数学物理方法习题答案[1]
- 格式:doc
- 大小:271.00 KB
- 文档页数:6
《数学物理方法》第一章作业参考解答1. 利用复变函数导数的定义式,推导极坐标系下复变函数),(),()(ϕρϕρiv u z f +=的C-R 条件为∂∂−=∂∂∂∂=∂∂ϕρρϕρρu v vu 11 证:由于复变函数)(z f 可导,即沿任何路径,任何方式使0→∆z 时,z z f z z f ∆−∆+)()(的极限都存在且相等,因此,我们可以选择两条特殊路径,(1)沿径向,0→∆=∆ϕρi e z.ϕϕρρϕρρϕρρϕρϕρϕρρϕρρϕρϕρρi i e v i u e iv u iv u z f f −→∆∂∂+∂∂=∆−−∆++∆+=∆−∆+),(),(),(),(),(),(),(),(lim(2)沿半径为ρ的圆周,()()ϕρρρρϕϕϕϕϕ∆≈−=∆=∆∆+i i i i e i e e e zϕϕϕϕϕρϕϕρϕϕρϕρϕρϕρϕϕρϕϕρρϕρϕρϕϕρϕϕρϕρϕϕρi i i i e u i v ie iv u iv u e e iv u iv u zf f −∆→∆∂∂−∂∂=∆−−∆++∆+=−−−∆++∆+=∆−∆+1),(),(),(),(),(),()1(),(),(),(),(),(),(lim以上两式应相等,因而,ϕρρ∂∂=∂∂vu 1 ϕρρ∂∂−=∂∂u v 1 2. 已知一平面静电场的等势线族是双曲线族C xy =,求电场线族,并求此电场的复势(约定复势的实部为电势)。
如果约定复势的虚部为电势,则复势又是什么?解:0)(2=∇xy xy y x u =∴),(由C-R 条件可得C x x b x y u x b x v x b y y x v y x u y v +−=⇒−=∂∂−=′=∂∂+=⇒=∂∂=∂∂2221)()()(21),(C y x y x v +−−=)(21),(22电场线族为:(或者:由 +−=+−=∂∂+∂∂=222121),(y x d ydy xdx dy y v dx x v y x dv ,得C y x y x v +−−=)(21),(22)iC z i i C y x xy +−=+−−+=2222)(21w 复势为:若虚部为电势,则xy y x v =),(同理由C-R 条件可得Cx x A x y v x A x u x A y y x u y x v y u +=⇒=∂∂=′=∂∂+−=⇒−=∂∂−=∂∂2221)()()(21),(C y x y x u +−=)(21),(22C z ixy C y x +=++−=22221)(21w 复势为:3.讨论复变函数||)(xy iy x z f =+=在0=z 的可导性?(提示:选择沿X 轴、Y 轴和Y=aX 直线讨论)解:考虑当函数沿y=ax 趋近z=0时2)(ax z f = )1()1(||||lim )()(lim00+±=+∆−∆+=∆−∆+→∆→∆ia aia x x a x x a z z f z z f x z 可见上式是和a 有关的,不是恒定值所以该函数在z=0处不可导4.判断函数()()111)(2−++=−+=z z z z z z f 的支点,选定一个单值分支)(0z f ,计算)(0x f ?计算)(0i f −的值? 解:可能的支点为∞−=,1,1,0z 。
数学物理方法第四版课后答案《数学物理方法第四版课后答案》第一章:复变函数1.1 复数与复平面题目1:将以下复数写成极坐标形式:a) z = 3 + 4ib) z = -2 - 5ic) z = 5i解答:a) r = √(3^2 + 4^2) = 5, θ = arctan(4/3)∴ z = 5(cos(arctan(4/3)) + i*sin(arctan(4/3)))b) r = √((-2)^2 + (-5)^2) = √(4 + 25) = √29, θ = arctan((-5)/(-2)) = arctan(5/2)∴ z = -√29(cos(arctan(5/2)) + i*sin(arctan(5/2)))c) r = √(0^2 + 5^2) = 5, θ = arctan(0/5) = 0∴ z = 5(cos(0) + i*sin(0)) = 5i题目2:计算以下复数的共轭:a) z = 3 + 4ib) z = -2 - 5ic) z = 5i解答:a) z* = 3 - 4ib) z* = -2 + 5ic) z* = -5i...第二章:常微分方程2.1 一阶微分方程题目1:求解以下一阶线性非齐次微分方程:a) \\frac{dy}{dx} + 2y = e^xb) \\frac{dy}{dx} - y = 3x^2解答:a) 首先求齐次方程的解,即 \\frac{dy}{dx} + 2y = 0观察到该方程的解为 y = Ce^{-2x},其中 C 为任意常数然后考虑非齐次方程的解,即 \\frac{dy}{dx} + 2y = e^x令 y = A e^{-2x},其中 A 为待定常数\\frac{dy}{dx} = -2A e^{-2x},代入方程得到 -2A e^{-2x} + 2A e^{-2x} = e^x解得 A = -\\frac{1}{4}∴ 非齐次方程的解为 y = -\\frac{1}{4} e^{-2x},加上齐次方程的解得到最终解 y = Ce^{-2x} - \\frac{1}{4} e^{-2x}b) 首先求齐次方程的解,即 \\frac{dy}{dx} - y = 0观察到该方程的解为 y = Ce^x,其中 C 为任意常数然后考虑非齐次方程的解,即 \\frac{dy}{dx} - y = 3x^2令 y = A e^x + B,其中 A、B 为待定常数\\frac{dy}{dx} = A e^x,代入方程得到 A e^x - (A e^x + B) = 3x^2解得 B = -3x^2∴ 非齐次方程的解为 y = A e^x - 3x^2,加上齐次方程的解得到最终解 y = Ce^x - 3x^2...通过以上两个例题,可以看出在解一阶线性非齐次微分方程时,首先解齐次方程得到通解,然后根据非齐次项的形式确定待定系数,最后将通解与待定解相加得到最终解。
【物理】物理数学物理法题20套(带答案)含解析一、数学物理法1. 两块平行正对的水平金属板AB, 极板长 , 板间距离 , 在金属板右端竖直边界MN 的右侧有一区域足够大的匀强磁场, 磁感应强度 , 方向垂直纸面向里。
两极板间电势差UAB 随时间变化规律如右图所示。
现有带正电的粒子流以 的速度沿水平中线 连续射入电场中, 粒子的比荷 , 重力忽略不计, 在每个粒子通过电场的极短时间内, 电场视为匀强电场(两板外无电场)。
求:(1)要使带电粒子射出水平金属板, 两金属板间电势差UAB 取值范围;(2)若粒子在距 点下方0.05m 处射入磁场, 从MN 上某点射出磁场, 此过程出射点与入射点间的距离 ;(3)所有粒子在磁场中运动的最长时间t 。
【答案】(1)100V 100V AB U -≤≤;(2)0.4m ;(3) 69.4210s -⨯ 【解析】 【分析】 【详解】(1)带电粒子刚好穿过对应偏转电压最大为 , 此时粒子在电场中做类平抛运动, 加速大小为a,时间为t1。
水平方向上01L v t =①竖直方向上21122d at =② 又由于mU qma d=③ 联立①②③得m 100V U =由题意可知, 要使带电粒子射出水平金属板, 两板间电势差100V 100V AB U -≤≤(2)如图所示从 点下方0.05m 处射入磁场的粒子速度大小为v, 速度水平分量大小为 , 竖直分量大小为 , 速度偏向角为θ。
粒子在磁场中圆周运动的轨道半径为R, 则2mv qvB R=④ 0cos v v θ=⑤2cos y R θ∆=⑥联立④⑤⑥得20.4m mv y qB∆== (3)从极板下边界射入磁场的粒子在磁场中运动的时间最长。
如图所示粒子进入磁场速度大小为v1, 速度水平分量大小为 , 竖直分量大小为vy1, 速度偏向角为α, 则对粒子在电场中011L v t =⑦11022y v d t +=⑧ 联立⑦⑧得101y v v =101tan y v v α=得π4α=粒子在磁场中圆周运动的轨道半径为 , 则211mv qv B R ='⑨ 1mv R qB'=⑩ 带电粒子在磁场中圆周运动的周期为T12π2πR m T v qB'==⑪在磁场中运动时间2π(π2)2πt T α--=⑫联立⑪⑫得663π10s 9.4210s t --=⨯=⨯2. 如图, 在长方体玻璃砖内部有一半球形气泡, 球心为O, 半径为R, 其平面部分与玻璃砖表面平行, 球面部分与玻璃砖相切于O'点。
数学物理方法习题及解答1试题1一、单项选择题1.复通区域柯西定理()(A )0)(=?dz z f l(B )0)(1=∑?=n i l idz z f (C )0)()(1=+∑??=ni l lidz z f dz z f (l 是逆时针方向,i l 也是逆时针方向)(D)0)()(1=+∑??=ni l lidz z f dz z f (l 是逆时针方向,i l 是顺时针方向)2.周期偶函数:,cos)(10为其中k k k a lxk a a x f ∑∞=+=π:()(A )?=lk d l k f l a 0cos )(1ξπξξ (B )?-=ll k d l k f l a ξπξξcos )(1(C ) ?=lk k d l k f l a 0cos )(1ξπξξδ (D )?lkk d lk f l a 0cos)(2ξπξξδ 3.柯西公式为:()(A )ξξξπd z f i n z f l ?-=)(2!)( (B) ξξξπd z f i z f l ?-=)(21)( (C) ξξξπd z f i z f l n ?-=)()(21)( (D) ξξξπd z f i n z f l n ?-=)()(2!)( 4.在00=z 的邻域上把()=z f 2zz )(sin 展开为()(A )+-+-!6!4!21642z z z(B) +-+-!7!5!31642z z z (C) +-+-6421642z z z(D) +-+-!7!5!31864z z z5.求()z z f sin 1=在z 0=πn 的留数为()(A )!1n (B )n (C )n )1(- (D )16.以下那一个是第一类边界条件()(A ))(),(t f t x u ax == (B ))(,()t f t x u ax n == (C ))()(t f H u ax n u =+= (D )lx ttlx xu Mg t x u ==-=),(7.下列公式正确的为:(A ))()()(0x f dx x x f t =-?+∞∞-δ (B )0)()(0=-?+∞∞-dx x x f t δ (C )∞=-?+∞∞-dx x x f t )()(0δ (D ))()()(0t t f dx x x f =-?+∞∞-δ8.勒让德方程为(A )0)1(2)1(222=++--y l l dx dy x dx yd x(B )0]1)1([2)1(22222=--++--y x m l l dx dy x dx y d x(C )0)(22222=-++y dx dy x dx ym x d x(D )0)(22222=+-+y dxdy x dx y m x d x9.m 阶贝塞尔方程为:(A )0)(22222=--+R m x dx dR x dx R d x (B )0)(22222=-++R m x dx dR x dx R d x (C )0)(22222=+-+R m x dxdR x dx R d x (D )0)(2222=-++R m x dxdR x dx R d x 上 10Z 0是方程W ‘’+P (Z )W ‘+Q (Z )W=0的正则奇点,用级数解法求解时,这个方程的“判定方程“为(A )0)1(21=++---q sp s s (B )0)1(21=++--q sp s s (C )0)1(11=++---q sp s s (D )0)1(22=++---q sp s s二、填空题1、已知解析函数22),()(y x y x u z f -=的实部,则这个解析函数为。
数学物理方法第三版课后练习题含答案前言本文为数学物理方法第三版(Mathematical Methods in the Physical Sciences, 3rd Edition)的课后练习题及答案。
该书是经典的大学物理数学教材,广泛应用于物理、数学、工程等领域的学生和教师。
本文主要适用于该书的读者,希望能够帮助大家更好地掌握数学物理方法。
第一章1.1 给定函数 $f(x)=\\sin(x)$,求以下数值:(a) f(0)答:$f(0) = \\sin(0) = 0$(b) $f(\\pi)$答:$f(\\pi) = \\sin(\\pi) = 0$(c) $f(\\pi/2)$答:$f(\\pi/2) = \\sin(\\pi/2) = 1$(d) $f(-\\pi/2)$答:$f(-\\pi/2) = \\sin(-\\pi/2) = -1$1.2 给定函数f(x)=e x,求以下数值:(a) f(0)答:f(0)=e0=1(b) $f(\\ln 2)$答:$f(\\ln 2) = e^{\\ln 2} = 2$(c) $f(-\\ln 2)$答:$f(-\\ln 2) = e^{-\\ln 2} = 1/2$(d) f(−1)答:$f(-1) = e^{-1} \\approx 0.368$1.3 求解以下方程:(a) x2−2x−3=0解:使用求根公式 $x=\\frac{-b\\pm\\sqrt{b^2-4ac}}{2a}$,得$$x = \\frac{2\\pm\\sqrt{2^2-4\\times1\\times(-3)}}{2\\times1} = -1,3 $$所以方程的根为x=−1和x=3。
(b) x3+2x2−5x−6=0解:使用因式分解法,先猜一个根为x=1,得到一个因式(x−1),然后用多项式长除法得到:x3+2x2−5x−6=(x−1)(x2+3x+6)不易得到另外两个根的精确解,所以这里只给出结果,方程的根为x=1,$x=-\\frac{3}{2}+i\\frac{\\sqrt{3}}{2}$ 和 $x=-\\frac{3}{2}-i\\frac{\\sqrt{3}}{2}$。
第一章 复变函数1.1 复数与复数运算【1】下列式子在复数平面上各具有怎样的意义? 5,arg ,Re ,z a z b αβ<<<<(,,a αβ和b 为实常数)解:射线ϕα=与ϕβ=,直线x a =与x b =所围成的梯形。
7,111z z -≤+解:11111z z z z -≤⇒-≤++,令z x iy =+,则11z z -≤+即()()2222110x y x y x -+≤++⇒≥。
即复数平面的右半平面0x ≥。
【2】将下列复数用代数式,三角式和指数式几种形式表示出来。
3,1+解:代数式即:1z =+;2ρ=,且z 的辐角主值arg 3z π=,因此三角式:2cos2sin33z i ππ=+;指数式:232i k i z e eππϕρ⎛⎫+ ⎪⎝⎭==,k ∈ 。
7,1i 1i-+解:21i (1i)2i i 1i(1i)(1i)2---===-++-,因此,其代数式:i z =-,三角式:33cos sin22z i ππ=+;指数式:322i k i z e eππϕρ⎛⎫+ ⎪⎝⎭==,k ∈ 。
【3】计算下列数值。
(a ,b 和ϕ为实常数)2,解:将被开方的i 用指数式表示:22ei k i ππ⎛⎫+ ⎪⎝⎭=,k ∈ 。
那么2322eexp 63i k k i ππππ⎛⎫+ ⎪⎝⎭⎡⎤⎛⎫==+ ⎪⎢⎥⎝⎭⎣⎦,k ∈ 。
7,cos cos 2cos 3cos n ϕϕϕϕ++++ 解:因为,cos R e (1)ik k e k n ϕϕ=≤≤,因此()[]2323cos cos 2cos 3cos R e R e R e R e (1)R e R e 1cos cos(1)sin sin(1)R e 1cos sin 222sin sin cos 222R e 2sin sin 2i i i in i in i i i in i n e eeee e eeeee n i n i n n n i ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ++++=++++⎡⎤-=++++=⎢⎥-⎣⎦⎧⎫-++-+⎪⎪=⎨⎬--⎪⎪⎩⎭++⎛⎫- ⎪⎝⎭= 222(1)2sin 2R e sin cos 2221(1)sin sin sin sin cos 22222R e sin sin2sin222n i i n i n e i e n n n n e ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ++⎡⎤⎢⎥⎢⎥=⎛⎫⎢⎥- ⎪⎢⎥⎝⎭⎣⎦⎛⎫++- ⎪⎝⎭===1.2 复变函数【2】计算下列数值。
数学物理方法习题答案:第二章:1、(1)a 与b 的连线的垂直平分线;以0z 为圆心,2为半径的圆。
(2)左半平面0,x <但是除去圆22(1)2x y ++=及其内部;圆2211()416x y -+= 2、2,cos(2)sin(2)ie i πππ+; 32,2[cos(sin(3)ie i πππ+;,(cos1sin1)i e e e i ⋅+ 3、22k e ππ--; (623)i k e ππ+;42355cos sin 10cos sin sin ϕϕϕϕϕ-+; 11()sin ()cos 22b b b b e e a i e e a --++- 1()cos 2y y ay b e e x e ---- 4、(1)2214u υ+=变为W 平面上半径为12的圆。
(2)u υ=- 平分二、四象限的直线。
5、(1) zie iC -+;2(1)2i z -; ln i z - (2) 选取极坐标,,()22u C f z ϕϕυ==+=6、ln C z D +第三章:1、 (1)i π (2)、 iie π-- (3)、 0 (4)、i π (5)、6i π2、 设()!n z z e f n ξξ=z 为参变数,则 ()122011()1(0)2!2!1()()!!!!n z n n n lln n n n z z nz e d f df in in z d z z e e n n d n n ξξξξξξξξπξξπξξ+=======⎰⎰第四章:1、(1)2323()()ln 22z i z i z i i i i i ---+-+-(2)23313(1)2!3!e z z z ++++(3)211111()()[(1)(1)](1)11222k k k k kk z z i i i z z z i z i z i ∞=---=-=--++--<+-+∑2、(1)1nn z ∞=--∑(2) 11()43f z z z =--- ①3z <时 11011()34k k k k z ∞++=-∑ ,34z <<时11101134k k k k k k z z -∞++=-∞=-∑∑,4z >时 11111()43k k k k k z z -++=-∞-∑ ② 11011()34kk k k z ∞++=-∑ ③031z <-<时1(3)kk z ∞=---∑,041z <-<时 11()(4)k kk z ∞+=---∑;④ 031z <-<,041z <-<同③的结果,而31z ->时,21(3)k k z ∞=-∑,41z ->时,21()(4)kk k z ∞=--∑ 3、 (1)两个奇点 1,z z ==∞ 所以,1z =为()f z 的二阶极点。
z =∞为()f z 的三阶极点。
(2)奇点为:,0,1,2,4k z k k ππ=-=±±为()f z 一阶极点;z =∞为()f z 的本性奇点。
第五章:1、(1)1Re (1)Re ()04sf sf =∞= 1Re (1)4sf -=- (2)1Re (0)2sf =(3) 1143Re (2)24sf C -==-143Re (2)Re ()0Re ()24sf sf sf +∞=∴∞=(4)11Re (1)Re ()Re (1)sf sf sf e e -=∞=--=-2、(1)3z =和25(0,1,2,)k ik z ek π==为函数的单极点1Re (3)242sf =1Re ()0sf C -∞==-=0Re (3)Re ()Re ()01Re ()[Re ()Re (3)]242k k k k sf sf sf z sf z sf sf ∞=∞=+∞+=∴=-∞+=-∑∑51(3)(1)121l idz z z π=---⎰(2)2Re (2)2isf i ππ=3、 (1) (2)22(a b π(3)22(1)πεε- 4、 (1(235、 (1)[cos(sin (e-+(2)22()2()ba e e ab π----(3) 2π第六章:1、 0011()()()y x a y x a y x =+363014147(32)()13!6!(3)!kx k y x x x k ⋅⋅⋅-=+++++47311225258(31)()4!7!(31)!k k y x x x x x k +⋅⋅⋅-=++++++2、0011()()()y x a y x a y x =+2420()6(1)(1)68(23)(25)(1)68(24)()12!4!(2)!k k k k y x x x x k -⋅+-⋅⋅---⋅⋅+=+++++1()y x x =3、22,1,2,(2)(1)kk c c k k k ω+=-=++10()cos sin c y x c x xωωω=+第七章: 1、000()t u F l h x l==-(在[0,]h 上)000()t u F h l x l==-(在[,]h l 上)2、0x υ 第八章;1、初始位移00000000()(0)()()t t F l x x T l x x u u F x l x T l x x l ==-<<⎧⎪=⎨=-<<⎪⎩0022121(,)sin sin cosn F l n x n x n atu x t T n l l l ππππ∞==∑ 2、022011()()2122(,)sin cos 1()2n n x n at l u x t a l ln ππυπ∞=++=+∑3、222240122(,)(12)k a tl k k xu x t econl l ππ∞-=Φ=+∑4、233021()[()/]821sin sin 21(/)(21)n n sha x shb y a Ab n b B x y n sh b a a bn sh a b πππππππ∞=+--++⨯++∑5、泛定方程为2t au u ϕϕρ-=222(,)(cos sin )n a tn n n u t A n B n eρϕϕϕ∞-==+∑6、200cos cos ,2a υρϕυϕϕρπΓ++Γ为任意值。
7、21041()sin(21)21k k u k k ρϕπρ∞+=++∑8、0sin sin cos(/)aF x tYS l a a ωωωω222222221()2444002422221()2444241()2(1)129(,)cos 11()()2211()()22[sin cos ]cos 1()2(1)12cos 11()()22n a n l n n n n a n t ln n A u x t e x l n n a l n a n t t x l ln A e xl n n a l πππϕππωππωωωπππω+∞∞-==+∞-=+-⋅=++++++⨯-+-++++∑∑∑ 01()22()cosl n n x xdx l l πϕϕ+=⎰22222222[]4212010(,)sin2()sin n a b btxlaa n n bx l a n n u x t eex ln x e xdxl lππϕπϕϕ∞-+=⋅==∑⎰第十章: 球函数:1、球内:211212210(43)(21)!!()()(cos )22(21)(22)!!kk l k k k r P k k r υυυυυθ∞++=+-++=+-⋅++∑球外:2201212210(43)(21)!!()()()(cos )22(21)(22)!!kk l k r rk k P rk k rυυυυυθ∞++=+-++=+-⋅++∑2、1122135311201221120255553212155()()11222(,)()[](cos )2u u u r u r r r r u r r u r u r P r r r r r r r r r r θθ-=+-⋅+-----3、30002(,)cos cos r u r E r E r θθθ=-+4、1,11,12,12,1(,)(,)(,)](,)(,)]f Y Y Y Y θϕθϕθϕθϕθϕ--=-+-5、定解问题:20,(13cos )sin cos r a u r a u θθϕ=⎧∇=<⎪⎨=+⎪⎩1211222(,,)cos (cos )()cos (cos )3cos sin cos sin 2)2r r u r P P a a r r a a θϕϕθϕθϕθϕθ=+=+柱函数:6、提示: 利用1()2x t te-和cos sin ixe x i x =+7、提示: 利用cos 2i i e e ϕϕϕ-+=和1()cos 2()x t ik n t n n e e J x t ρϕ∞-=-∞==∑,设i t ie ϕ=9、定解问题 2200,,00,0z z h a u a z h u u u ρρρ===⎧∇=<<<⎪⎪==⎨⎪=⎪⎩000202003011()()[()4](,)2()()()m mm m m m m x x sh z J x a a u z a x x J x sh h a ρρ∞=-=∑10、定解问题 21200,,00,()()a z z h u a z h uu f u f ρρρρρ===⎧∇=<<<⎪⎪∂⎪=⎨∂⎪⎪==⎪⎩(,)()()u z R Z z ρρ=1101010001()()()()(,)[]()mmm m x x z z m aam m m R J k x R J ax u z c d c ed eJ a ρρρρρρ∞-====+++∑021*******[()()]2()a a c f f d a h d f d a ρρρρρρρ⎧=-⎪⎪⎨⎪=⎪⎩⎰⎰111211212()1,2,3,2()m mx ha m m m m x h a m m m m F e F c x sh h am F e F d x sh h a --⎧-+⎪=⎪⎪⎪=⎨⎪-⎪=⎪⎪⎩12,m m F F 分别为12(),()f f ρρ的广义傅里叶展开。
(注:可编辑下载,若有不当之处,请指正,谢谢!)。