模式识别(国家级精品课程讲义)
- 格式:ppt
- 大小:16.54 MB
- 文档页数:705
第一章 绪论1.1模式和模式识别模式识别是一门很受人们重视的学科。
早在30年代就有人试图以当时的技术解决一些识别问题,在近代,随着计算机科学技术的发展和应用,模式识别才真正发展起来。
从60年代至今,在模式识别领域中已取得了不少成果。
它的迅速发展和广泛应用前景引起各方面的关注。
模式识别属于人工智能范畴,人工智能就是用机器去完成过去只有人类才能做的智能活动。
在这里,“智能”指的是人类在认识和改造自然的过程中表现出来的智力活动的能力。
例如:通过视觉、听觉、触觉等感官接受图象、文字、声音等各种自然信息去认识外界环境的能力;将感性知识加工成理性知识的能力,即经过分析、推理、判断等思维过程而形成概念、建立方法和作出决策的能力;经过教育、训练、学习不断提高认识与改造客观环境的能力‘对外界环境的变化和干扰作出适应性反应的能力等。
模式识别就是要用机器去完成人类智能中通过视觉、听觉、触觉等感官去识别外界环境的自然信息的那些工作。
虽然模式识别与人工智能关系很密切,但是发展到现在,它已经形成了独立的学科,有其自身的理论和方法。
在许多领域中,模式识别已有不少比较成功的实际应用。
模式的概念:模式这个概念的内涵是很丰富的。
“我们把凡是人类能用其感官直接或间接接受的外界信息都称为模式”。
比如:文字、图片、景物;声音、语言;心电图、脑电图、地震波等;社会经济现象、某个系统的状态等,都是模式。
模式识别:模式识别是一门研究对象描述和分类方法的科学。
如,我们要听某一门课,必须做以下识别:1)看课表—文字识别;2)找教室和座位—景物识别;3)听课—声音识别。
再比如,医生给病人看病:1)首先要了解病情;问2)再做一些必要的检验;查3)根据找到的能够诊断病情的主要特征,如体温、血压、血相等,做出分类决策,即诊断。
对于比较简单的问题,可以认为识别就是分类。
如,对于识别从“0”到“9”这十个阿拉伯数字的问题。
对于比较复杂的识别问题,就往往不能用简单的分类来解决,还需要对待识别模式的描述。
模式识别※第一章绪论§课前索引§1.1 模式识别和模式的概念§1.2 模式的描述方法§1.3 模式识别系统§1.4 有关模式识别的若干问题§1.5 本书内容及宗旨§本章小节§本章习题※第二章贝叶斯决策理论与统计判别方法§课前索引§2.1 引言§2.2 几种常用的决策规则§2.3 正态分布时的统计决策§本章小节§本章习题※第三章非参数判别分类方法§课前索引§3.1引言§3.2线性分类器§3.3 非线性判别函数§3.4 近邻法§3.5 支持向量机§本章小结§本章习题※第四章描述量选择及特征的组合优化§课前索引§4.1 基本概念§4.2 类别可分离性判据§4.3 按距离度量的特征提取方法§4.4 按概率距离判据的特征提取方法§4.5 基于熵函数的可分性判据§4.6 基于Karhunen-Loeve变换的特征提取§4.7 特征提取方法小结§4.8 特征选择§本章小节§本章习题※第五章非监督学习法§课前索引§5.1 引言§5.2 单峰子类的分离方法§5.3 聚类方法§5.4 非监督学习方法中的一些问题§本章小节§本章习题※第六章人工神经元网络§课前索引§6.1 引言§6.2 Hopfield模型§6.3 Boltzmann机§6.4 前馈网络§6.5 人工神经网络中的非监督学习方法§6.6 小结§本章习题第一章绪论本章要点、难点本章是这门课的绪言,重点是要弄清“模式识别”的名词含义,从而弄清这门课能获得哪方面的知识,学了以后会解决哪些问题。
模式识别讲义《模式识别与图像处理》教学讲义上篇模式识别§1. 模式识别序论近年来,科技发展的重要方向之一就是:人类智能的机器化和人造机器的智能化。
前者以计算机、专家系统、神经网络算法等为代表;后者以智能机器人(具有视觉、听觉、触觉、嗅觉等)为典型。
两个方向的努力都归结为一个目标——研究人工智能。
当然,目前科技水平还远没有达到设定目标。
使机器具有人类的智能水平,使机器像人那样进行目标识别尚需艰苦努力。
模式识别是智能的核心功能之一。
换句话说就是模式识别属于人工智能的范畴。
这里所说的智能或人工智能是指用机器完成以往只能由人类方能胜任的智能活动。
包括:①通过视、听、触、嗅觉接受各种自然信息、感知环境;②经推理、分析、判断、综合将感性认识加工成理论知识,进而形成概念、建立方法以及做出决策;③对外界环境的变化和干扰做出适应性反应等等。
模式识别就是要用机器实现上述第一项人类智能活动。
而第二项则已有神经网络、专家系统等仿照人类思维的智能方法。
第三项则是人类早已开始研究的各种自动化技术、自适应控制、自学习控制等。
那么,什么叫做模式识别呢?§1-1 模式识别的基本概念1、模式与模式识别定义一:模式是一些供模仿用的完美无缺的标本;模式识别就是辨别出特定客体所模仿的标本。
定义二:模式是对特定客体的定量的或结构的描述;模式识别是把待识别模式划分到各自的模式类中去。
这里所说的模式类是具有某些共同特性的模式的集合。
两个定义中,模式一词的含义是不同的。
前者指标本,后者指对客体的描述。
本课程中使用定义二,并且作如下狭义约定:模式识别是指利用计算机自动地或有少量人为干预的方法把待识别模式加以分类,即划分到模式类中去。
一般认为,模式是通过对具体的事物进行观测所得到的具有时间与空间分布的信息,模式所属的类别或同一类中的模式的总体称为模式类,其中个别具体的模式往往称为样本。
模式识别就是研究通过计算机自动的(或人为少量干预)将待识别的模式分配到各个模式类中的技术。
第九章颜色视觉9.1 颜色现象9.1.1 颜色的基本性质9.1.2 颜色立体9.1.3 颜色的交互作用和颜色恒常性9.1.4 颜色的混合9.2 颜色的匹配和标定9.2.1 颜色的匹配和颜色方程9.2.2 色度图和色度坐标9.2.3 颜色相加原理9.2.4 颜色的标定9.3 颜色视觉理论9.3.1 三色理论9.3.2 颜色对立机制理论9.3.3 视网膜皮层理论9.4 颜色信息的计算机处理9.4.1 系统颜色空间的标定9.4.2 色度信息的表示9.4.3 颜色图象分割和颜色反射模型9.1 颜色现象9.1.1 颜色的基本性质颜色是外界光刺激作用于人的视觉器官而产生的主观感觉。
所以颜色特性既可以从客观刺激方面来衡量,也可以从观察者的主观感觉方面来描述。
描述客观刺激的概念是心理物理学概念;描述观察者主观感觉的概念是心理学概念。
确定光的心理物理量与心理量的关系是感觉心理学研究的重要任务。
颜色视觉有三种特性,描述颜色的心理物理量是亮度、主波长和纯度,相应的心理量是明度,色调和饱和度。
颜色分两大类:非彩色和彩色。
非彩色是指黑色、白色和介于这两者之间深浅不同的灰色。
它们可以排成一个系列,由白色逐渐到浅灰、中灰、深灰直到黑色。
这叫白黑系列或无色系列。
白黑系列由白到黑的变化可以用一条直线代表,一端是纯白,另一端是纯黑。
中间有着各种不同等级的灰色过渡(图9.1)。
所谓灰色是相对的,比周围明亮的称为浅灰,比周围暗的称为深灰,灰色是最不饱和色之一。
所谓纯白和纯黑也是相对而言的,并无绝对的标准,白雪接近纯白,黑绒接近纯黑,由白和黑按不同比例混合可得出各种灰色。
白色和各种灰色是物体表面没有选择性的反射。
白黑系列的非彩色的反射率代表物体的明度。
反射率越高时接近白色,反射率低时接近黑色。
一张洁白的纸的反射率可达85%以上。
用来测量颜色、定标用的标准白板的反射率可达90%以上。
一张黑纸的反射率可低至5%以下,黑色天鹅绒的反射率甚至可低于0.05%。
《模式识别》课程教学大纲课程编号:04226课程名称:模式识别英文名称:Pattern Recognition课程类型:专业课课程要求:选修学时/学分:32/2 (讲课学时:28 实验学时:4)适用专业:智能科学与技术一、课程性质与任务模式识别课程是智能科学与技术专业的•门选修课,是研究计算机模式识别的基本理论和方法、应用。
模式识别就是利用计算机对某些物理现象进行分类,在错误概率最小的条件下,使识别的结果尽量与事物相符。
这门课的教学目的是让学生掌握统计模式识别和结构模式识别基本原理和方法。
本课程的主要任务是通过对模式识别的基本理论和方法、运用实例的学习,使学生掌握模式识别的基本理论与方法,培养学生利用模式识别方法、运用技能解决本专业及相关领域实际问题的能力,为将来继续深入学习或进行科学研究打下坚实的基础。
本课程的教学目的是为了使学生能应用模式识别处理计算机自动识别事物,机器学习数据分析中有关的技术问题。
由于本课程的目标是侧重在应用模式识别技术,因此在学习内容上侧重基本概念的讲解,辅以必要的数学推导,使学生能掌握模式识别技术中最基本的概念,以及最基本的处理问题方法。
学生在学习过程中还会用到一些概率论的最基本知识,线性代数中的部分知识,对学生在数学课中学到知识的进一步理解与巩固起到温故而知新的作用。
(该门课程支撑毕业要求中1.1, 2.1, 3.1, 3.3, 4.1, 6.1, 10.1和12.1)二、课程与其他课程的联系先修课程:概率论与数理统计、线性代数、机器学习后续课程:智能感知综合实践先修课程概率论与数理统计和线性代数为学生学习模式识别技术中最基本的概念,必要的数学推导打下基础,机器学习可以使学生建立整体思考问题的方法,并具有系统性能优化的概念。
本课程为后续智能优化方法打下理论基础。
三、课程教学目标1. 学习模式识别基本理论知识,理解参数估计的基本思想,掌握最大似然和贝叶斯儿种典型算法,理解聚类分析的的基本思想,掌握聚类分析的几种典型算法:(支撑毕业要求1.1,2.1)2. 具有数学分析和识别的基本能力;(支撑毕业要求1.1)3. 掌握基本的识别优化创新方法,培养学生追求创新的态度和意识;(支撑毕业要求3.1)4. 培养学生树立正确的分析和识别思想,了解设计过程中国家有关的经济、环境、法律、安全、健康、伦理等政策和制约因素;(支撑毕业要求3.3)5. 培养学生的工程实践学习能力,使学生具有运用标准、规范、手册、图册和查阅有关技术资料的能力;(支撑毕业要求4.1, 6.1)6, 了解模式识别方法前沿和新发展动向;(支撑毕业要求10.1, 12.1)四、教学内容、基本要求与学时分配五、其他教学环节(课外教学环节、要求、目标)无六、教学方法本课程以课堂教学为主,结合作业、自学及洲验等教学手段和形式完成课程教学任务。
模式识别实验讲义目录MATLAB 基础 (1)实验一感知器算法实验 (6)实验二模式聚类算法实验 (8)实验三图像识别实验............ 错误!未定义书签。
1MATLAB 基础1.矩阵定义由m 行n 列构成的数组称为(m ×n)阶矩阵。
用"[]"方括号定义矩阵,其中方括号内","逗号或" "空格号分隔矩阵列数值, ";"分号或"Enter"回车键分隔矩阵行数值。
例:a=[a 11 a 12 a 13;a 21 a 22 a 23]或a=[a 11,a 12,a 13;a 21,a 22,a 23]定义了一个2*3阶矩阵a 。
a =a 11 a 12 a 13 a 21 a 22 a 23a ij 可以为数值、变量、表达式或字符串,如为数值与变量得先赋值,表达式和变量可以以任何组合形式出现,字符串须每一行中的字母个数相等 ,调用时缺省状态按行顺序取字母,如a(1)为第一行第一个字母。
下标引用:单下标方式:a(1)= a 11 a(4)= a 22 (以列的方式排列a 11 a 21 a 12 a 22 a 13a 23)双下标方式:a(1,1)= a 11 a(2,1)= a 212.矩阵的加减运算两矩阵相加减,是对应元素的加减,要求两矩阵具有相同的行数,相同的列数。
MATLAB 表达式形式:C =A +B 和 C =A -B ,其中C ij =A ij ±B ij 。
3 向量乘积和转置两矩阵A,B 相乘,要求两个矩阵的相邻阶数相等,一般情况下不满足交换律。
MATLAB 表达式形式:C=A*B 其中第i 行j 列元素C ij 为A 的第i 行的m 个元素与B 的第j 列的n 个对应元素的乘积之和。
矩阵的转置就是把矩阵的第I 行就j 列的元素放在第j 行第i 列的位置上。