《平行四边形的判定》教案1
- 格式:doc
- 大小:78.50 KB
- 文档页数:2
平行四边形的判定(一)嘉祥县第二中学侯志国(一)知识目标:1、经历并了解平行四边形的判别方法探索过程,逐步掌握说理的基本方法。
2、探索并了解平行四边形的判别方法:两组对边分别相等的四边形是平行四边形。
两条对角线互相平分的四边形是平行四边形;能根据判别方法进行有关的应用。
(二)能力目标:在探索过程中发展我们的合理推理意识、主动探究的习惯。
(三)德育目标:通过探究培养学生言必有据的良好思维品质。
二、教学重点:平行四边形的两种判定方法。
三、教学难点:平行四边形判定方法的证明和运用。
四、学法指导:观察、发现和归纳平行四边形的判定定理。
教具:借助多媒体教学,制作平行四边形的工具,木条。
第一页(一)情景导入:平行四边形的性质是什么?(复习提问)1、平行四边形的对边平行。
平行四边形的对边相等。
2、平行四边形的对角相等。
平行四边形的邻角互补。
3、平行四边形的对角线互相平分。
设计情景:学校要设计一个平行四边形的草坪,如何判断是否为平行四边形?(让学生回答)平行四边形的定义:两组对边分别平行的四边形是平行四边形。
还有没有其它判定平行四边形的方法?引出本节课题。
(二)新课学习:1、探究(一)将两长两短的四根木条,在你的桌面上首尾顺次连接成一个四边形,使等长的木条成为对边,你认为是什么四边形?(利用学生的工具,在课桌上摆放,经过小组讨论,得出结论,并让学生回答。
)在桌面上不断变换四边形的形状,这个四边形还是平行四边形吗?(让学生回答)。
利用给出的条件,提示学生得出结论:两组对边分别相等的四边形是平行四边形。
进一步引导学生回答该命题的已知和求证。
已知:四边形ABCD AB=CD AD=BC求证:四边形ABCD是平行四边形证明:连接AC 在△ACD和△CAB中第二页AB=CDAD=BC ∴ △ACD ≌ △CABAC=CA∴∠DAC= ∠BCA ∠DCA= ∠BAC∴ AD ∥BC AB ∥CD∴四边形ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形)数学语言:∵AB=CD AD=BC∴四边形ABCD 是平行四边形2、小试牛刀:课后练习第一题(让学生回答)3、探究(二)将两根木条AC ,BD 的中点重叠,用小钉绞合在一起,用橡皮筋连接木条的顶点,做成一个四边形ABCD 转动两根木条,四边形ABCD 一直是一个平行四边形吗?(学生小组讨论得出结论)对角线互相平分的四边形是平行四边形已知:如图,四边形ABCD 的对角线AC ,BD 相交于点O, 并且AO=CO ,BO=DO 。
平行四边形的判定教学设计一、教学目标:1. 了解平行四边形的定义和性质;2. 能够判断给定的四边形是否为平行四边形;3. 能够运用平行四边形的性质进行相关问题的解决。
二、教学准备:1. PowerPoint或黑板、白板等教学工具;2. 平行四边形的示意图和实例题目。
三、教学过程:1. 导入(5分钟)教师将平行四边形的定义呈现在黑板或PPT上,并出示一张平行四边形的示意图,引发学生对此概念的认识。
2. 概念讲解(15分钟)教师通过示意图和实例,详细讲解平行四边形的定义和性质,重点强调平行四边形的对边互相平行,对角线互相等长及相互平分的性质。
3. 判定方法(20分钟)教师提供一系列四边形的示意图,引导学生观察和思考如何判断一个四边形是否为平行四边形。
教师可结合实例由浅入深,依次讲解如下判定方法:a. 利用对边平行性质:如果一个四边形的对边两两平行,则这个四边形为平行四边形。
b. 利用对角线等长性质:如果一个四边形的对角线互相等长,则这个四边形为平行四边形。
c. 利用对角线互相平分性质:如果一个四边形的对角线互相平分,则这个四边形为平行四边形。
在每种判定方法讲解完毕后,教师出示相应的练习题,引导学生运用所学知识进行判断。
4. 深化拓展(15分钟)教师引入一些拓展问题,让学生运用平行四边形的性质解决相关问题。
例如:a. 如何判断一个四边形是矩形?b. 如何证明一个四边形是平行四边形?c. 如何证明一个四边形是菱形?教师鼓励学生积极思考,提供不同的解决方法,并共同讨论结果。
5. 综合训练(20分钟)教师提供一套综合性的习题,涵盖前面所学知识点,让学生进行解答。
教师可以采取小组合作的方式,激活学生的思维,促进彼此之间的讨论和交流。
6. 总结(5分钟)教师对本节课的重点内容进行总结,并强调学生需要掌握的要点和解题技巧。
并鼓励学生课后进行相关的习题巩固知识。
四、教学反思:本节课通过引入平行四边形的定义和性质,激发了学生的学习兴趣,辅以实例和练习题的讲解,培养学生观察、推理和解决问题的能力。
平行四边形教案(7篇)作为一位杰出的老师,时常需要编写教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。
如何把教案做到重点突出呢?读书破万卷下笔如有神,以下内容是本文范文为您带来的7篇《平行四边形教案》,如果能帮助到亲,我们的一切努力都是值得的。
平行四边形教案篇一导学目标:1、经历并了解平行四边形的判别方法探索过程,使学生逐步掌握说理的基本方法。
2、探索并了解平行四边形的判别方法:两条对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形。
能根据判别方法进行有关的应用。
3、在探索过程中发展学生的合理推理意识、主动探究的习惯。
4、体验数学活动来源于生活又服务于生活,提高学生的学习兴趣。
导学重点:平行四边形的判别方法。
导学难点:根据判别方法进行有关的应用导学准备:多媒体课件导学过程:一、快速反应1.如图,四边形ABCD,AC、BD相交于点O,若OA=OC,OB=OD,则四边形ABCD是__________,根据是_____________________2.如图,四边形ABCD中,AB//CD,且AB=CD,则四边形ABCD是___________,理由是__________________________3.小明拼成的四边形如图所示,图中的四边形ABCD是平行四边形吗?结论:______________________________________符号表示:4. 如图:在四边形ABCD中,2,4.四边形ABCD是平行四边形吗?为什么?在图中,AC=BD=16, AB=CD=EF=15,CE=DF=9。
图中有哪些互相平行的线段?二、议一议1.一组对边平行,另一组对边相等的四边形一定是平行四边形吗?三、平行四边形的判别方法:(1)两组对边分别平行的四边形是平行四边形。
(2)两组对边分别相等的四边形是平行四边形。
(3)一组对边平行且相等的。
四边形是平行四边形。
平行四边形的判定教案一、教学目标:1.了解平行四边形的定义和性质;2.能够判定平行四边形的方法;3.能够灵活运用平行四边形的判定方法解决问题。
二、教学重点:1.平行四边形的定义和性质;2.平行四边形判定的方法。
三、教学难点:四、教学准备:投影仪、教学PPT、布置练习题。
五、教学过程:Step 1 引入新知1.引入平行四边形的概念,示意图放投影仪上,向学生展示一张图,图中有两组平行四边形,并解释平行四边形的定义:“如果一个四边形的对边是两两平行的,那么这个四边形就是一个平行四边形。
”2.通过观察上面展示的图形,让学生发现其中的共同特点。
Step 2 讲解平行四边形定义和性质1.让学生自主发现平行四边形的性质,并进行讨论。
2.教师巩固学生的发现,总结出平行四边形的定义和性质。
Step 3 平行四边形的判定方法1.方法一:有一组对边平行即可。
例题展示,并解题过程。
2.方法二:有一个角是180度的补角即可。
例题展示,并解题过程。
3.方法三:对角相等即可。
例题展示,并解题过程。
Step 4 练习1.学生自主完成练习题。
2.审题、解题、讲评。
教师针对练习题的解答和思路进行讲评和点评。
3.教师补充讲解练习题中容易出错的地方,提醒学生注意。
Step 5 归纳总结1.小结平行四边形的定义、性质和判定方法。
2.强化重点难点内容。
3.学生自主梳理和总结笔记。
六、板书设计:定义:如果一个四边形的对边是两两平行的,那么这个四边形就是一个平行四边形。
性质:1.对边平行;2.对角线互相等长;3.相邻角互补;4.对角之和为180度。
1.有一组对边平行;2.有一个角是180度的补角;3.对角相等。
七、教学反思:本节课通过引入平行四边形的概念,讲解了平行四边形的定义和性质,并介绍了判定平行四边形的三种方法。
通过练习题的解析,学生对平行四边形的判定方法有了更深入的了解。
但是由于时间有限,本节课只能介绍了平行四边形的定义和性质,没有涉及应用题的解答,下节课需继续讲解如何运用平行四边形解决问题。
数学教案-平行四边形的判定数学教案-平行四边形的判定(精选3篇)数学教案-平行四边形的判定篇1教学建议1.重点平行四边形的判定定理重点分析平行四边形的判定方法涉及平行四边形元素的各方面,同时它又与平行四边形的性质联系,判定一个四边形是否为平行四边形是利用平行四边形性质解决其他问题的基础,所以平行四边形的判定定理是本节的重点.2.难点灵活运用判定定理证明平行四边形难点分析平行四边形的判定方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点.3.关于平行四边形判定的教法建议本节研究平行四边形的判定方法,重点是四个判定定理,这也是本章的重点之一.1.教科书首先指出,用定义可以判定平行四边形.然后从平行四边形的性质定理的逆命题出发,来探索平行四边形的判定定理.因此在开始的教学引入中,要充分调动学生的情感因素,尽可能利用形式多样的多媒体课件,激发学生兴趣,使学生能很快参与进来.2.素质教育的主旨是发挥学生的主体因素,让学生自主获取知识.本章重点中前三个判定定理的顺序与它的性质定理相对应,因此在讲授新课时,建议采用实验式教学模式或探索式教学模式:在证明每个判定定理时,由学生自己去判断命题成立与否,并根据过去所学知识去验证自己的结论,比较各种方法的优劣,这样使每个学生都积极参与到教学中,自己去实验,去探索,去思考,去发现,在动手动脑中得到的结论会更深刻――同时也要注意保护学生的参与积极性.3.平行四边形的判定方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点.因此在例题讲解时,建议采用启发式教学模式,根据题目中具体条件结合图形引导学生根据分析法解题程序从条件或结论出发,由学生自己去思考,去分析,充分发挥学生的主体作用,对学生灵活掌握熟练应用各种判定定理会有帮助.教学设计示例1[教学目标] 通过本节课教学,使学生训练掌握平行四边形的各条判定定理,并能灵活地运用平行四边形的性质定理和判定定理及以前学过的知识进行有关证明,培养学生的逻辑思维能力。
平行四边形的判定1教学设计教学设计:平行四边形的判定教学目标:1.知识与技能:学生能够掌握平行四边形的定义和性质,并能准确判定一个四边形是否为平行四边形。
2.过程与方法:通过解决实际问题,引导学生进行发现和探究,培养学生的思维能力和解决问题的能力。
3.情感态度与价值观:通过小组合作学习,培养学生的合作意识和团队精神,培养学生对数学的兴趣和热爱。
教学准备:1.教师准备:准备多个平行四边形的实物或图片,准备白板、彩色粉笔和课件。
2.学生准备:准备纸和笔,携带直尺和量角器。
教学过程:Step 1 引入(10分钟)1.利用图片或实物,展示一个平行四边形给学生观察,引导学生描述其特点。
2.教师提问:你们觉得四边形是什么样的图形?对于平行四边形有什么认识?3.学生回答后,教师进行点拨,引导学生正确理解平行四边形的定义和性质。
Step 2 探究(15分钟)1.将学生分组,每个小组选择一个小组长,其他组员分别编号为1、2、32.每组分发一张纸和一支笔,告诉学生小组长的任务是记录并总结组员的观察、发现和探究结果。
3.通过给出不同的四边形,学生观察其特点,通过小组内的讨论和合作,对平行四边形的性质进行探究,总结出判定平行四边形的关键特征。
Step 3 总结(10分钟)1.学生小组长汇报总结出的关键特征,教师记录在白板上。
2.教师引导学生对总结的特征进行讨论,通过演示和解释,确保学生正确理解平行四边形的判定方法。
Step 4 巩固(25分钟)1.教师出示多个四边形的图片,要求学生判断是否为平行四边形,并用所学的判定方法进行解释。
2.学生通过小组合作,互相检查答案,并用直尺和量角器进行实际测量,确保判断的准确性。
Step 5 拓展(15分钟)1.教师出示一些实际生活中的问题,让学生运用所学的判定方法解决问题。
例如:一个人既是医生又是规划师,他接到了设计一个长方形草坪的任务。
他希望它既能满足足球比赛的需要,又能满足篮球比赛的需要。
19.1.2平行四边形的判定(1)第三课时平行四边形的判定(一)学习目标知识与技能:探索并掌握平行四边形的判别条件,领会其应用.过程与方法:经历平行四边形判定条件的探索过程,发展学生的合情推理意识和表述能力.情感态度与价值观:培养学生合情推理能力,以及严谨的书写表达,体会几何思维的真正内涵.重难点、关键重点:理解和掌握平行四边形的判定定理.难点:几何推理方法的应用.关键:把握动手操作、观察、交流这一思想立线,利用三角形全等的概念加以理解,解决重点突破难点.教学准备教师准备:投影仪,教具:课本P96“探究”内容;补充材料制成投影片.学生准备:复习平行四边形性质;学具:课本P96“探究”内容.学法解析1.认知题后:学习了三角形全等、平行四边形定义、•性质以后学习本节课内容.2.知识线索:3.学习方式:采用动手操作来发现新的知识,通过交流形成知识体系.教学过程一、回顾交流,逆向思索教师提问:1.平行四边形定义是什么?如何表示?2.平行四边形性质是什么?如何概括?学生活动:思考后举手回答:回答:1.•两组对边分别平行的四边形叫做平行四边形(教师在黑板上画出下图:帮助学生直观理解)回答:2.平行四边形性质从边考虑:(1)对边平行,(2)对边相等,(3)•对边平行且相等(“//”);从角考虑:对角相等;从对角线考虑:两条对角线互相平分.(借助上图直观理解).教师归纳:(投影显示)平行四边形⎧⎧⇒⎪⎨⎩⎪⎪⎧⎪⇒⇒⎨⎨⎩⎪⎪⇒⎪⎪⎩对边平行边对边相等对角相等角邻角互补对角线互相平分【活动方略】教师活动:操作投影仪,显示课本P96和P97“探究”的问题.用问题牵引学生动手操作、思考、发现、归纳、论证,可以让学生分成4人小组讨论,•然后再进行小组汇报,教师同时也拿出教具同学在一起探索.学生活动:分四人小组,拿出准备好的学具探究.在活动中发现:(1)•将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是平行四边形;(2)•若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形.(3)将两条等长的木条平行放置,•另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形.(如下图)教师活动:归纳学生的发言,将问题引入到平行四边形判定方法上来.教师归纳:(借助上面的性质归纳)平行四边形判定与性质:备注:具体内容见课本P96~P97,教师此时可引导学生对定理进行证明.提出问题:同学们能否证明出上面所提出的判定呢?学生活动:开始证明上面提出的判定方法.主要是通过辅助线将四边形切割成一对三角形,再证明这对三角形全等把问题归结到定义上去.评析:在教师的指导下,学生学会添加辅助线,并学会数学的化归思想,这是几何学的重要环节,应予以突破.【设计意图】将两个“探究”应用操作感知的方法来发现,再应用数学化归思想,借助辅助线予以推理论证,达到解决重点,突破难点的目的.二、范例点击,应用所学例3(投影显示)如图,ABCD的对角线AC,BD交于点O,E、F是AC上的两点,并且AE=CF.求证四边形BFDE是平行四边形.ACBO FED思路点拨:例3的证明方法有多种,思路1:用课本的证法,依据平行四边形的对角线性质为方向,用AE=CF,可得OE=OF,OB=OD,从而得证.思路2:连接BE、DF,•利用三角形全等来证明四边形BFDE的两组对边分别相等.思路3:证明△ADE•≌△BCF•得到DE=BF,∠DEO=∠BFO.从而推出DE∥BF,也就是说用一组对边平行且相等的方法来证.但课本的证法最简单.教师活动:操作投影仪,分析例3,引导学生从不同的思路来证明例3.•拓宽学生的思维,请部分学生上讲台演示.学生活动:分四人小组,合作交流,对例3提出不同的证明思路.•踊跃上台“板演”.【设计意图】以例3为素材,发展学生一题多证的发散性思维,•同时将上面的三种平行四边形的判定方法进行应用、归纳,形成切入点,但要注意采用最优证法.【课堂演练】(投影显示)演练题:在ABCD中,E、F分别是AB、CD的中点,四边形AECF是平行四边形吗?证明你的结论.思路点拨:本道题有多种证法,如:可以从一组对边平行且相等的角度切入去证AE//FC;也可以从两组对边分别相等的切入点予以证明,去证AE=FC,AF=EC.【活动方略】教师活动:操作投影仪,组织学生训练,巡视、关注“学困生”的思维,发现好的证明方法.学生活动:独立思考,应用所学知识切入进行证明,形成分析思路,注意问题转化.踊跃上台演示.教师活动:在学生充分思考的基础上,请几位不同证明方法的学生上讲台演示,同时纠正书写表达方法.评析:应用一组对边平行且相等的方法较为简捷,在分析中要善于将未知问题逆推转化成能够解决的熟悉问题.【设计意图】让学生反复认识,学会分析.三、随堂练习,巩固深化1.课本P97“练习” 1,2.2.【探研时空】如图,ABCD中,AE⊥BD,CF⊥BD,垂足为E、F、G、H分别为AD、BC的中点,求证:EF和GH互相平分.(请用两种不同的证法).评析:课本P97“练习2”可以做为平行四边形的又一判定方法.四、课堂总结,发展潜能平行四边形判定:1.边的关系:⎧⎪⎨⎪⎩证明两组对边分别平行证明两组对边分别相等证明一组对边平行且相等2.角的关系:证明两组对角分别相等.3.对角线的关系:证明两条对角线互相平分.备注:借助图形来理解,总结.五、布置作业,专题突破1.课本P100 习题19.1 4,5,10,122.选用课时作业优化设计六、课后反思第三课时作业优化设计【驻足“双基”】1.在ABCD中,若∠B-∠A=60°,则∠D=________.2.平行四边形的长边是短边的2倍,一条对角线与短边垂直,•则这个平行四边形的各角是__________.3.如果一个平行四边形的一边长是8,一条对角线长为6,那么它的另一条对角线的长x的取值范围是________.4.由两个全等三角形用各种不同的方法拼成四边形,•在这些拼成的四边形中是平行四边形的个数是().A.4个 B.3个 C.2个 D.1个5.以长为3cm、4cm、6cm的三条线段中的两条为边,另一条为对角线画平行四边形,可以画出不同形状的平行四边形().A.1个 B.2个 C.3个 D.4个6.已知:如图ABCD中,DM=BN,BE=DF,求证:四边形MENF是平行四边形.【提升“学力”】7.已知:如图,△ABD、△BCE、△ACF都是等边三角形,求证:四边形ADEF•是平行四边形.【聚焦“中考”】8.(2004年黑龙江省哈尔滨市中考题)如图,已知E为平行四边形ABCD中DC边的延长线上一点,且CE=DC,连结AE,分别交BC、BD于点F、G,连接AC交BD于O,连结OF.求证:AB=2OF.答案:1.120° 2.60°,120°,60°,120° 3.10<x<22 4.B 5.C6.•提示:•证△BEN≌△DFM,∴EN=FM,再证:△BFN≌△DEN7.提示:△CEF≌△CBA,∴EF=BA=AD,•同理△BDE≌△BAC,DE=AC=AF,∴ADEF 8.连结BE,∵ABCD,∴AB//CD,AO=OC,∵CE=CD,∴AB//CE,∴AB//EC,∴BF=FC,∴OF//12AB,∴AB=2OF.。
平行四边形的判定第1课时平行四边形的判定【知识与技能】掌握平行四边形的判定方法1,2,3,能用它们来证明一个四边形是否是平行四边形.【过程与方法】在观察、实验、猜想、验证、推理、交流等活动过程中,让学生感受数学思考过程的条理性及解决问题策略的多样性,发展学生的动手操作能力,推理能力及数学应用意识.【情感态度】在操作活动和观察、分析过程中发展学生的主动探索、质疑和独立思考的习惯,发展学生的实践能力和创新意识.【教学重点】平行四边形的判定方法1,2,3.【教学难点】平行四边形判定方法的探寻过程.一、情境导入,初步认识问题(1)平行四边形的定义是怎样的?(2)平行四边形有哪些重要性质?(3)反过来,如果一个四边形的对边平行、对边相等、对角相等或对角线互相平分,这个四边形能是平行四边形吗?【教学说明】教师展示问题(1)、(2),让学生对前面所学的知识进行系统回顾,并展示问题(3),引入新课.二、思考探究,获取新知观察思考如图(1),将两长两短的四根木条用小钉绞合在一起,做成一个四边形,使等长的木条成为对边.转动这个四边形,使它形状改变,在图形的变化过程中,这个四边形一直是平行四边形吗?如图(2),将两根细木条AC、BD 的中点用小钉绞合在一起,用橡皮筋连接木条的端点,做成一个四边形ABCD,转动两根木条,则图中的四边形ABCD一直是平行四边形吗?【教学说明】教师展示事先制作好的实物模型,让学生观察思考,在感性上认识具有两组对边分别相等或对角线互相平分的四边形是平行四边形,然后提出请学生尝试着证明这些结论.教师巡视,引导学生通过连接对角线,先证明三角形全等,从而得到两对边平行,来论证两组对边分别相等的四边形是平行四边形,同样地可论证对角线互相平分的四边形是平行四边形.探究求证:两组对角分别相等的四边形是平行四边形.°容易得到四组同旁内角互补,从而可利用平行四边形定义来证明更方便些.【教学说明】本例的解答过程由学生自己完成,教师巡视指导;关注学生的解题格式和论证思路.平行四边形的判定定理两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.三、典例精析,掌握新知例如图,四边形ABCD是平行四边形,点E,F是对角线AC上两点,且AE=CF.求证:四边形BFDE是平行四边形.【分析】若连BD交AC于O,由ABCD的性质易知OB=OD,OA=OC,又AE=CF,从而OE=OF,故四边形BEDF是平行四边形(对角线互相平分的四边形是平行四边形).事实上,还可以分别证明△ADE≌△CBF,△ABE≌△CDF,得DE=BF,BE=DF,也能证明四边形DEBF是平行四边形;也可以证明∠BEF=∠DFE,∠DEF=∠BFE,得BE∥DF,DE∥BF,利用平行四边形定义证明四边形BEDF是平行四边形.同样也可以通过三角形全等,推出两组对角相等,进而得出四边形BEDF是平行四边形.【教学说明】在教师与学生一道分析后,证明过程由学生自己独立完成,同时可选取四名同学上黑板按四种不同方法给出证明过程,一方面加深学生对平行四边形判定方法的理解,另外通过一题多解也能开拓学生思维,增强分析问题、解决问题的能力.也可将全班同学分成四个小组分别用四种不同方法来试试,教师巡视,对有困难同学应及时予以指导.四、运用新知,深化理解1.已知,四边形ABCD中,∠A=∠C=55°,则当∠B= 时,四边形是平行四边形.2.如图,已知四边形ABCD中,∠1=∠2,∠3=∠∥DF.求证:四边形ABCD是平行四边形.第2题图第3题图3.已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD相交于点O,BO=DO.求证:四边形ABCD是平行四边形.【教学说明】由学生独立完成,然后相互交流,进一步掌握用“两组对边分别相等”,“两组对角分别相等”,“对角线互相平分”的方法判定四边形是平行四边形,教师巡视指导.°.2.证明:∵BE∥DF,∴∠3=∠EBF,又∠3=∠4,∴∠4=∠EBF,∴DE∥BF,∴四边形BEDF是平行四边形.∴DE=BF,BE=DF.在△ABE和△CDF中,∠1=∠2,DF=BE,∠3=∠4,∴△ABE≌△CDF.∴AB=CD,AE=CF.∴AE+DE=CF+BF,即AD=BC,∴四边形ABCD是平行四边形.3.证明:∵AB∥CD,∴∠ABO=∠CDO,在△ABO和△CDO中,∵∠ABO=∠CDO,BO=DO,∠AOB=∠COD,∴△ABO≌△CDO,∴AO=CO,又∵BO=DO, ∴四边形ABCD是平行四边形.五、师生互动,课堂小结谈谈这节课学习的体会和收获,学生相互交流,各抒己见,最后教师进行总结归纳.1.布置作业:从教材“”中选取.2.完成练习册中本课时练习.本课时是有关于平行四边形的前三种判定方法,教师教学时应采用师生共同探究的方法来得出结论.另外,教师最好要求学生将每种判定的数学语言和符号语言都按格式书写出来,这样有利于学生数学习惯的培养.。
18.1.2平行四边形的判定第1课时平行四边形的判定(1)1.掌握平行四边形的判定定理;(重点)2.综合运用平行四边形的性质与判定解决问题.(难点)一、情境导入我们已经知道,如果一个四边形是平行四边形,那么它就是一个中心对称图形,具有如下的一些性质:1.两组对边分别平行且相等;2.两组对角分别相等;3.两条对角线互相平分.那么,怎样判定一个四边形是否是平行四边形呢?当然,我们可以根据平行四边形的原始定义:两组对边分别平行的四边形是平行四边形加以判定.那么是否存在其他的判定方法?二、合作探究探究点一:两组对边分别相等的四边形是平行四边形如图,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD、等边△ACE、等边△BCF.试说明四边形DAEF是平行四边形.解析:根据题意,利用全等可证明AD =FE,DF=AE,从而可判断四边形DAEF 为平行四边形.解:∵△ABD和△FBC都是等边三角形,∴∠DBF+∠FBA=∠ABC+∠ABF=60°,∴∠DBF=∠ABC.又∵BD=BA,BF =BC,∴△ABC≌△DBF(SAS),∴AC=DF =AE.同理可证△ABC≌△EFC,∴AB=EF =AD,∴四边形DAEF是平行四边形(两组对边分别相等的四边形是平行四边形).方法总结:利用“两组对边分别相等的四边形是平行四边形〞时,证明边相等,可通过证明三角形全等解决.探究点二:两组对角分别相等的四边形是平行四边形如图,在四边形ABCD中,AB∥DC,∠B=55°,∠1=85°,∠2=40°.(1)求∠D的度数;(2)求证:四边形ABCD是平行四边形.解析:(1)可根据三角形的内角和为180°得出∠D的大小;(2)根据“两组对角分别相等的四边形是平行四边形〞进行证明.(1)解:∵∠D+∠2+∠1=180°,∴∠D =180°-∠2-∠1=180°-40°-85°=55°;(2)证明:∵AB∥DC,∴∠2=∠CAB =40°,∠DCB+∠B=180°,∴∠DAB=∠1+∠CAB=125°,∠DCB=180°-∠B=125°,∴∠DAB=∠DCB.又∵∠D=∠B=55°,∴四边形ABCD是平行四边形.方法总结:根据两组对角分别相等判断四边形是平行四边形,是解题的常用思路. 探究点三:对角线相互平分的四边形是平行四边形如图,AB 、CD 相交于点O ,AC ∥DB ,AO =BO ,E 、F 分别是OC 、OD 的中点.求证:(1)△AOC ≌△BOD ;(2)四边形AFBE 是平行四边形.解析:(1)利用条件和全等三角形的判定方法即可证明△AOC ≌△BOD ;(2)此题AO=BO ,要证四边形AFBE 是平行四边形,根据全等三角形,只需证OE =OF 即可.证明:(1)∵AC ∥BD ,∴∠C =∠D .在△AOC 和△BOD 中,∵⎩⎪⎨⎪⎧∠C =∠D ,∠COA =∠DOB ,AO =BO ,∴△AOC ≌△BOD (AAS);(2)∵△AOC ≌△BOD ,∴CO =DO .∵E 、F 分别是OC 、OD 的中点,∴OF =12OD ,OE =12OC ,∴EO =FO .又∵AO =BO ,∴四边形AFBE 是平行四边形.方法总结:在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,防止混用判定方法.探究点四:平行四边形的判定定理(1)的应用【类型一】 利用平行四边形的判定定理(1)证明线段或角相等如图,在平行四边形ABCD 中,AC 交BD 于点O ,点E ,点F 分别是OA ,OC 的中点,请判断线段DE ,BF 的位置关系和数量关系,并说明你的结论.解析:根据平行四边形的性质“对角线互相平分〞得出OA =OC ,OB =OD .利用中点的意义得出OE =OF ,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形〞判定四边形BFDE 是平行四边形,从而得出DE =BF ,DE ∥BF .解:DE =BF ,DE ∥BF .∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD .∵E ,F 分别是OA ,OC 的中点,∴OE =OF ,∴四边形BFDE 是平行四边形,∴DE =BF ,DE ∥BF .方法总结:平行四边形的性质也是证明线段相等或平行的重要方法.【类型二】 平行四边形的判定定理(1)的综合运用如图,四边形ABCD 是平行四边形,BE ⊥AC 于点E ,DF ⊥AC 于点F .(1)求证:△ABE ≌△CDF ;(2)连接BF 、DE ,试判断四边形BFDE 是什么样的四边形?写出你的结论并予以证明.解析:(1)根据“AAS 〞可证出△ABE ≌△CDF ;(2)首先根据△ABE ≌△CDF 得出AE =FC ,BE =DF .再利用得出△ADE ≌△CBF ,进而得出DE =BF ,即可得出四边形BFDE 是平行四边形. (1)证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠BAC =∠DCA .∵BE ⊥AC 于E ,DF ⊥AC 于F ,∴∠AEB =∠DFC =90°.在△ABE 和△CDF中,⎩⎪⎨⎪⎧∠DFC =∠BEA ,∠FCD =∠EAB ,AB =CD ,∴△ABE ≌△CDF (AAS);(2)解:四边形BFDE 是平行四边形.理由如下:∵△ABE ≌△CDF ,∴AE =FC ,BE =DF .∵四边形ABCD 是平行四边形,∴AD =CB ,AD ∥CB ,∴∠DAC =∠BCA .在△ADE 和△CBF 中,⎩⎪⎨⎪⎧AD =BC ,∠DAE =∠BCF ,AE =FC ,∴△ADE ≌△CBF (SAS),∴DE =BF ,∴四边形BFDE 是平行四边形.方法总结:熟练运用平行四边形的性质,可证明三角形全等,证明边相等,再利用两组对边分别相等可判定四边形是平行四边形.三、板书设计1.平行四边形的判定定理(1)两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线相互平分的四边形是平行四边形.2.平行四边形的判定定理(1)的应用在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的根底上加以引导点拨.判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要.在证明命题的过程中,学生自然将判定方法进行比照和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上.第3课时 多项式1.理解多项式的概念;(重点)2.能准确迅速地确定一个多项式的项数和次数;3.能正确区分单项式和多项式.(重点)一、情境导入 列代数式:(1)长方形的长与宽分别为a 、b ,那么长方形的周长是________;(2)图中阴影局部的面积为________;(3)某班有男生x 人,女生21人,那么这个班的学生一共有________人.观察我们所列出的代数式,是我们所学过的单项式吗?假设不是,它又是什么代数式?二、合作探究探究点一:多项式的相关概念【类型一】 单项式、多项式与整式的识别指出以下各式中哪些是单项式?哪些是多项式?哪些是整式?x 2+y 2,-x ,a +b 3,10,6xy +1,1x ,17m 2n ,2x 2-x -5,2x 2+x,a 7.解析:根据整式、单项式、多项式的概念和区别来进行判断.解:2x 2+x ,1x的分母中含有字母,既不是单项式,也不是多项式,更不是整式.单项式有:-x ,10,17m 2n ,a 7;多项式有:x 2+y 2,a +b3,6xy +1,2x2-x -5;整式有:x 2+y 2,-x ,a +b3,10,6xy+1,17m 2n ,2x 2-x -5,a 7.方法总结:(1)分母中含有字母(π除外)的式子不是整式;(2)单项式和多项式都是整式;(3)单项式不含加、减运算,多项式必含加、减运算.【类型二】 确定多项式的项数和次数写出以下各多项式的项数和次数,并指出是几次几项式.(1)23x 2-3x +5; (2)a +b +c -d ;(3)-a 2+a 2b +2a 2b 2.解析:根据多项式的项数是多项式中单项式的个数,多项式的次数是多项式中次数最高的单项式的次数,可得答案.解:(1)23x 2-3x +5的项数为3,次数为2,二次三项式;(2)a +b +c -d 的项数为4,次数为1,一次四项式;(3)-a 2+a 2b +2a 2b 2的项数为3,次数为4,四次三项式.方法总结:(1)多项式的项一定包括它的符号;(2)多项式的次数是多项式里次数最高项的次数,而不是各项次数的和;(3)几次项是指多项式中次数是几的项. 【类型三】 根据多项式的概念求字母的取值-5x m +104x m -4x m y 2是关于x 、y的六次多项式,求m 的值,并写出该多项式.解析:根据多项式中次数最高的项的次数叫做多项式的次数可得m +2=6,解得m =4,进而可得此多项式.解:由题意得m +2=6,解得m =4,此多项式是-5x 4+104x 4-4x 4y 2. 方法总结:此题考查了多项式,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.【类型四】 与多项式有关的探究性问题假设关于x 的多项式-5x 3-mx2+(n -1)x -1不含二次项和一次项,求m 、n 的值.解析:多项式不含二次项和一次项,那么二次项和一次项系数为0.解:∵关于x 的多项式-5x 3-mx 2+(n -1)x -1不含二次项和一次项,∴m =0,n -1=0,那么m =0,n =1.方法总结:多项式不含哪一项,那么哪一项的系数为0.探究点二:多项式的应用如图,某居民小区有一块宽为2a 米,长为b米的长方形空地,为了美化环境,准备在此空地的四个顶点处各修建一个半径为a米的扇形花台,在花台内种花,其余种草.如果建造花台及种花费用每平方米为100元,种草费用每平方米为50元.那么美化这块空地共需多少元?解析:四个角围成一个半径为a米的圆,阴影局部面积是长方形面积减去一个圆面积.解:花台面积和为πa2平方米,草地面积为(2ab-πa2)平方米.所以需资金为[100πa2+50(2ab-πa2)]元.方法总结:用式子表示实际问题的数量关系时,首先要分清语言表达中关键词的含义,理清它们之间的数量关系和运算顺序.三、板书设计多项式:几个单项式的和叫做多项式.多项式的项:多项式中的每个单项式叫做多项式的项.常数项:不含字母的项叫做常数项.多项式的次数:多项式里次数最高项的次数叫做多项式的次数.整式:单项式与多项式统称整式.这节课的教学内容并不难,如果采用讲授的方式,很快90%以上的学生都可以理解、掌握.虽然单纯地从学生接受知识的角度,讲授法应该效果更好,但同时学生的自主学习的习惯和能力也不知不觉地被忽略了.事实证明,学生没有养成一个良好的自主学习的习惯,不会自己阅读、分析题意,他们今后的学习会受到很大的制约.。
A B C D 18.2平行四边形的判定〔1〕
教学目的
1.使学生掌握用平行四边形的定义判定一个四边形是平行四边形;
2.理解并掌握用二组对边分别相等的四边形是平行四边形
3.能运这两种方法来证明一个四边形是平行四边形。
教学重点和难点
重点:平行四边形的判定定理;
难点:掌握平行四边形的性质和判定的区别及熟练应用。
教学过程
〔一〕复习提问:
1. 什么叫平行四边形?平行四边形有什么性质?〔学生口答,教师板书〕
2. 将以上的性质定理,分别用命题形式表达出来。
〔如果……那么……〕
根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形性质定理的逆命题是否成立? 〔二〕新课
一. 平行四边形的判定:
方法一〔定义法〕:两组对边分别平行的四边形的平边形。
几何语言表达定义法:
∵AB ∥CD ,AD ∥BC ,∴四边形ABCD 是平行四边形
解析:一个四边形只要其两组对边分别互相平行,
那么可判定这个四边形是一个平行四边形。
活动:用做好的纸条拼成一个四边形,其中强调两组对边分别相等。
方法二:两组对边分别相等的四边形是平行四边形。
设问:这个命题的前提和结论是什么? :四边形ABCD 中,AB =CD ,AD =BC 求证:四边ABCD 是平行四边形。
分析:判定平行四边形的依据目前只有定义,借助第三条直线证明角等。
连结BD 板书证明过程。
小结:的方法为: 判定一∵AB=CD ,AD=BC ,∴四边形ABCD 是平行四边形
练习:课本P103练习题第1题。
三、例题讲解
例1 :如图3,E 、F 分别为平行四边形ABCD 求证:21∠=∠
分析:由我们学过平行四边形的性质中,对角
相等,得假设证明四边形EBFD 为平行边形呢?可通过证明ΔABE ≌ΔCDF 得BE=DF ;得ED=FB 。
A D 34
练习:2. 如图7,E、F、G、H
且AE=CG,BF=DH。
求证:四边形EFGH是平行四边形。
〔让学生板演〕
四、本课小结
个四边形是平行四边形。
五、作业布置:课本P85第1、2、3题
六、教学反思。