++=+==-+=≤++≠=++解:时,而在内,故在内解析,故原式 1.计算221(1),21c z z dz c z z -+=-⎰: ()2221(2),21cz z dz c z z -+=-⎰:(1)212(21)=4 z i z z i ππ==-+解:原式 (2)2112(21)=2(41)6z z i z z i z i πππ=='=-+-=解:原式. 计算2sin()114,(1):1,(2):1,(3): 2.122c z dz c z c z c z z π+=-==-⎰其中1sin (1)sin 442.112c z z z z i i z z πππ=-⎡⎤-⎢⎥===⎢⎥+-⎢⎥⎣⎦⎰解:(1)原式1sin (1)sin 442.11c z z z z i i z z πππ=⎡⎤+⎢⎥===⎢⎥-+⎢⎥⎣⎦⎰(2)原式 12(3):2,1,11,.c z z z c c ===-以分别以为中心,为半径,做圆1222sinsin44.11c c z zdz dz i i i z z ππ=+=+=--⎰⎰原式 3、将下列函数按()1-z 的幂级数展开,并指明收敛范围。
数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()000000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z zz z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
第八章习题P201:1,2,5,6,11,12,13,16,17,201.长为l 的弦,两端固定,弦中张力为T ,在距一端为0x 的一点以力0F 把弦拉开,然后突然撇除这力,求解弦的振动。
解:此题的定解问题为200000000,(0),(0,)(,)0,,(0),(,0)(),(),0.tt xx t t u a u x l u t u l t F l x x x x T l u x F x l x x x l T l u =⎧-=<<⎪==⎪⎪-⎧⎪<<⎪⎪⎨=⎨⎪⎪⎪-<<⎪⎩⎪⎪=⎩)4()3()2()1(令(,)()()u x t X x T t =代入泛定方程(1)中得X T X aTλ''''==- 可得20T a T X X λλ''⎧+=⎨''+=⎩ (0)()0X X l ==求解关于x 本征值问题,得到本征值和本征函数()2/n l λπ= (1,2,3,n =⋅⋅⋅⋅⋅⋅()sinn X x C x lπ= 将本征值代入关于t 的常微分方程,得到22220a n T T lπ''+= 其解为 ()cossin n n n n a n aT t A x B t l lππ=+ 1(,)()()cos sin sin n n n n a n a n u x t X x T t A t B t x l l l πππ∞=⎛⎫∴==+ ⎪⎝⎭∑将u 的级数解代入初始条件(4)得到001|sin cos sin t t n n t n n a n a n a n a n u A x B t xl l l l l πππππ∞===⎛⎫=-+ ⎪⎝⎭∑1sin 0nn n a n B x l lππ∞===∑ 0n B ∴=则1(,)cossin n n n a n u x t A t x l lππ∞=∴=∑ 根据初始条件(3)有0001000,(0),(,0)sin (),(),n n F l x x x x n T lu x A x F x l l x x x l T l π∞=-⎧<<⎪⎪==⎨⎪-<<⎪⎩∑02()sin l n n A d l l πϕξξξ=⎰ 000000022sin ()sin x l x F l x F x n n d l d l T l l l T l l ππξξξξξξ-=+-⎰⎰ 02000022222sin cos cos x lx F l x F x l n l n n l n l T l n l n l l T l n l ππξππξξξπππ⎧⎡⎤-⎪=--⎨⎢⎥⎣⎦⎪⎩020022sin cos lx F x l n n n T l n l l l ππξπξξπ⎫⎪⎡⎤--⎬⎢⎥⎣⎦⎪⎭000000000220()2sin cos cos cos xF l x l n x n x n x F x n x n l T n l l l T n l πππππππ⎧-⎪⎡⎤⎡⎤=---⎨⎢⎥⎢⎥⎣⎦⎣⎦⎪⎩0000022cos sin cos F x l n x n x n x n n T n l l l ππππππ⎫⎡⎤---+⎬⎢⎥⎣⎦⎭ 002221sin F l n x T n lππ=∴ 00221121(,)cos sin sin cos sin n n n F l n x n a n n a n u x t A t x t x l l T n l l l ππππππ∞∞==∴==∑∑2.求解细杆热传导问题,杆长l ,两端保持为零度,初始温度分布20/)(l x l bx u t -==。
数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
2. 试解方程:()0,044>=+a a z44424400000,0,1,2,3,,,,i k iiz a a e z aek ae z i i ππππωωωωω+=-=====--若令则1.计算:(1)iii i 524321-+-+ (2)y =(3)求复数212⎛⎫+ ⎪ ⎪⎝⎭的实部u 和虚部v 、模r 与幅角θ(1) 原式=()()()123425310810529162525255i i i i i i +⋅+-⋅+-++=+=-+--(2) 332()102052(0,1,2,3,4)k i e k ππ+==原式(3)2223221cos sin cos sin ,3333212u v 1,2k ,k 0,1,2,223i i i e r ππππππθπ⎛⎫==+=+==- ⎪⎝⎭⎝⎭=-===+=±±原式所以:,3.试证下列函数在z 平面上解析,并分别求其导数.(1)()()y i y y ie y y y x e x x sin cos sin cos ++-3.()()()()()()()()cos sin ,cos sin ,cos sin cos ,sin sin cos ,cos sin sin sin ,cos sin cos ,,,x x x x x x x x u e x y y y v e y y x y ue x y y y e y x ue x y y y y y ve y y x y e y y x ve y y y x y yu v u v x y y x u v z f z u iv z u f z =-=+∂=-+∂∂=---∂∂=++∂∂=-+∂∂∂∂∂==-∂∂∂∂=+∂'=∂证明:所以:。
由于在平面上可微所以在平面上解析。
()()()cos sin cos cos sin sin .x x x x vi e x y y y e y i e y y x y e y x x∂+=-++++∂由下列条件求解析函数()iv u z f += (),1,22i i f xy y x u +-=+-=解:()()()()()()()222222222212,2,212,2,,,2112,22111,0,1,1,,221112.222u v x y v xy y x x y v u v y x y x x x x x c x y x f z x y xy i xy y x c f i i x y c c f z x y xy i xy x y ϕϕϕϕ∂∂==+∴=++∂∂∂∂∂''=+=-=-+∴=-=-+∂∂∂⎛⎫=-+++-+ ⎪⎝⎭=-+==+==⎛⎫=-++-++ ⎪⎝⎭而即所以由知带入上式,则则解析函数2. ()21,3,,.ii i i i i e ++试求()()(((()()()2(2)Ln 144(2)4ln32Ln32ln32ln1222Ln 21cos sin ,0,1,2,3cos(ln 3)sin(ln 3),0,1,2,i i k k i ii i k i i k i i k i k i k i i i i i eeeei k e e e e i k i e eeππππππππππππ⎛⎫⎛⎫+ ⎪⎪-+++⎝⎭⎝⎭-++-+-⎛⎫⎛⎫++-+ ⎪⎪⎝⎭⎝⎭+====+=±±====+=±±===解:()222,0,1,2,cos1sin1.k i i k e e e e i π⎛⎫ ⎪⎝⎭+=±±=⋅=+3. 计算 2,:122c dzc z z z =++⎰()2222220110,1,1,11,220,022z z z z i z i z c z z z c z z ++=++=+==-+=≤++≠=++解:时,而在内,故在内解析,故原式 1.计算221(1),21c z z dz c z z -+=-⎰: ()2221(2),21cz z dz c z z -+=-⎰:(1)212(21)=4 z i z z i ππ==-+解:原式 (2)2112(21)=2(41)6z z i z z i z i πππ=='=-+-=解:原式. 计算2sin()114,(1):1,(2):1,(3): 2.122c z dz c z c z c z z π+=-==-⎰其中1sin (1)sin 442.11c z z z z i i z z πππ=-⎡⎤-⎢⎥===⎢⎥+-⎢⎥⎣⎦⎰解:(1)原式1sin (1)sin 442.112c z z z z i i z z πππ=⎡⎤+⎢⎥===⎢⎥-+⎢⎥⎣⎦⎰(2)原式 12(3):2,1,11,.c z z z c c ===-以分别以为中心,为半径,做圆1222sinsin44.1122c c z zdz dz i i i z z ππ=+=+=--⎰⎰原式 3、将下列函数按()1-z 的幂级数展开,并指明收敛范围。
数学物理方法课后习题答案
数学物理方法课后习题答案
数学物理方法是一门综合性的学科,它将数学和物理相结合,为解决物理问题
提供了强有力的工具和方法。
在学习这门课程时,习题是不可或缺的一部分,
通过解答习题可以加深对知识点的理解和运用,提高解决实际问题的能力。
下
面将针对数学物理方法课后习题给出一些答案和解析。
1. 假设有一根长度为L的均匀细杆,质量为M,细杆的一端固定在原点O,另
一端可以自由运动。
求细杆的转动惯量和转动轴上的质心位置。
解析:首先,根据细杆的定义,我们可以将细杆看作是一根连续分布的质点链。
设细杆的质心位置为x,将细杆分为两段,一段长为x,质量为m1,另一段长
为L-x,质量为m2。
由于细杆是均匀的,所以m1/m2=(L-x)/x。
根据转动惯量
的定义,细杆的转动惯量为I=∫r^2dm,其中r为质点到转动轴的距离,dm
为质点的质量微元。
对于细杆的转动惯量,可以将细杆看作是一根连续分布的
质点链,所以I=∫r^2dm=∫x^2dm1+∫(L-x)^2dm2。
根据质心的定义,细杆
的质心位置为x=(m1*x+m2*(L-x))/(m1+m2)。
将m1/m2=(L-x)/x代入,化简得
到x=L/2,即细杆的质心位置在中点。
2. 一个质量为m的质点沿着x轴运动,其位置关于时间的函数为
x(t)=Acos(ωt+φ),其中A、ω和φ为常数。
求质点的速度和加速度关于时间的
函数。
解析:根据题目中给出的位置函数,可以求出质点的速度和加速度。
首先,速
度的定义为v(t)=dx(t)/dt。
对位置函数求导,得到v(t)=-Aωsin(ωt+φ)。
然后,
加速度的定义为a(t)=dv(t)/dt。
对速度函数求导,得到a(t)=-Aω^2cos(ωt+φ)。
所以,质点的速度关于时间的函数为v(t)=-Aωsin(ωt+φ),加速度关于时间的函
数为a(t)=-Aω^2cos(ωt+φ)。
3. 一个质点受到一个外力F=mg和一个阻力F=-kv的作用,其中m为质量,g
为重力加速度,k为阻力系数。
求质点的运动方程和速度随时间的变化规律。
解析:根据牛顿第二定律,质点的运动方程可以表示为F=ma,其中F为合力,m为质量,a为加速度。
在这个问题中,合力为F=mg-kv,所以质点的运动方
程为mg-kv=ma。
化简得到mg-kv=mdv/dt,即mg-kv=mv'(t),其中v'(t)为速
度关于时间的导数。
将这个微分方程进行变形,得到mg/k-v(t)=v'(t)/k。
对这个方程进行求解,可以得到v(t)=mg/k+C1e^(-kt/m),其中C1为常数。
根据初值
条件,当t=0时,v(0)=v0,代入这个条件,可以求解出C1=v0-mg/k。
所以,
质点的速度随时间的变化规律为v(t)=(mg/k+v0)e^(-kt/m)-mg/k。
通过以上的习题解答和解析,我们可以看到数学物理方法的应用之广泛和深入。
在解决实际问题时,我们可以运用数学物理方法的知识和技巧,将问题转化为
数学模型,并通过求解模型得到问题的答案。
通过不断的习题练习,我们可以
提高对知识点的理解和运用能力,为将来的学习和工作打下坚实的基础。
希望
本文的答案和解析对大家的学习有所帮助。