模式识别-第五章-关于树状分类器和分段
- 格式:pdf
- 大小:488.66 KB
- 文档页数:48
模式识别(山东联盟)智慧树知到课后章节答案2023年下青岛大学青岛大学第一章测试1.关于监督模式识别与非监督模式识别的描述正确的是答案:非监督模式识别对样本的分类结果是唯一的2.基于数据的方法适用于特征和类别关系不明确的情况答案:对3.下列关于模式识别的说法中,正确的是答案:模式可以看作对象的组成成分或影响因素间存在的规律性关系4.在模式识别中,样本的特征构成特征空间,特征数量越多越有利于分类答案:错5.在监督模式识别中,分类器的形式越复杂,对未知样本的分类精度就越高答案:错第二章测试1.下列关于最小风险的贝叶斯决策的说法中正确的有答案:条件风险反映了对于一个样本x采用某种决策时所带来的损失;最小风险的贝叶斯决策考虑到了不同的错误率所造成的不同损失;最小错误率的贝叶斯决策是最小风险的贝叶斯决策的特例2.我们在对某一模式x进行分类判别决策时,只需要算出它属于各类的条件风险就可以进行决策了。
答案:对3.下面关于贝叶斯分类器的说法中错误的是答案:贝叶斯分类器中的判别函数的形式是唯一的4.当各类的协方差矩阵相等时,分类面为超平面,并且与两类的中心连线垂直。
答案:错5.当各类的协方差矩阵不等时,决策面是超二次曲面。
答案:对第三章测试1.概率密度函数的估计的本质是根据训练数据来估计概率密度函数的形式和参数。
答案:对2.参数估计是已知概率密度的形式,而参数未知。
答案:对3.概率密度函数的参数估计需要一定数量的训练样本,样本越多,参数估计的结果越准确。
答案:对4.下面关于最大似然估计的说法中正确的是答案:在最大似然函数估计中,要估计的参数是一个确定的量。
;在最大似然估计中要求各个样本必须是独立抽取的。
;最大似然估计是在已知概率密度函数的形式,但是参数未知的情况下,利用训练样本来估计未知参数。
5.贝叶斯估计中是将未知的参数本身也看作一个随机变量,要做的是根据观测数据对参数的分布进行估计。
答案:对第四章测试1.多类问题的贝叶斯分类器中判别函数的数量与类别数量是有直接关系的。
人工智能模式识别技术练习(习题卷1)第1部分:单项选择题,共45题,每题只有一个正确答案,多选或少选均不得分。
1.[单选题]可视化技术中的平行坐标又称为( )A)散点图B)脸谱图C)树形图D)轮廓图答案:D解析:2.[单选题]描述事物的基本元素,称为( )A)事元B)物元C)关系元D)信息元答案:B解析:3.[单选题]下面不属于层次聚类法的是( )A)类平均法B)最短距离法C)K均值法D)方差平方和法答案:C解析:4.[单选题]核函数方法是一系列先进( )数据处理技术的总称。
A)离散B)连续C)线性D)非线性答案:D解析:5.[单选题]下面哪个网络模型是最典型的反馈网络模型?( )A)BP神经网络B)RBF神经网络C)CPN网络D)Hopfield网络答案:D解析:6.[单选题]粗糙集所处理的数据必须是( )的。
答案:B解析:7.[单选题]模糊聚类分析是通过( )来实现的。
A)模糊相似关系B)模糊等价关系C)模糊对称关系D)模糊传递关系答案:B解析:8.[单选题]模糊系统是建立在( )基础上的。
A)程序语言B)自然语言C)汇编语言D)机器语言答案:B解析:9.[单选题]在模式识别中,被观察的每个对象称为( )A)特征B)因素C)样本D)元素答案:C解析:10.[单选题]群体智能算法提供了无组织学习、自组织学习等进化学习机制,这种体现了群体智能算法的( )A)通用性B)自调节性C)智能性D)自适应性答案:C解析:11.[单选题]下面不属于遗传算法中算法规则的主要算子的是( )A)选择B)交叉C)适应D)变异答案:C解析:12.[单选题]下面不属于蚁群算法优点的是( )。
A)高并行性B)可扩充性C)不易陷入局部最优13.[单选题]只是知道系统的一些信息,而没有完全了解该系统,这种称为( )A)白箱系统B)灰箱系统C)黑箱系统D)红箱系统答案:B解析:14.[单选题]模式分类是一种______方法,模式聚类是一种_______方法。
模式识别课程设计一、课程目标知识目标:1. 让学生掌握模式识别的基本概念,包括特征提取、分类器设计等;2. 使学生了解模式识别在现实生活中的应用,如图像识别、语音识别等;3. 帮助学生理解并掌握不同模式识别算法的原理及优缺点。
技能目标:1. 培养学生运用编程工具(如Python等)实现简单模式识别任务的能力;2. 培养学生运用所学知识解决实际问题的能力,提高学生的动手实践能力;3. 培养学生团队协作、沟通表达的能力。
情感态度价值观目标:1. 培养学生对模式识别技术的兴趣,激发学生探索未知、勇于创新的科学精神;2. 培养学生具有积极的学习态度,树立正确的价值观,认识到技术对社会发展的积极作用;3. 引导学生关注人工智能伦理问题,培养其具有良好社会责任感。
课程性质:本课程为理论与实践相结合的课程,注重培养学生的实际操作能力和解决问题的能力。
学生特点:学生具备一定的数学基础、编程能力和逻辑思维能力,对新鲜事物充满好奇心。
教学要求:结合学生特点,采用案例教学、任务驱动等教学方法,注重理论与实践相结合,提高学生的实际操作能力和创新能力。
在教学过程中,关注学生的情感态度价值观的培养,使其成为具有社会责任感的优秀人才。
通过分解课程目标为具体的学习成果,为后续的教学设计和评估提供依据。
二、教学内容1. 基本概念:特征提取、特征选择、分类器、评估指标等;教材章节:第一章 模式识别概述2. 传统模式识别方法:统计方法、结构方法、模糊方法等;教材章节:第二章 传统模式识别方法3. 机器学习方法:监督学习、无监督学习、半监督学习等;教材章节:第三章 机器学习方法4. 特征提取技术:主成分分析、线性判别分析、自动编码器等;教材章节:第四章 特征提取技术5. 分类器设计:决策树、支持向量机、神经网络、集成学习等;教材章节:第五章 分类器设计6. 模式识别应用案例:图像识别、语音识别、生物特征识别等;教材章节:第六章 模式识别应用案例教学安排与进度:第1周:基本概念学习,了解模式识别的发展历程;第2-3周:学习传统模式识别方法,对比分析各种方法的优缺点;第4-5周:学习机器学习方法,掌握监督学习、无监督学习的基本原理;第6-7周:学习特征提取技术,进行实践操作;第8-9周:学习分类器设计,通过实例分析各种分类器的性能;第10周:学习模式识别应用案例,开展小组讨论和项目实践。