[高考总复习资料]数学总复习(讲+练+测): 专题4.6 正弦定理和余弦定理(讲)
- 格式:docx
- 大小:2.65 MB
- 文档页数:12
第6讲正弦定理和余弦定理[学生用书P87]1.正弦定理和余弦定理定理正弦定理余弦定理内容asin A=bsin B=csin C=2R(R为△ABC外接圆半径)a2=b2+c2-2bc cos_A;b2=c2+a2-2ca cos_B;c2=a2+b2-2ab cos_C变形形式a=2R sin_A,b=2R sin_B,c=2R sin_C;sin A=a2R,sin B=b2R,sin C=c2R;a∶b∶c=sin_A∶sin_B∶sin_C;a+b+csin A+sin B+sin C=asin Acos A=b2+c2-a22bc;cos B=c2+a2-b22ca;cos C=a2+b2-c22ab2.三角形解的判断A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b 解的个数一解两解一解一解3.三角形中常用的面积公式(1)S=12ah(h表示边a上的高).(2)S=12bc sin A=12ac sin_B=12ab sinC.(3)S=12r(a+b+c)(r为三角形的内切圆半径).常用结论1.三角形中的三角函数关系(1)sin(A+B)=sin C;(2)cos(A+B)=-cos C;(3)sin A+B2=cos C2;(4)cos A+B2=sin C2.2.三角形中的射影定理在△ABC中,a=b cos C+c cos B;b=a cos C+c cos A;c=b cos A+a cos B.3.在△ABC中,两边之和大于第三边,两边之差小于第三边,A>B⇔a>b ⇔sin A>sin B⇔cos A<cos B.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)三角形中三边之比等于相应的三个内角之比.( ) (2)在△ABC 中,若sin A >sin B ,则A >B .( )(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.( ) (4)当b 2+c 2-a 2>0时,△ABC 为锐角三角形;当b 2+c 2-a 2=0时,△ABC 为直角三角形;当b 2+c 2-a 2<0时,△ABC 为钝角三角形.( )答案:(1)× (2)√ (3)× (4)× 二、易错纠偏常见误区|K(1)利用正弦定理求角时解的个数弄错; (2)在△ABC 中角与角的正弦关系弄错; (3)判断三角形形状时弄错.1.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解 C .无解D .有解但解的个数不确定解析:选C.由正弦定理得b sin B =csin C ,所以sin B =b sin Cc =40×3220=3>1.所以角B 不存在,即满足条件的三角形不存在.2.在△ABC 中,若sin A =sin B ,则A ,B 的关系为________;若sin A >sin B ,则A ,B 的关系为________.解析:sin A =sin B ⇔a =b ⇔A =B ; sin A >sin B ⇔a >b ⇔A >B . 答案:A =B A >B3.在△ABC 中,a cos A =b cos B ,则这个三角形的形状为________. 解析:由正弦定理,得sin A cos A =sin B cos B , 即sin 2A =sin 2B ,所以2A =2B 或2A =π-2B ,即A =B 或A +B =π2,所以这个三角形为等腰三角形或直角三角形. 答案:等腰三角形或直角三角形[学生用书P88]利用正、余弦定理求解三角形(多维探究) 角度一 求角或三角函数值(1)(2020·高考全国卷Ⅲ)在△ABC 中,cos C =23,AC =4,BC =3,则tan B =( )A.5 B .2 5 C .4 5D .8 5(2)(2021·福州市适应性考试)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若cos A (sin C -cos C )=cos B ,a =2,c =2,则角C 的大小为________.【解析】 (1)方法一:在△ABC 中,cos C =23,则sin C =53>22,所以C ∈⎝ ⎛⎭⎪⎫π4,π2.由余弦定理知AB 2=AC 2+BC 2-2AC ·BC ·cos C =16+9-2×4×3×23=9,所以AB =3.由正弦定理AC sin B =AB sin C ,得sin B =459,易知B ∈⎝ ⎛⎭⎪⎫0,π2,所以cos B =19,tan B =sin Bcos B =4 5.故选C.方法二:在△ABC 中,cos C =23,AC =4,BC =3,所以由余弦定理知AB 2=AC 2+BC 2-2AC ·BC ·cos C =16+9-2×4×3×23=9,所以AB =3,所以△ABC 是等腰三角形.过点B 作BD ⊥AC 于点D ,则BD =BC 2-CD 2=32-⎝ ⎛⎭⎪⎫422=5,tan B2=25=255,所以tan B=2tanB21-tan2B2=4 5.故选C.(2)因为cos A(sin C-cos C)=cos B,所以cos A(sin C-cos C)=-cos(A+C),所以cos A sin C=sin A sin C,所以sin C(cos A-sin A)=0,因为C∈(0,π),所以sin C≠0,cos A=sin A,则tan A=1,又A∈(0,π)所以A=π4,又asin A=csin C,即2 sin π4=2sin C,所以sin C=12,因为c<a,所以0<C<π4,故C=π6.【答案】(1)C(2)π6角度二求边长或周长在△ABC中,内角A,B,C的对边a,b,c成公差为2的等差数列,C=120°.(1)求边长a;(2)(一题多解)求AB边上的高CD的长.【解】(1)由题意得b=a+2,c=a+4,由余弦定理cos C=a2+b2-c22ab得cos 120°=a2+(a+2)2-(a+4)22a(a+2),即a2-a-6=0,所以a=3或a=-2(舍去),所以a=3.(2)方法一:由(1)知a=3,b=5,c=7,由三角形的面积公式得12ab sin ∠ACB=12c×CD,所以CD=ab sin ∠ACBc=3×5×327=15314,即AB边上的高CD=15314.方法二:由(1)知a=3,b=5,c=7,由正弦定理得3sin A =7sin ∠ACB=7sin 120°,即sin A =3314,在Rt △ACD 中,CD =AC sin A =5×3314=15314,即AB 边上的高CD =15314.(1)正弦定理、余弦定理的作用是在已知三角形部分元素的情况下求解其余元素,基本思想是方程思想,即根据正弦定理、余弦定理列出关于未知元素的方程,通过解方程求得未知元素.(2)正弦定理、余弦定理的另一个作用是实现三角形边角关系的互化,解题时可以把已知条件化为角的三角函数关系,也可以把已知条件化为三角形边的关系.(3)涉及最值问题时,常利用基本不等式或表示为三角形的某一内角的三角函数形式求解.1.(2021·广东省七校联考)若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知2b sin 2A =3a sin B ,且c =2b ,则ab 等于( )A.32 B . 2 C.43D. 3解析:选B.由2b sin 2A =3a sin B ,及正弦定理可得4sin B ·sin A cos A =3sin A sin B ,由于sin A ≠0,sin B ≠0,所以cos A =34,又c =2b ,所以a 2=b 2+c 2-2bc cos A =b 2+4b 2-2b ×2b ×34=2b 2,所以ab =2,故选B.2.(2019·高考全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设(sin B -sin C )2=sin 2A -sin B sinC.(1)求A;(2)若2a+b=2c,求sinC.解:(1)由已知得sin2B+sin2C-sin2A=sin B sin C,故由正弦定理得b2+c2-a2=bc.由余弦定理得cos A=b2+c2-a22bc=12.因为0°<A<180°,所以A=60°.(2)由(1)知B=120°-C,由题设及正弦定理得2sin A+sin(120°-C)=2sinC,即62+32cos C+12sin C=2sin C,可得cos(C+60°)=-22.由于0°<C<120°,所以sin(C+60°)=22,故sin C=sin(C+60°-60°)=sin(C+60°)cos 60°-cos(C+60°)sin 60°=6+2 4.判断三角形的形状(典例迁移)(2020·重庆六校联考)在△ABC中,cos2B2=a+c2c(a,b,c分别为角A,B,C的对边),则△ABC的形状为()A.直角三角形B.等边三角形C.等腰三角形D.等腰三角形或直角三角形【解析】已知等式变形得cos B+1=ac+1,即cos B=ac①.由余弦定理得cos B=a2+c2-b22ac,代入①得a2+c2-b22ac=ac,整理得b2+a2=c2,即C为直角,则△ABC为直角三角形.【答案】 A【迁移探究1】(变条件)将“cos2B2=a+c2c”改为“c-a cos B=(2a-b)cosA”,试判断△ABC的形状.解:因为c-a cos B=(2a-b)cos A,C=π-(A+B),所以由正弦定理得sin C-sin A cos B=2sin A cos A-sin B cos A,所以sin A cos B+cos A sin B-sin A cos B=2sin A cos A-sin B cos A,所以cos A(sin B-sin A)=0,所以cos A=0或sin B=sin A,所以A=π2或B=A或B=π-A(舍去),所以△ABC为等腰三角形或直角三角形.【迁移探究2】(变条件)将“cos2B2=a+c2c”改为“sin Asin B=ac,(b+c+a)(b+c-a)=3bc”,试判断△ABC的形状.解:因为sin Asin B=ac,所以ab=ac,所以b=c.又(b+c+a)(b+c-a)=3bc,所以b2+c2-a2=bc,所以cos A=b2+c2-a22bc=bc2bc=12.因为A∈(0,π),所以A=π3,所以△ABC是等边三角形.(1)判定三角形形状的2种常用途径(2)判定三角形形状的3个注意点①“角化边”后要注意用因式分解、配方等方法得出边的相应关系; ②“边化角”后要注意用三角恒等变换公式、三角形内角和定理及诱导公式推出角的关系;③还要特别注意“等腰直角三角形”与“等腰三角形或直角三角形”的区别.在△ABC 中,已知2a cos B =c, sin A sin B ·(2-cos C )=sin 2C2+12,则△ABC 为( )A .等边三角形B .等腰直角三角形C .锐角非等边三角形D .钝角三角形解析:选B.将已知等式2a cos B =c 利用正弦定理化简得2sin A cos B =sin C , 因为sin C =sin ()A +B =sin A cos B +cos A sin B , 所以2sin A cos B =sin A cos B +cos A sin B , 即sin A cos B -cos A sin B =sin(A -B )=0, 因为A 与B 都为△ABC 的内角, 所以A -B =0,即A =B .因为sin A sin B (2-cos C )=sin 2C 2+12,所以sin A sin B (2-cos C )=12(1-cos C )+12=1-12cos C , 所以-12⎣⎡⎦⎤cos ()A +B -cos (A -B )(2-cosC )=1-12cos C ,所以-12(-cos C-1)(2-cos C)=1-12cos C,即(cos C+1)(2-cos C)=2-cos C,整理得cos2C-2cos C=0,即cos C(cos C-2)=0,所以cos C=0或cos C =2(舍去),所以C=90°,则△ABC为等腰直角三角形,故选B.与三角形面积有关的问题(多维探究)角度一计算三角形的面积(一题多解)(2021·昆明市三诊一模)△ABC的三个内角A,B,C所对的边分别为a,b,c,若B=120°,sin C=217,c=2,则△ABC的面积等于() A.32B.2 3C.34 D. 3【解析】方法一:由正弦定理bsin B=csin C,得b=c sin Bsin C=2×32217=7.由余弦定理b2=a2+c2-2ac cos B,得7=a2+4+2a,解得a=1或a=-3(舍去),所以S△ABC=12ac sin B=12×1×2×32=32,故选A.方法二:由正弦定理bsin B=csin C,得b=c sin Bsin C=2×32217=7.因为sin C=217,0°<C<60°,所以cos C=277,所以sin A=sin(B+C)=sin B cos C+cos B sin C=32×277-12×217=2114,所以S△ABC=12bc sin A=12×7×2×2114=32,故选A.【答案】 A求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积;(2)若已知三角形的三边,可先求其中一个角的余弦值,再求其正弦值,代入公式求面积,总之,结合图形恰当选择面积公式是解题的关键.角度二已知三角形的面积解三角形(2021·深圳市统一测试)已知△ABC的内角A,B,C的对边分别为a,b,c,△ABC的面积为S,a2+b2-c2=2S.(1)求cos C;(2)(一题多解)若a cos B+b sin A=c,a=5,求b.【解】(1)因为S=12ab sin C,a2+b2-c2=2S,所以a2+b2-c2=ab sin C,在△ABC中,由余弦定理得cos C=a2+b2-c22ab=ab sin C2ab=sin C2,所以sin C=2cos C,又sin2C+cos2C=1,所以5cos2C=1,cos C=±55,又C∈(0,π),所以sin C>0,所以cos C>0,所以cos C=55.(2)方法一:在△ABC中,由正弦定理得sin A cos B+sin B sin A=sin C,因为sin C=sin[π-(A+B)]=sin(A+B)=sin A cos B+cos A sin B,所以sin A cos B+sin B sin A=sin A cos B+cos A sin B,即sin B sin A=cos A sinB,又A,B∈(0,π),所以sin B≠0,sin A=cos A,得A=π4.因为sin B=sin[π-(A+C)]=sin(A+C),所以sin B=sin A cos C+cos A sin C=22×55+22×255=31010.在△ABC 中,由正弦定理得b =a sin Bsin A =5×3101022=3.方法二:因为a cos B +b sin A =c , a cos B +b cos A =c ,所以a cos B +b sin A =a cos B +b cos A , 即sin A =cos A ,又A ∈(0,π),所以A =π4.在△ABC 中,由正弦定理得c =a sin Csin A =5×25522=2 2.因为b =c cos A +a cos C , 所以b =22×22+5×55=3. 方法三:求A 同方法一或方法二.在△ABC 中,由正弦定理得c =a sin Csin A =5×25522=22,由余弦定理c 2=a 2+b 2-2ab cos C ,得b 2-2b -3=0,解得b =-1(舍去)或b =3.所以b =3.(或由余弦定理a 2=b 2+c 2-2bc cos A ,得b 2-4b +3=0,解得b =1或b =3.因为当b =1时,a 2+b 2-c 2=-2<0,不满足cos C >0或a 2+b 2-c 2=-2≠2S ,所以应舍去,故b =3)已知三角形面积求边、角的方法(1)若求角,就寻求这个角的两边的关系,利用面积公式列方程求解; (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解. [注意] 正弦定理、余弦定理与三角函数性质的综合应用中,要注意三角函数公式的工具性作用.1.在△ABC 中,cos B =14,b =2,sin C =2sin A ,则△ABC 的面积等于( )A.14 B .12C.32D.154解析:选D.在△ABC 中,cos B =14,b =2,sin C =2sin A ,由正弦定理得c=2a ;由余弦定理得b 2=a 2+c 2-2ac ·cos B =a 2+4a 2-2a ·2a ·14=4a 2=4,解得a=1,可得c =2,所以△ABC 的面积为S =12ac sin B =12×1×2×1-⎝ ⎛⎭⎪⎫142=154.故选D.2.(2020·成都市诊断性检测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且b 2+c 2-a 2=423bc .(1)求sin A 的值;(2)若△ABC 的面积为2,且2sin B =3sin C ,求△ABC 的周长. 解:(1)因为b 2+c 2-a 2=2bc cos A ,所以2bc cos A =423bc ,所以cos A =223,所以在△ABC 中,sin A =1-cos 2A =13.(2)因为△ABC 的面积为2,所以12bc sin A =16bc =2, 所以bc =6 2.因为2sin B =3sin C ,所以由正弦定理得 2 b =3c ,所以b =32,c =2,所以a 2=b 2+c 2-2bc cos A =6,所以a = 6. 所以△ABC 的周长为2+32+ 6.[学生用书P91]高考新声音3 解三角形中的结构不良型开放性问题(2020·新高考卷Ⅰ)在①ac =3,②c sin A =3,③c =3b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC ,它的内角A ,B ,C 的对边分别为a ,b ,c ,且sin A =3sin B ,C =π6,________________?【解题思路】 结合已知条件,根据正弦定理及余弦定理可得a = 3 b ,b =c ,选择①ac =3,可由a = 3 b ,b =c ,求得a ,b ,c 的值,得到结论;选择②c sin A =3,可由b =c 得到A ,B ,进而求得a ,b ,c 的值,得到结论;选择③c = 3 b ,与b =c 矛盾,得到结论.【解】 方案一:选条件①.由C =π6和余弦定理得a 2+b 2-c 22ab =32. 由sin A =3sin B 及正弦定理得a =3b . 于是3b 2+b 2-c 223b 2=32,由此可得b =c . 由①ac =3,解得a =3,b =c =1.因此,选条件①时问题中的三角形存在,此时c =1. 方案二:选条件②.由C=π6和余弦定理得a2+b2-c22ab=32.由sin A=3sin B及正弦定理得a=3b.于是3b2+b2-c223b2=32,由此可得b=c,B=C=π6,A=2π3.由②c sin A=3,所以c=b=23,a=6.因此,选条件②时问题中的三角形存在,此时c=2 3.方案三:选条件③.由C=π6和余弦定理得a2+b2-c22ab=32.由sin A=3sin B及正弦定理得a=3b.于是3b2+b2-c223b2=32,由此可得b=c.由③c=3b,与b=c矛盾.因此,选条件③时问题中的三角形不存在.本题以解三角形为背景命制,给定了若干条件(在这些条件下三角形并不能随之确定),在此基础上让学生在另外给出的几个条件中自主选择,在所选条件下,若问题中的三角形存在,求解三角形;若问题中的三角形不存在,说明理由.(2020·高考北京卷)在△ABC中,a+b=11,再从条件①、条件②这两个条件中选择一个作为已知,求;(1)a的值;(2)sin C和△ABC的面积.条件①:c=7,cos A=-1 7;条件②:cos A=18,cos B=916.解:选①(1)由余弦定理a 2=b 2+c 2-2bc cos A ,b =11-a ,c =7, 得a 2=(11-a )2+49-2(11-a )×7×⎝ ⎛⎭⎪⎫-17,所以a =8.(2)因为cos A =-17,A ∈(0,π),所以sin A =437. 由正弦定理a sin A =c sin C ,得sin C =c sin A a =7×4378=32,由(1)知b =11-a =3,所以S △ABC =12ab sin C =12×8×3×32=6 3.选②(1)因为cos A =18,所以A ∈⎝ ⎛⎭⎪⎫0,π2,sin A =378.因为cos B =916,所以B ∈⎝ ⎛⎭⎪⎫0,π2,sin B =5716.由正弦定理a sin A =bsin B , 得a 378=11-a 5716,所以a =6.(2)sin C =sin(π-A -B )=sin(A +B )=sin A cos B +cos A sin B =74. 因为a +b =11,a =6, 所以b =5.所以S △ABC =12ab sin C =12×6×5×74=1574.[学生用书P301(单独成册)][A 级 基础练]1.(2020·六校联盟第二次联考)在△ABC 中,AB =3,AC =1,B =30°,则A =( )A .60°B .30°或90°C .60°或120°D .90°解析:选B.由正弦定理AC sin B =ABsin C 得1sin 30°=3sin C ,所以sin C =32,因为AB >AC ,所以C =60°或120°,当C =60°,B =30°时,A =90°;当C =120°,B =30°时,A =30°.2.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定解析:选B.因为b cos C +c cos B =a sin A ,所以由正弦定理得sin B cos C +sin C cos B =sin 2A ,所以sin(B +C )=sin 2A .又sin(B +C )=sin A 且sin A ≠0,所以sin A =1,所以A =π2,所以△ABC 为直角三角形,故选B.3.(2021·长沙市四校模拟考试)设△ABC 的内角A ,B ,C 的对边分别是a ,b ,c .已知2b -a cos C =0,sin A =3sin(A +C ),则bca 2=( )A.74 B .149C.23D.69解析:选D.因为2b -a cos C =0,所以由余弦定理得2b -a ×a 2+b 2-c 22ab =0,整理得3b 2+c 2=a 2 ①.因为sin A =3sin(A +C )=3sin B ,所以由正弦定理可得a =3b ②,由①②可得c =6b ,则bc a 2=b ×6b 9b 2=69.故选D.4.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c .若角A ,B ,C 依次成等差数列,且a =1,b =3,则S △ABC =( )A. 2 B . 3 C.32D .2解析:选C.因为A ,B ,C 依次成等差数列,所以B =60°,所以由余弦定理得b 2=a 2+c 2-2ac cos B ,得c =2或c =-1(舍去),所以由正弦定理得S △ABC =12ac sin B =32,故选C.5.在△ABC 中,已知a ,b ,c 分别为角A ,B ,C 的对边且∠A =60°,若S △ABC =332且2sin B =3sin C ,则△ABC 的周长等于( )A .5+7B .12C .10+7D .5+27解析:选A.在△ABC 中,∠A =60°.因为2sin B =3sin C ,故由正弦定理可得2b =3c ,再由S △ABC =332=12bc ·sin A ,可得bc =6,所以b =3,c =2.由余弦定理可得a 2=b 2+c 2-2bc cos A =7,所以a =7,故△ABC 的周长为a +b +c =5+7,故选A.6.(2020·福州市适应性考试)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a cos B +b cos A =2ac ,则a =________.解析:由题设及正弦定理得sin A cos B +sin B cos A =2a sin C ,所以sin(A +B )=2a sinC .又A +B +C =π,所以sin C =2a sin C ,又sin C ≠0,所以a =12. 答案:127.(2020·湖北八校第一次联考)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且sin B -sin A (sin C +cos C )=0,a =2,c =2,则角C =________.解析:因为A+C=π-B,所以sin B=sin(A+C)=sin A·cos C+cos A sin C,因为sin B-sin A(sin C+cos C)=0,所以cos A sin C-sin A sin C=0,因为C∈(0,π),所以sin C>0,所以cos A=sin A,又A∈(0,π),所以A=π4,由正弦定理得a sin π4=csin C,又a=2,c=2,所以sin C=12,因为a>c,所以C=π6.答案:π68.(2020·福州市质量检测)已知钝角三角形ABC的内角A,B,C的对边分别为a,b,c,且c=7,b=1,若△ABC的面积为62,则a的长为________.解析:因为△ABC的面积S=12bc sin A,所以62=12×1×7sin A,所以sin A=67,所以cos A=±77,当cos A=77时,由a2=b2+c2-2bc cos A得a=6,此时△ABC为直角三角形(舍去);当cos A=-77时,由a2=b2+c2-2bc cos A得a=10,经检验,a=10符合题意.综上,a=10.答案:109.(2020·高考全国卷Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c.已知B=150°.(1)若a=3c,b=27,求△ABC的面积;(2)若sin A+3sin C=22,求C.解:(1)由题设及余弦定理得28=3c2+c2-2×3c2×cos 150°.解得c=-2(舍去),c=2,从而a=2 3.△ABC的面积为12×23×2×sin 150°= 3.(2)在△ABC 中,A =180°-B -C =30°-C ,所以 sin A +3sin C =sin(30°-C )+3sin C =sin(30°+C ). 故sin(30°+C )=22.而0°<C <30°,所以30°+C =45°,故C =15°.10.(2020·高考全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos 2⎝ ⎛⎭⎪⎫π2+A +cos A =54.(1)求A ;(2)若b -c =33a ,证明:△ABC 是直角三角形.解:(1)由已知得sin 2A +cos A =54,即cos 2A -cos A +14=0. 所以⎝ ⎛⎭⎪⎫cos A -122=0, cos A =12.由于0<A <π,故A =π3.(2)证明:由正弦定理及已知条件可得sin B -sin C =33sin A . 由(1)知B +C =2π3,所以sin B -sin ⎝ ⎛⎭⎪⎫2π3-B =33sin π3.即12sin B -32cos B =12,sin ⎝⎛⎭⎪⎫B -π3=12.由于0<B <2π3,故B =π2.从而△ABC 是直角三角形.[B 级 综合练]11.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为43,且2b cos A +a =2c ,a +c =8,则其周长为( )A .10B .12C .8+ 3D .8+2 3解析:选B.因为△ABC 的面积为43,所以12ac sin B =4 3.因为2b cos A +a=2c ,所以由正弦定理得2sin B cos A +sin A =2sin C ,又A +B +C =π,所以2sin B cos A +sin A =2sin A cos B +2cos A sin B ,所以sin A =2cos B ·sin A ,因为sin A ≠0,所以cos B =12,因为0<B <π,所以B =π3,所以ac =16,又a +c =8,所以a =c =4,所以△ABC 为正三角形,所以△ABC 的周长为3×4=12.故选B.12.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a cos B -c -b 2=0,a 2=72bc ,b >c ,则b c =________.解析:由a cos B -c -b 2=0及正弦定理可得sin A cos B -sin C -sin B 2=0.因为sin C =sin(A +B )=sin A cos B +cos A sin B ,所以-sin B 2-cos A sin B =0,所以cosA =-12,即A =2π3.由余弦定理得a 2=72bc =b 2+c 2+bc ,即2b 2-5bc +2c 2=0,又b >c ,所以b c =2.答案:213.(2020·深圳市统一测试)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a +b )(sin A -sin B )=(a -c )sin C ,b =2,则△ABC 的外接圆面积为________.解析:利用正弦定理将已知等式转化为(a +b )(a -b )=(a -c )c ,即a 2+c 2-b 2=ac ,所以由余弦定理得cos B =a 2+c 2-b 22ac =12,所以B =60°.设△ABC 的外接圆半径为R ,则由正弦定理知,2R =b sin B =43,所以△ABC 的外接圆面积S =πR 2=4π3. 答案:4π314.(2020·广州市调研检测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知c sin ⎝⎛⎭⎪⎫A +π3-a sin C =0. (1)求角A 的值;(2)若△ABC 的面积为3,周长为6,求a 的值.解:(1)因为c sin ⎝⎛⎭⎪⎫A +π3-a sin C =0,所以由正弦定理得sin C ⎝ ⎛⎭⎪⎫12sin A +32cos A -sin A ·sin C =0. 因为sin C >0, 所以32cos A -12sin A =0,即tan A =3,因为A ∈(0,π),所以A =π3.(2)因为△ABC 的面积为3,所以12bc sin A =3,得bc =4.由余弦定理a 2=b 2+c 2-2bc cos A ,得a 2=b 2+c 2-bc =(b +c )2-3bc =(b +c )2-12,因为△ABC 的周长为6,即a +b +c =6,所以a 2=(6-a )2-12,所以a =2.[C 级 提升练]15.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,3b sin A =a ·(2-cosB ).(1)求角B 的大小;(2)D 为边AB 上一点,且满足CD =2,AC =4,锐角△ACD 的面积为15,求BC 的长.解:(1)由正弦定理得3sin B sin A =sin A (2-cos B ),因为A ∈(0,π),则sin A >0,所以3sin B =2-cos B ,所以2sin ⎝⎛⎭⎪⎫B +π6=2, 所以sin ⎝⎛⎭⎪⎫B +π6=1, 因为B ∈(0,π),所以B +π6=π2,解得B =π3.(2)由题意,可得S △ACD =12CD ·CA sin ∠ACD =12×2×4sin ∠ACD =15,解得sin ∠ACD =154. 又因为△ACD 为锐角三角形, 所以cos ∠ACD =1-sin 2∠ACD =14, 在△ACD 中,由余弦定理得AD 2=CA 2+CD 2-2CA ·CD ·cos ∠ACD =42+22-2×2×4×14=16,所以AD =4,在△ACD 中,由正弦定理得CD sin A =AD sin ∠ACD, 则sin A =CD AD ·sin ∠ACD =158,在△ABC 中,由正弦定理得BC sin A =AC sin B ,所以BC =AC sin A sin B= 5.。
高考正弦定理和余弦定理练习题与答案一、选择题1.已知△中, a=c=2, A=30°, 则b=( )A. B.2C.3.D. +1答案:B解析: ∵a=c=2, ∴A=C=30°, ∴B=120°.由余弦定理可得b=2.2.△中, a= , b= , = , 则符合条件的三角形有( )A.1.B.2个C.3.D.0个答案:B解析: ∵= ,∴<b= <a= ,∴符合条件的三角形有2个.3.(2010·天津卷)在△中, 内角A, B, C的对边分别是a, b, c.若a2-b2= , =2 , 则A=( )A. 30°B. 60°C. 120°D. 150°答案:A解析: 利用正弦定理, =2 可化为c=2 b.又∵a2-b2= ,∴a2-b2= b×2 b=6b2, 即a2=7b2, a= b.在△中, === ,∴A=30°.4. (2010·湖南卷)在△中, 角A, B, C所对的边长分别为a, b, c, 若∠C=120°, c= a, 则( )A. a>bB. a<bC. a=bD. a与b的大小关系不能确定答案:A解析: 由正弦定理, 得= ,∴==>.∴A>30°.∴B=180°-120°-A<30°.∴a>b.5.如果等腰三角形的周长是底边长的5倍, 则它的顶角的余弦值为( )A..B.C..D.答案:D解析: 方法一: 设三角形的底边长为a, 则周长为5a,∴腰长为2a, 由余弦定理知α== .方法二:如图, 过点A作⊥于点D,则=2a, = , ∴= ,∴α=1-22=1-2×=.6.(2010·泉州模拟)△中, = , =1, ∠B=30°, 则△的面积等于( )A..B.C. 或.D. 或解析: ∵= ,∴=·30°=.∴C=60°或C=120°.当C=60°时, A=90°, S△=×1×= ,当C=120°时, A=30°, S△=×1× 30°= .即△的面积为或.二、填空题7. 在△中, 若b=1, c= , ∠C= , 则a=.答案:1解析: 由正弦定理= , 即= , = .又b<c, ∴B= , ∴A= .∴a=1.8.(2010·山东卷)在△中, 角A, B, C所对的边分别为a, b, c.若a = , b=2, += , 则角A的大小为.答案:解析: ∵+= ,∴(B+)=1.又0<B<π, ∴B= .由正弦定理, 知= , ∴= .又a<b, ∴A<B, ∴A= .9.(2010·课标全国卷)在△中,D为边上一点,=,∠=120°,=2.若△的面积为3-,则∠=.答案: 60°解析: S△=×2××=3- ,解得=2( -1),∴=-1, =3( -1).在△中, 2=4+( -1)2-2×2×( -1)×120°=6,在△中, 2=4+[2( -1)]2-2×2×2( -1)×60°=24-12 ,∴= ( -1),则∠=== ,∴∠=60°.三、解答题10.如图, △是等边三角形, ∠=45°, = , A.B.C三点共线.(1)求∠的值;(2)求线段的长.解: (1)∵△是等边三角形, ∠=45°,∴∠=45°+60°,∴∠=(45°+60°)=45°60°+45°60°=.(2)在△中, = ,∴=∠×=×=1+.11.(2010·全国Ⅱ卷)△中, D为边上的一点, =33, = , ∠= , 求. 解: 由∠= >0知B< ,由已知得= , ∠= ,从而∠=(∠-B)=∠-∠=×-×=.由正弦定理得= ,===25.12.(2010·安徽卷)设△是锐角三角形, a, b, c分别是内角A, B, C 所对边长, 并且2A=+2B.(1)求角A的值;(2)若·=12, a=2 , 求b, c(其中b<c).解: (1)因为2A=+2B= 2B- 2B+2B= ,所以=±.又A为锐角, 所以A= .(2)由·=12, 可得=12.①由(1)知A= , 所以=24.②由余弦定理知a2=c2+b2-2, 将a=2 与①代入, 得c2+b2=52, ③③+②×2, 得(c+b)2=100,所以c+b=10.因此c, b是一元二次方程t2-10t+24=0的两个根.解此方程并由c>b知c=6, b=4.。
2024届新高考数学复习:专项(正弦定理、余弦定理及解三角形)历年好题练习[基础巩固]一、选择题1.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,若a =2 ,b =3 ,B =π3 ,则A =( )A .π6B .56 πC .π4D .π4 或34 π2.在△ABC 中,b =40,c =20,C =60°,则此三角形解的情况是( ) A .有一解 B .有两解 C .无解D .有解但解的个数不确定3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =3,c =7 ,则角C =( )A .π6B .π4C .π3D .π24.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( )A .12 B .1 C .3 D .25.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3,cos B =23 ,则b =( )A.14 B .6 C .14 D .66.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定7.钝角三角形ABC 的面积是12 ,AB =1,BC =2 ,则AC =( ) A .5 B .5 C .2 D .18.如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( )A .502 mB .503 mC .252 mD .2522 m9.在△ABC 中,cos C 2 =5,BC =1,AC =5,则AB =( ) A .42 B .30 C .29 D .25二、填空题10.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若(a +b +c )(a -b +c )=ac ,则B =________.11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =a cos B ,①则A =________;②若sin C =13 ,则cos (π+B )=________.12.[2023ꞏ全国甲卷(理)]在△ABC 中,∠BAC =60°,AB =2,BC =6 ,∠BAC 的角平分线交BC 于D ,则AD =________.[提升练习]13.(多选)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a =8,b <4,c =7,且满足(2a -b )cos C =c ꞏcos B ,则下列结论正确的是( )A .C =60°B .△ABC 的面积为63 C .b =2D .△ABC 为锐角三角形 14.[2023ꞏ全国甲卷(理)]已知四棱锥P -ABCD 的底面是边长为4的正方形,PC =PD =3,∠PCA =45°,则△PBC 面积为( )A .22B .32C .42D .6215.[2022ꞏ全国甲卷(理),16]已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当ACAB 取得最小值时,BD =________.16.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且6S =(a +b )2-c 2,则tan C 等于________.参考答案1.C 由正弦定理得a sin A =b sin B ,∴sin A =a sin B b =2×33=2,又a <b ,∴A为锐角,∴A =π4 .2.C 由正弦定理bsin B =c sin C ,∴sin B =b sin C c =40×320 =3 >1,∴角B 不存在,即满足条件的三角形不存在.3.C 由余弦定理得c 2=a 2+b 2-2ab cos C ,得cos C =a 2+b 2-c 22ab =4+9-72×2×3 =12 ,又C 为△ABC 内角,∴C =π3 . 4.C 由余弦定理得a 2=b 2+c 2-2bc cos A ,又a 2=b 2+c 2-bc ,∴2cos A =1,cos A =12,∴sin A =1-cos 2A =3 ,∴S △ABC =12 bc sin A =12 ×4×3 =3 . 5.D ∵b sin A =3c sinB ,由正弦定理得ab =3bc ,∴a =3c ,又a =3,∴c =1,由余弦定理得b 2=a 2+c 2-2ac ꞏcos B =9+1-2×3×23 =6,∴b =6 .6.B ∵b cos C +c cos B =a sin A ,∴sin B cos C +sin C cos B =sin 2A ,∴sin A =1,又A 为△ABC 的内角,∴A =90°,∴△ABC 为直角三角形.7.B ∵S △ABC =12 AB ×BC ×sin B =22 sin B =12 ,∴sin B =22 ,若B =45°,由余弦定理得AC 2=AB 2+BC 2-2AB ꞏBC ꞏcos 45°=1+2-2×2 ×22 =1,则AC =1,则AB 2+AC 2=BC 2,△ABC 为直角三角形,不合题意;当B =135°时,由余弦定理得AC 2=AB 2+BC 2-2AB ꞏBC cos 135°=1+2+2×2 ×22 =5,∴AC =5 .8.A 由正弦定理得ACsin B =AB sin C ,∴AB =AC ꞏsin Csin B =50×22sin (180°-45°-105°)=502 . 9.A ∵cos C 2 =5 ,∴cos C =2cos 2C 2 -1=2×⎝⎛⎭⎫55 2-1=-35 .在△ABC 中,由余弦定理,得AB 2=AC 2+BC 2-2AC ꞏBC ꞏcos C =25+1-2×5×1×⎝⎛⎭⎫-35 =32,所以AB =42 ,故选A.10.23 π答案解析:由(a +b +c )(a -b +c )=ac 得a 2+c 2-b 2+ac =0.由余弦定理得cos B =a 2+c 2-b 22ac =-12 ,又B 为△ABC 的内角,∴B =23 π.11.①90° ②-13答案解析:①∵c =a ꞏcos B ,∴c =a ꞏa 2+c 2-b 22ac ,得a 2=b 2+c 2,∴∠A =90°;②∵cosB =cos (π-A -C )=sin C =13 .∴cos (π+B )=-cos B =-sin C =-13 .12.2答案解析:方法一 由余弦定理得cos 60°=AC 2+4-62×2AC ,整理得AC 2-2AC -2=0,得AC =1+3 .又S △ABC =S △ABD +S △ACD ,所以12 ×2AC sin 60°=12 ×2AD sin 30°+12 AC ×ADsin 30°,所以AD =23ACAC +2 =23×(1+3)3+3=2.方法二 由角平分线定理得BD AB =CD AC ,又BD +CD =6 ,所以BD =26AC +2,CD =6ACAC +2.由角平分线长公式得AD 2=AB ×AC -BD ×CD =2AC -12AC (AC +2)2 ,又由方法一知AC =1+3 ,所以AD 2=2+23 -12×(1+3)(3+3)2=2+23 -(23 -2)=4,所以AD =2.13.AB ∵(2a -b )cos C =c cos B ,∴(2sin A -sin B )cos C =sin C cos B ,∴2sin A cos C =sin B cos C +cos B sin C ,即2sin A cos C =sin (B +C ),∴2sin A cos C =sin A .∵在△ABC中,sin A ≠0,∴cos C =12 ,∴C =60°,A 正确.由余弦定理,得c 2=a 2+b 2-2ab cos C ,得49=64+b 2-2×8b cos 60°,即b 2-8b +15=0,解得b =3或b =5,又b <4,∴b =3,C错误.∴△ABC 的面积S =12 ab sin C =12 ×8×3×3 =63 ,B 正确.又cos A =b 2+c 2-a 22bc=9+49-642×3×7 <0,∴A 为钝角,△ABC 为钝角三角形,D 错误. 14.C如图,过点P 作PO ⊥平面ABCD ,垂足为O ,取DC 的中点M ,AB 的中点N ,连接PM ,MN ,AO ,BO .由PC =PD ,得PM ⊥DC ,又PO ⊥DC ,PO ∩PM =P ,所以DC ⊥平面POM ,又OM ⊂平面POM ,所以DC ⊥OM .在正方形ABCD 中,DC ⊥NM ,所以M ,N ,O 三点共线,所以OA =OB ,所以Rt △P AO ≌Rt △PBO ,所以PB =P A .在△P AC 中,由余弦定理,得P A =PC 2+AC 2-2PC ꞏAC cos 45° =17 ,所以PB =17 .在△PBC 中,由余弦定理,得cos ∠PCB =PC 2+BC 2-BP 22PC ꞏBC=13 ,所以sin ∠PCB =223 ,所以S △PBC =12 PC ꞏBC sin ∠PCB =42 ,故选C.15.3 -1答案解析:以D 为坐标原点,DC 所在的直线为x 轴,DC →的方向为x 轴的正方向,过点D 且垂直于DC 的直线为y 轴,建立平面直角坐标系(图略),易知点A 位于第一象限.由AD =2,∠ADB =120°,得A (1,3 ).因为CD =2BD ,所以设B (-x ,0),x >0,则C (2x ,0).所以AC=(2x -1)2+(0-3)2=4x 2-4x +4 ,AB =(-x -1)2+(0-3)2 =x 2+2x +4 ,所以⎝⎛⎭⎫AC AB 2=4x 2-4x +4x 2+2x +4.令f (x )=4x 2-4x +4x 2+2x +4,x >0,则f ′(x )=(4x 2-4x +4)′(x 2+2x +4)-(4x 2-4x +4)(x 2+2x +4)′(x 2+2x +4)2=(8x -4)(x 2+2x +4)-(4x 2-4x +4)(2x +2)(x 2+2x +4)2=12(x 2+2x -2)(x 2+2x +4)2 .令x 2+2x -2=0,解得x =-1-3 (舍去)或x =3 -1.当0<x <3 -1时,f ′(x )<0,所以f (x )在(0,3 -1)上单调递减;当x >3 -1时,f ′(x )>0,所以f (x )在(3 -1,+∞)上单调递增.所以当x =3 -1时,f (x )取得最小值,即ACAB 取得最小值,此时BD =3 -1.16.125答案解析:由余弦定理得2ab cos C =a 2+b 2-c 2,又6S =(a +b )2-c 2,所以6×12 ab sin C =(a +b )2-c 2=a 2+b 2-c 2+2ab =2ab cos C +2ab ,化简得3sin C =2cos C +2,结合sin 2C+cos 2C =1,解得sin C =1213 ,cos C =513 ,所以tan C =125 .。
正弦定理、余弦定理专题复习正弦定理、余弦定理专题复习教师版在下⾯考点要求掌握正弦定理、余弦定理,并能解决⼀些简单的三⾓形度量问题.⼀、知识梳理:1.正弦、余弦定理在△ABC中,若⾓A,B,C所对的边分别是a,b,c,R为△ABC的外接圆半径,则(1)S=12a·h a(h a表⽰边a上的⾼);(2)S=12ab sin C=________=________;(3)S=12r(a+b+c)(r为内切圆半径).[常⽤结论]1.在△ABC中,A>B?a>b?sin A>sin B.2.内⾓和公式的变形(1)sin (A+B)=sin C;(2)cos (A+B)=-cos C.⼆、基础⾃测:1.已知△ABC中,⾓A,B,C所对的边分别为a,b,c,若A=π6,B=π4,a=1,则b=()A.2B.1 C. 3 D.22.△ABC的内⾓A,B,C的对边分别为a,b,c.已知C=60°,b= , c=3,则A=________ .3.在△ABC中,若a=18,b=24,A=45°,则此三⾓形有()A.⽆解B.两解C.⼀解D.解的个数不确定4. △ABC的内⾓A,B,C的对边分别为a,b,c.已知a=5,c=2,3,则b=()A. 2B. 3C. 2D. 35.在△ABC中,a cos A=b cos B,则这个三⾓形的形状为________.6.在△ABC中,A=60°,AC=4,BC=23,则△ABC的⾯积等于________.三、典例讲解:考点1.利⽤正余弦定理解三⾓形问题例1:在△ABC中,内⾓A,B,C的对边分别为a,b,c,若a sin B cos C+c sin B cos A=12b,且a>b,则B=()A.π6 B.π3 C.2π3 D.5π6规律⽅法:练习1:(2019·全国卷Ⅰ)△ABC的内⾓A,B,C的对边分别为a,b,c.设(sin B-sin C)2=sin2A-sin B sin C.①求A;②若2a+b=2c,求sin C.考点2 与三⾓形⾯积有关的问题例2:(2019·全国卷Ⅱ)△ABC的内⾓A,B,C的对边分别为a,b,c.若b=6,a=2c,B=π3,则△ABC的⾯积为____________.规律⽅法:练习2 :(2019·武汉调研)在△ABC中,a,b,c分别是⾓A,B,C的对边,且2b cos C=2a+c.(1)求B;(2)若b=2,a+c=5,求△ABC的⾯积.考点3 判断三⾓形的形状例3设△ABC的内⾓A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则△ABC的形状为() A.锐⾓三⾓形B.直⾓三⾓形C.钝⾓三⾓形D.不确定练习3:(变条件1)本例中,若将条件变为2sin A cos B=sin C,判断△ABC 的形状.(变条件2)本例中,若将条件变为a2+b2-c2=ab,且2cos A sin B=sin C,判断△ABC的形状.三、巩固提⾼:1.在△ABC中,A=105°,C=45°,AB=2,则AC等于()A. 1B. 2C. 2D. 222.(2019·全国卷Ⅰ)△ABC的内⾓A,B,C的对边分别为a,b,c,已知a sin A-b sin B=4c sin C,cos A=-14,则bc=()A.6B.5 C.4 D.33.△ABC的内⾓A,B,C的对边分别为a,b,c.已知sin A+3cos A=0,a=27,b=2.(1)求c;(2)设D为BC边上⼀点,且AD⊥AC,求△ABD的⾯积4.(2020春?五华区校级⽉考)在△ABC中,内⾓A,B,C所对的边分别是a,b,c,(a+c)(sin A﹣sin C)=(b+c)sin B.(1)求A;(2)若,求b+c的取值范围.5.(2018·天津⾼考)在△ABC中,内⾓A,B,C所对的边分别为a,b,c.已知b sin A=a cos (B-π6).(1)求⾓B的⼤⼩;(2)设a=2,c=3,求b和sin (2A-B)的值.正弦定理、余弦定理专题复习考点要求掌握正弦定理、余弦定理,并能解决⼀些简单的三⾓形度量问题.⼀、知识梳理:1.正弦、余弦定理在△ABC中,若⾓A,B,C所对的边分别是a,b,c,R为△ABC的外接圆半径,则定理正弦定理余弦定理内容asin A=bsin B=csin C=2R.a2=b2+c2-2bc_cos_A;b2=c2+a2-2ca_cos_B;c2=a2+b2-2ab_cos_C变形(1)a=2R sin A,b=2R sin B,c=2R sin C;(2)a∶b∶c=sin A∶sin B∶sin C;(3)a+b+csin A+sin B+sin C=asin A=2R.cos A=b2+c2-a22bc;cos B=c2+a2-b22ac;cos C=a2+b2-c22ab(1)S=12a·h a(h a表⽰边a上的⾼);(2)S=12ab sin C=12ac_sin_B=12bc_sin_A;(3)S=12r(a+b+c)(r为内切圆半径).[常⽤结论]1.在△ABC中,A>B?a>b?sin A>sin B.2.内⾓和公式的变形(1)sin (A+B)=sin C;(2)cos (A+B)=-cos C.⼆、基础⾃测:1.已知△ABC中,⾓A,B,C所对的边分别为a,b,c,若A=π6,B=π4,a=1,则b=()A.2B.1 C. 3 D.2D[由asin A=bsin B得b=a sin Bsin A=sinπ4sinπ6=22×2= 2.]2.△ABC的内⾓A,B,C的对边分别为a,b,c.已知C=60°,b= , c=3,则A=________ .由正弦定理得,即sin B=因为b3.在△ABC中,若a=18,b=24,A=45°,则此三⾓形有() A.⽆解B.两解C.⼀解D.解的个数不确定B[∵b sin A=24sin 45°=122,∴122<18<24,即b sin A<a<b. ∴此三⾓形有两解.]4. △ABC的内⾓A,B,C的对边分别为a,b,c.已知a=5,c=2,cos A=23,则b=( )A. 2B. 3C. 2D. 3由余弦定理,得a2=b2+c2-2bc cos A,即5=b2+4-4b×,即3b2-8b-3=0,⼜b>0,解得b=3,故选D.5.在△ABC中,a cos A=b cos B,则这个三⾓形的形状为________.等腰三⾓形或直⾓三⾓形[由正弦定理,得sin A cos A =sin B cos B,即sin 2A=sin 2B,所以2A=2B或2A=π-2B,即A=B或A+B=π2,所以这个三⾓形为等腰三⾓形或直⾓三⾓形.] 6.在△ABC中,A=60°,AC=4,BC=23,则△ABC的⾯积等于________.23[因为23sin 60°=4sin B,所以sin B=1,所以B=90°,所以AB=2,所以S△ABC =12×2×23=2 3.三、典例讲解:考点1.利⽤正余弦定理解三⾓形问题例:在△ABC中,内⾓A,B,C的对边分别为a,b,c,若a sin B cos C+c sin B cos A=12b,且a>b,则B=( )A. π6 B.π3 C.2π3 D.5π6解析∵a sin B cos C+c sin B·cos A=12b,∴由正弦定理得sin A sin B cos C+sin C sin B·cos A=12sin B,即sin B(sin A cos C+sin C cos A)=12sin B.∵sin B≠0,∴sin(A+C)=12,即sin B=12.∵a>b,∴A>B,即B为锐⾓,∴B=π6,故选A规律总结:练习:(2019·全国卷Ⅰ)△ABC的内⾓A,B,C的对边分别为a,b,c.设(sin B-sin C)2=sin2A-sin B sin C.①求A;②若2a+b=2c,求sin C.[解]①由已知得sin2B+sin2C-sin2A=sin B sin C,故由正弦定理得b2+c2-a2=bc.由余弦定理得cos A=b2+c2-a22bc=12.因为0°<A<180°,所以A=60°.②由①知B=120°-C,由题设及正弦定理得2sin A+sin (120°-C)=2sin C,即62+32cos C+12sin C=2sin C,可得cos (C+60°)=-22.由于0°<C<120°,所以sin (C+60°)=2 2,故sin C=sin (C+60°-60°)=sin (C+60°)cos 60°-cos (C+60°)sin 60°=6+2 4.a+b=2c,求sin C.考点2 与三⾓形⾯积有关的问题例.(2019·全国卷Ⅱ)△ABC的内⾓A,B,C的对边分别为a,b,c.若b=6,a=2c,B=π3,则△ABC的⾯积为____________.63[法⼀:因为a=2c,b=6,B=π3,所以由余弦定理b2=a2+c2-2ac cosB,得62=(2c)2+c2-2×2c×c cos π3,得c=23,所以a=43,所以△ABC的⾯积S=12ac sin B=12×43×23×sinπ3=6 3.法⼆:因为a=2c,b=6,B=π3,所以由余弦定理b2=a2+c2-2ac cos B,得62=(2c)2+c2-2×2c×c cos π3,得c=23,所以a=43,所以a2=b2+c2,所以A=π2,所以△ABC的⾯积S=12×23×6=6 3.]练习 (2019·武汉调研)在△ABC 中,a ,b ,c 分别是⾓A ,B ,C 的对边,且2b cos C =2a +c .(1)求B ;(2)若b =2,a +c =5,求△ABC 的⾯积.解析 (1)由正弦定理,知2sin B cos C =2sin A +sin C ,由A +B +C =π,得2sin B cos C =2sin(B +C )+sin C =2(sin B cos C +cos B sin C )+sin C ,即2cos B ·sin C +sin C =0. 因为sin C ≠0,所以cos B =-12.因为0<B <π,所以B =2π3.(2)由余弦定理b 2=a 2+c 2-2ac cos B ,可知b 2=(a +c )2-2ac -2ac cos B .因为b =2,a +c =5,所以22=(5)2-2ac -2ac cos 2π3,得ac =1. 所以S △ABC =12ac sin B =12×1×32=34. 考点3 判断三⾓形的形状例设△ABC 的内⾓A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐⾓三⾓形B .直⾓三⾓形C .钝⾓三⾓形D .不确定 B [由正弦定理得sin B cos C +sin C cos B =sin 2A ,∴sin(B +C )=sin 2A ,即sin (π-A )=sin 2A ,sin A =sin 2A .∵A ∈(0,π),∴sin A >0,∴sin A =1,即A =π2,∴△ABC 为直⾓三⾓形.] 练习:1.(变条件)本例中,若将条件变为2sin A cos B =sin C ,判断△ABC 的形状.[解] ∵2sin A cos B =sin C =sin (A +B ),∴2sin A cos B =sin A cos B +cos A sin B ,∴sin (A -B )=0.⼜A ,B 为△ABC 的内⾓.∴A =B ,∴△ABC 为等腰三⾓形.2.(变条件)本例中,若将条件变为a 2+b 2-c 2=ab ,且2cos A sin B =sin C ,判断△ABC 的形状.[解] ∵a 2+b 2-c 2=ab ,∴cos C =a 2+b 2-c 22ab =12,⼜0<C <π,∴C =π3,⼜由2cos A sin B =sin C 得sin (B -A )=0,∴A =B ,故△ABC 为等边三⾓形.四、巩固提⾼:1.在△ABC中,A=105°,C=45°,AB=2,则AC等于( )A. 1B. 2C. 2D. 22解析由题意可知B=180°-105°-45°=30°,在△ABC中,由正弦定理得ABsin C=ACsin B,∴2sin 45°=ACsin 30°,解得AC=1.2.(2019·全国卷Ⅰ)△ABC的内⾓A,B,C的对边分别为a,b,c,已知a sinA-b sin B=4c sin C,cos A=-14,则bc=()A.6B.5 C.4 D.3 (1)A[∵a sin A-b sin B=4c sin C,∴由正弦定理得a2-b2=4c2,即a2=4c2+b2.由余弦定理得cos A=b2+c2-a22bc=b2+c2-(4c2+b2)2bc=-3c22bc=-14,∴bc=6.故选A.]3.△ABC的内⾓A,B,C的对边分别为a,b,c.已知sin A+3cos A=0,a=27,b=2.(1)求c;(2)设D为BC边上⼀点,且AD⊥AC,求△ABD的⾯积.[解](1)由已知条件可得tan A=-3,A∈(0,π),所以A=2π3,在△ABC中,由余弦定理得28=4+c2-4c cos 2π3,即c2+2c-24=0,解得c=-6(舍去),或c=4.(2)法⼀:如图,由题设可得∠CAD=π2,所以∠BAD=∠BAC-∠CAD=π6,故△ABD⾯积与△ACD⾯积的⽐值为12AB·AD·sinπ612AC·AD=1,⼜△ABC的⾯积为12×4×2sin ∠BAC=23,所以△ABD的⾯积为 3.法⼆:由余弦定理得cos C =27,在Rt △ACD 中,cos C =ACCD ,所以CD =7,所以AD =3,DB =CD =7,所以S △ABD =S △ACD =12×2×7×sin C =7×37= 3.法三:∠BAD =π6,由余弦定理得cos C =27,所以CD =7,所以AD =3,所以S △ABD =12×4×3×sin ∠DAB = 3.4.(2020春?五华区校级⽉考)在△ABC 中,内⾓A ,B ,C 所对的边分别是a ,b ,c ,(a +c )(sin A ﹣sin C )=(b +c )sin B .(1)求A ;(2)若,求b +c 的取值范围.解:(1)△ABC 中,由(a +c )(sin A ﹣sin C )=(b +c )sin B ,得(a +c )(a ﹣c )=(b +c )b ,整理得b 2+c 2﹣a 2=﹣bc ,解得,⼜A ∈(0,π),所以.(2)由正弦定理,得b =2sin B ,c =2sin C ,所以;⼜因为,所以,所以,所以b +c 的取值范围是.5.(2018·天津⾼考)在△ABC 中,内⾓A ,B ,C 所对的边分别为a ,b ,c .已知b sin A =a cos (B -π6).(1)求⾓B 的⼤⼩;(2)设a =2,c =3,求b 和sin (2A -B )的值.[解](1)在△ABC中,由正弦定理asin A=bsin B,可得b sin A=a sin B,⼜由b sin A=a cos (B-π6),得a sin B=a cos (B-π6),即sin B=cos (B-π6),可得tan B= 3.⼜因为B∈(0,π),可得B=π3.(2)在△ABC中,由余弦定理及a=2,c=3,B=π3,有b2=a2+c2-2ac cos B=7,故b=7.由b sin A=a cos (B-π6),可得sin A=37.因为a<c,故cos A=2 7 .因此sin 2A=2sin A cos A=43 7,cos 2A=2cos2A-1=1 7,所以,sin(2A-B)=sin 2A cos B-cos 2A sin B=43 7×12-17×32=3314.。
第6讲正弦定理和余弦定理最新考纲考向预测掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.命题趋势以利用正弦、余弦定理解三角形为主,常与三角函数的图象和性质、三角恒等变换、三角形中的几何计算交汇考查,加强数形结合思想的应用意识.题型多样,中档难度.核心素养逻辑推理、数学运算1.正弦定理和余弦定理定理正弦定理余弦定理内容asin A=bsin B=csin C=2R(R为△ABC外接圆半径)a2=b2+c2-2bc cos__A;b2=c2+a2-2ca cos__B;c2=a2+b2-2ab cos__C变形(1)a=2R sin A,b=2R sin__B,c=2R sin__C;(2)a∶b∶c=sin__A∶sin__B∶sin__C;(3)a sin B=b sin A,b sin C=c sin B,a sin C=c sin Acos A=b2+c2-a22bc;cos B=c2+a2-b22ca;cos C=a2+b2-c22ab(1)S△ABC=12a·h(h表示边a上的高).(2)S△ABC=12ab sin C=12ac sin B=12bc sin A.(3)S△ABC=12r(a+b+c)(r为△ABC内切圆半径).3.三角形解的判断A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b解的个数一解两解一解一解[注意]上表中A为锐角时,a<b sin A,无解.A为钝角或直角时,a=b,a<b均无解.常用结论1.在△ABC中,两边之和大于第三边,两边之差小于第三边,A>B⇔a>b⇔sin A>sin B⇔cos A<cos B.2.三角形中的三角函数关系(1)sin(A+B)=sin C.(2)cos(A+B)=-cos C.(3)sin A+B2=cosC2.(4)cos A+B2=sinC2.3.三角形中的射影定理在△ABC中,a=b cos C+c cos B;b=a cos C+c cos A;c=b cos A+a cos B.常见误区1.在△ABC中,已知a,b和A,利用正弦定理时,会出现解的不确定性,应注意根据“大边对大角”来取舍.2.在判断三角形的形状时,等式两边一般不要约去公因式,应移项提取公因式,以免漏解.1.判断正误(正确的打“√”,错误的打“×”)(1)三角形中三边之比等于相应的三个内角之比.( ) (2)在△ABC 中,若sin A >sin B ,则A >B .( )(3)在△ABC 中的六个元素中,已知任意三个元素可求其他元素.( ) 答案:(1)× (2)√ (3)×2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若A =60°,a 2=bc ,则sin B sin C =( )A.12 B.32 C.35D.34解析:选D.因为a 2=bc ,所以sin 2A =sin B sin C .因为A =60°,所以sin B sin C =sin 2A =34.故选D.3.(多选)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =4,sin A =45,cos C =210,则下列结论正确的是( )A .cos A =±35 B .B =π4C .b =522D .△ABC 的面积为7 2解析:选BC.由sin A =45,得cos A =±35,由cos C =210,得sin C =7210,若cos A =-35,则sin B =sin(A +C )=-17250<0,与sin B >0矛盾,故cos A =35,A 错误,则sin(A +C )=22,由sin A =45,cos C =210,得A >π4,C >π4,所以A +C >π2,所以A +C =3π4,故B =π4,B 正确.由正弦定理a sin A =b sin B ,得b =522,C 正确,所以△ABC 的面积为12×4×522×7210=7,D 错误.4.(易错题)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.解析:由题意得,b sin B =c sin C ,即sin B =b sin C c =6×323=22,结合b <c可得B =45°,则A =180°-B -C =75°.答案:75°利用正、余弦定理解三角形(2020·高考天津卷节选)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =22,b =5,c =13.(1)求角C 的大小; (2)求sin A 的值.【解】 (1)在△ABC 中,由余弦定理及a =22,b =5,c =13,有cos C =a 2+b 2-c 22ab =22.又因为C ∈(0,π),所以C =π4.(2)在△ABC 中,由正弦定理及C =π4,a =22,c =13,可得sin A =a sin Cc =21313.(1)正、余弦定理的选用①利用正弦定理可解决两类三角形问题:一是已知两角和一角的对边,求其他边或角;二是已知两边和一边的对角,求其他边或角;②利用余弦定理可解决两类三角形问题:一是已知两边和它们的夹角,求其他边或角;二是已知三边求角.由于这两种情形下的三角形是唯一确定的,所以其解也是唯一的.(2)三角形解的个数的判断已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.1.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解C .无解D .有解但解的个数不确定解析:选C.由正弦定理得b sin B =csin C , 所以sin B =b sin Cc =40×3220=3>1.所以角B 不存在,即满足条件的三角形不存在.2.(2020·广东省七校联考)若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知2b sin 2A =3a sin B ,且c =2b ,则ab =( )A.32 B. 2 C.43D. 3解析:选B.由2b sin 2A =3a sin B ,及正弦定理可得4sin B sin A cos A =3sin A sin B .由于sin A ≠0,sin B ≠0,所以cos A =34,又c =2b ,所以a 2=b 2+c 2-2bc cos A =b 2+4b 2-2b ×2b ×34=2b 2,所以ab =2,故选B.3.(2019·高考全国卷Ⅰ改编)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设(sin B -sin C )2=sin 2A -sin B sin C .(1)求A ;(2)若2a +b =2c ,求C .解:(1)由已知得sin 2B +sin 2C -sin 2A =sin B sin C ,故由正弦定理得b 2+c 2-a 2=bc .由余弦定理得cos A =b 2+c 2-a 22bc =12. 因为0°<A <180°,所以A =60°.(2)由(1)知B =120°-C ,由题设及正弦定理得2sin A +sin(120°-C )=2sin C ,即62+32cos C +12sin C =2sin C ,可得cos(C +60°)=-22.由于0°<C <120°,所以C +60°=135°,判断三角形的形状(1)(一题多解)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .直角三角形B .锐角三角形C .钝角三角形D .不确定(2)在△ABC 中,若c -a cos B =(2a -b )cos A ,则△ABC 的形状为________. 【解析】 (1)方法一:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a 即sin A =1,故A =π2,因此△ABC 是直角三角形.方法二:因为b cos C +c cos B =a sin A , 所以sin B cos C +sin C cos B =sin 2 A , 即sin(B +C )=sin 2 A ,所以sin A =sin 2 A , 故sin A =1,即A =π2,因此△ABC 是直角三角形.(2)因为c -a cos B =(2a -b )cos A ,所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A ,所以sin(A +B )-sin A cos B =2sin A cos A -sin B cos A , 故cos A (sin B -sin A )=0, 所以cos A =0或sin A =sin B , 即A =π2或A =B ,故△ABC 为等腰三角形或直角三角形. 【答案】 (1)A (2)等腰三角形或直角三角形【引申探究】 (变条件)若将本例(1)条件改为“2sin A cos B =sin C ”,试判断△ABC 的形状.解:方法一:由已知得2sin A cos B =sin C =sin(A +B )=sin A cos B +cos A sin B ,即sin(A -B )=0,因为-π<A -B <π,所以A =B ,故△ABC 为等腰三角形.方法二:由正弦定理得2a cos B =c ,再由余弦定理得2a ·a 2+c 2-b 22ac =c ⇒a 2=b 2⇒a =b , 故△ABC 为等腰三角形.判定三角形形状的两种常用途径[提醒] “角化边”后要注意用因式分解、配方等方法得出边的相应关系;“边化角”后要注意用三角恒等变换公式、三角形内角和定理及诱导公式推出角的关系.1.在△ABC 中,a ∶b ∶c =3∶5∶7,那么△ABC 是( ) A .直角三角形 B .钝角三角形 C .锐角三角形D .非钝角三角形解析:选B.因为a ∶b ∶c =3∶5∶7,所以可设a =3t ,b =5t ,c =7t ,由余弦定理可得cos C =9t 2+25t 2-49t 22×3t ×5t =-12,所以C =120°,△ABC 是钝角三角形,故选B.2.(多选)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,则下列四个命题中正确的是( )A .若a cos A =b cosB =ccos C ,则△ABC 一定是等边三角形 B .若a cos A =b cos B ,则△ABC 一定是等腰三角形 C .若b cos C +c cos B =b ,则△ABC 一定是等腰三角形 D .若a 2+b 2-c 2>0,则△ABC 一定是锐角三角形解析:选AC.由a cos A =b cos B =c cos C 及正弦定理得,sin A cos A =sin B cos B =sin Ccos C ,即tan A =tan B =tan C ,所以A =B =C ,所以△ABC 是等边三角形,A 正确.由a cos A =b cos B 及正弦定理得,sin A cos A =sin B cos B ,解得sin 2A =sin 2B ,则2A =2B 或2A +2B =π,所以△ABC 是等腰三角形或直角三角形,B 不正确.由b cos C +c cos B =b 及正弦定理得,sin B cos C +sin C cos B =sin B ,即sin(B +C )=sin B ,所以sin A =sin B ,则A =B ,所以△ABC 是等腰三角形,C 正确.由余弦定理得,cos C =a 2+b 2-c 22ab >0,所以角C 为锐角.而角A ,B 不一定是锐角,故D 不正确.故选AC.与三角形面积有关的问题 角度一 计算三角形的面积(1)(2020·高考全国卷Ⅰ改编)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.若a =3c ,b =27,则△ABC 的面积为________.(2)(2020·福建五校第二次联考)在△ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,已知a 2+b 2-c 2=3ab ,且ac sin B =23sin C ,则△ABC 的面积为________.【解析】 (1)由题设及余弦定理得28=3c 2+c 2-2×3c 2×cos 150°. 解得c =-2(舍去),c =2,从而a =2 3. △ABC 的面积为12×23×2×sin 150°= 3.(2)因为a 2+b 2-c 2=3ab ,所以由余弦定理得cos C =a 2+b 2-c 22ab =3ab 2ab =32,又0<C <π,所以C =π6.因为ac sin B =23sin C ,结合正弦定理可得abc =23c ,所以ab =2 3.故S △ABC =12ab sin C =12×23sin π6=32.【答案】 (1)3 (2)32求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积;(2)若已知三角形的三边,可先求其中一个角的余弦值,再求其正弦值,代入公式求面积,总之,结合图形恰当选择面积公式是解题的关键.角度二 已知三角形的面积解三角形(2020·广州市调研检测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知c sin ⎝ ⎛⎭⎪⎫A +π3-a sin C =0.(1)求角A 的值;(2)若△ABC 的面积为3,周长为6,求a 的值. 【解】 (1)因为c sin ⎝ ⎛⎭⎪⎫A +π3-a sin C =0, 所以由正弦定理得sin C ⎝ ⎛⎭⎪⎫12sin A +32cos A -sin A ·sin C =0.因为sin C >0,所以32cos A -12sin A =0,即tan A =3, 因为A ∈(0,π),所以A =π3.(2)因为△ABC 的面积为3,所以12bc sin A =3,得bc =4.由余弦定理a 2=b 2+c 2-2bc cos A ,得a 2=b 2+c 2-bc =(b +c )2-3bc =(b +c )2-12,因为△ABC 的周长为6,即a +b +c =6, 所以a 2=(6-a )2-12, 所以a =2.已知三角形面积求边、角的方法(1)若求角,就寻求这个角的两边的关系,利用面积公式列方程求解; (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解. [注意] 正弦定理、余弦定理与三角函数性质的综合应用中,要注意三角函数公式的工具性作用.1.(2020·福州市质量检测)在钝角△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知c =7,b =1,若△ABC 的面积为62,则a 的长为________.解析:因为△ABC 的面积S =12bc sin A ,所以62=12×1×7sin A ,所以sin A=67,所以cos A=±77,当cos A=77时,由a2=b2+c2-2bc cos A得a=6,此时△ABC为直角三角形(舍去);当cos A=-77时,由a2=b2+c2-2bc cos A得a=10,经检验,a=10符合题意.综上,a=10.答案:102.(2020·合肥第一次教学检测)在△ABC中,内角A,B,C所对的边分别为a,b,c,若a=2,a cos C+c cos A+2b cos B=0.(1)求B;(2)若BC边的中线AM长为5,求△ABC的面积.解:(1)在△ABC中,asin A=bsin B=csin C,且a cos C+c cos A+2b cos B=0,所以sin A cos C+sin C cos A+2sin B cos B=0,所以sin B·(1+2cos B)=0,又sin B≠0,所以cos B=-2 2.因为B是三角形的内角,所以B=3π4.(2)在△ABM中,BM=1,AM=5,B=3π4,AB=c,由余弦定理AM2=c2+BM2-2c·BM·cos B,得c2+2c-4=0,因为c>0,所以c= 2.在△ABC中,a=2,c=2,B=3π4,所以△ABC的面积S=12ac sin B=1.高考新声音系列4解三角形中的结构不良型开放型问题新高考卷Ⅰ第17题别具匠心地设计了开放性试题,设问方式追求创新,补充已知条件(三选一)并解答,条件不同,结论不同,不同的选择会有不同的结论,难度也会有区别.(2020·新高考卷Ⅰ)在①ac =3,②c sin A =3,③c =3b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC ,它的内角A ,B ,C 的对边分别为a ,b ,c ,且sin A =3sin B ,C =π6,________________?【解】 方案一:选条件①.由C =π6和余弦定理得a 2+b 2-c 22ab =32. 由sin A =3sin B 及正弦定理得a =3b . 于是3b 2+b 2-c 223b 2=32,由此可得b =c . 由①ac =3,解得a =3,b =c =1.因此,选条件①时问题中的三角形存在,此时c =1. 方案二:选条件②.由C =π6和余弦定理得a 2+b 2-c 22ab =32. 由sin A =3sin B 及正弦定理得a =3b .于是3b 2+b 2-c 223b 2=32,由此可得b =c ,B =C =π6,A =2π3. 由②c sin A =3,所以c =b =23,a =6.因此,选条件②时问题中的三角形存在,此时c =2 3. 方案三:选条件③.由C =π6和余弦定理得a 2+b 2-c 22ab =32.由sin A =3sin B 及正弦定理得a =3b . 于是3b 2+b 2-c 223b 2=32,由此可得b =c . 由③c =3b ,与b =c 矛盾.因此,选条件③时问题中的三角形不存在.本题以解三角形为背景命制,给定了若干条件(在这些条件下三角形并不能随之确定),在此基础上让学生在另外给出的几个条件中自主选择,在所选条件下,若问题中的三角形存在,求解三角形;若问题中的三角形不存在,说明理由.在①sin B=32,②cos B=34,③cos C=-79这三个条件中选择一个,补充在下面的问题中,并判断三角形是否有解.若有解,求出a的值;若无解,请说明理由.在△ABC中,已知a,b,c分别是角A,B,C的对边,且满足C=2B,b +c=10,________.解:若选择①sin B=32,则B=60°或B=120°,因为C=2B,所以C=120°或C=240°,显然矛盾,此时三角形无解.若选择②cos B=3 4,则由正弦定理可得cb=sin Csin B=sin 2Bsin B=2sin B cos Bsin B=2cos B=2×34=32,又b+c=10,所以c=6,b=4.由余弦定理b2=a2+c2-2ac cos B,可得16=a2+36-9a,解得a=4或a=5.若a=4,则由b=4知A=B,又C=2B,所以B+B+2B=180°,解得B=45°,这与cos B=34矛盾,舍去.经检验知,当a=5时适合题意.故a的值为5.若选择③cos C=-7 9,因为C=2B,所以cos 2B=-7 9,即2cos2B-1=-79,得cos B=13,此时cb=sin Csin B=sin 2Bsin B=2cos B=23<1,所以c<b,这与C=2B矛盾,此时三角形无解.[A 级 基础练]1.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32且b <c ,则b =( )A .3B .2 2C .2D . 3解析:选C.由余弦定理b 2+c 2-2bc cos A =a 2,得b 2-6b +8=0,解得b =2或b =4,因为b <c =23,所以b =2.选C.2.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b =7,c =4,cos A =74,则△ABC 的面积为( )A .37B .372C .9D .92解析:选B.因为cos A =74,则sin A =34,所以S △ABC =12×bc sin A =372,故选B.3.(2020·湖北八校第一次联考)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且sin B -sin A (sin C +cos C )=0,a =2,c =2,则角C =( )A.5π6B.π6C.π4D.π3解析:选B.因为A +C =π-B ,所以sin B =sin(A +C )=sin A cos C +cos A sin C ,因为sin B -sin A (sin C +cos C )=0,所以cos A sin C -sin A sin C =0,因为C ∈(0,π),所以sin C >0,所以cos A =sin A ,又A ∈(0,π),所以A =π4,由正弦定理得a sin π4=c sin C ,又a =2,c =2,所以sin C =12,因为a >c ,所以C =π6,故选B.4.(多选)在△ABC 中,根据下列条件解三角形,其中有一解的是( ) A .b =7,c =3,C =30° B .b =5,c =4,B =45° C .a =6,b =33,B =60° D .a =20,b =30,A =30°解析:选BC.对于A ,因为b =7,c =3,C =30°,所以由正弦定理可得sin B =b sin C c =7×123=76>1,无解;对于B ,b =5,c =4,B =45°,所以由正弦定理可得sin C =c sin Bb =4×225=225<1,且c <b ,有一解;对于C ,因为a =6,b =33,B =60°,所以由正弦定理可得sin A =a sin B b =6×3233=1,A =90°,此时C =30°,有一解; 对于D ,因为a =20,b =30,A =30°,所以由正弦定理可得sin B =b sin Aa =30×1220=34<1,且b >a ,所以B 有两解,故选BC.5.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若C =π4,a =4,S △ABC=2,则2a +3c -b2sin A +3sin C -sin B=( )A . 5B .2 5C .27D .213解析:选B.因为C =π4,a =4,S △ABC =2,所以S △ABC =12ab sin π4=12×4×b ×22=2,解得b = 2.由余弦定理可得c 2=b 2+a 2-2ba cos π4=10,c =10.由正弦定理可得2a +3c -b 2sin A +3sin C -sin B =c sin C =1022=25,故选B.6.在△ABC 中,A =60°,AC =4,BC =23,则△ABC 的面积为________. 解析:因为23sin 60°=4sin B , 所以sin B =1,所以B =90°,所以AB =2,所以S △ABC =12×2×23=2 3. 答案:2 37.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =4,c =2,B =60°,则b =________,C =________.解析:因为a =4,c =2,B =60°,所以由余弦定理得b 2=a 2+c 2-2ac cos B =16+4-2×4×2×12=20-8=12,则b =2 3.由正弦定理b sin B =c sin C ,可得sin C =c sin Bb =2×3223=12,因为c <b ,故C 为锐角,所以C =30°. 答案:23 30°8.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若B =π3,c =2,且sin A =3sin C .AC 的中点为D ,则BD =________.解析:sin A =3sin C .由正弦定理得,a =3c ,所以a =6. 由余弦定理得,b 2=62+22-2×2×6×cos 60°=28, 所以b =27.所以cos A =b 2+c 2-a 22bc =(27)2+22-622×2×27=-714.因为D 是AC 的中点,所以AD =7.所以BD 2=AB 2+AD 2-2AB ·AD cos A =22+(7)2-2×2×7×⎝ ⎛⎭⎪⎫-714=13.所以BD =13. 答案:139.(2020·高考全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos 2⎝ ⎛⎭⎪⎫π2+A +cos A =54.(1)求A ;(2)若b -c =33a ,证明:△ABC 是直角三角形. 解:(1)由已知得sin 2A +cos A =54, 即cos 2A -cos A +14=0. 所以⎝ ⎛⎭⎪⎫cos A -122=0, cos A =12. 由于0<A <π,故A =π3.(2)证明:由正弦定理及已知条件可得sin B -sin C =33sin A . 由(1)知B +C =2π3,所以sin B -sin ⎝ ⎛⎭⎪⎫2π3-B =33sin π3.即12sin B -32cos B =12,sin ⎝ ⎛⎭⎪⎫B -π3=12.由于0<B <2π3,故B =π2.从而△ABC 是直角三角形.10.(2020·成都市诊断性检测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且b 2+c 2-a 2=423bc .(1)求sin A 的值;(2)若△ABC 的面积为2,且2sin B =3sin C ,求△ABC 的周长. 解:(1)因为b 2+c 2-a 2=2bc cos A , 所以2bc cos A =423bc , 所以cos A =223,所以在△ABC 中,sin A =1-cos 2 A =13.(2)因为△ABC 的面积为2,所以12bc sin A =16bc =2, 所以bc =6 2.因为2sin B =3sin C ,所以由正弦定理得2b =3c , 所以b =32,c =2,所以a 2=b 2+c 2-2bc cos A =6,所以a = 6. 所以△ABC 的周长为2+32+ 6.[B 级 综合练]11.在△ABC 中,已知2a cos B =c, sin A sin B (2-cos C )=sin 2C 2+12,则△ABC 为( )A .等边三角形B .等腰直角三角形C .锐角非等边三角形D .钝角三角形解析:选B.将已知等式2a cos B =c 利用正弦定理化简得2sin A cos B =sin C , 因为sin C =sin ()A +B =sin A cos B +cos A sin B , 所以2sin A cos B =sin A cos B +cos A sin B , 即sin A cos B -cos A sin B =sin(A -B )=0, 因为A 与B 都为△ABC 的内角, 所以A -B =0,即A =B .因为sin A sin B (2-cos C )=sin 2C 2+12,所以sin A sin B (2-cos C )=12(1-cos C )+12=1-12cos C , 所以-12[]cos ()A +B -cos (A -B )(2-cos C )=1-12cos C , 所以-12(-cos C -1)(2-cos C )=1-12cos C , 即(cos C +1)(2-cos C )=2-cos C ,整理得cos 2C -2cos C =0,即cos C (cos C -2)=0,所以cos C =0或cos C =2(舍去),所以C =90°,则△ABC 为等腰直角三角形,故选B.12.(多选)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b =c cos A ,角A 的平分线交BC 于点D ,AD =1,cos A =18,则以下结论正确的是( )A .AC =34 B .AB =8C .CD BD =18D .△ABD 的面积为374解析:选ACD.在△ABC 中,根据余弦定理得,cos A =b 2+c 2-a 22bc =bc ,即b 2+a 2=c 2,所以C =π2,由二倍角公式得cos ∠BAC =2cos 2∠CAD -1=18,解得cos ∠CAD =34.在Rt △ACD 中,AC =AD cos ∠CAD =34,故选项A 正确;在Rt △ABC 中,cos ∠BAC =AC AB =18,解得AB =6,故选项B 错误;S △ACD S △ADB =12CD ·AC 12BD ·AC =12AC ·AD ·sin ∠CAD 12AB ·AD ·sin ∠BAD ,则CD BD =AC AB =18,故选项C 正确; 在△ABD 中,由cos ∠BAD =34得,sin ∠BAD =74,所以S △ABD =12AD ·AB ·sin ∠BAD =12×1×6×74=374,故选项D 正确.13.(2020·沈阳市教学质量监测(一))△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a cos B +b cos A =77ac ,sin 2A =sin A . (1)求A 及a ;(2)若b -c =2,求BC 边上的高. 解:(1)因为a cos B +b cos A =77ac ,所以由正弦定理得sin A cos B +sin B cos A =77a sin C ,所以sin(A +B )=77a sin C ,又A +B =π-C ,所以sin C =77a sin C ,又sin C >0,所以a =7.因为sin 2A =sin A ,所以2sin A cos A =sin A ,又sin A >0,所以cos A =12, 因为A ∈(0,π),所以A =π3.(2)由(1)及余弦定理a 2=b 2+c 2-2bc cos A , 得b 2+c 2-bc =7.将b =c +2,代入b 2+c 2-bc =7,得c 2+2c -3=0, 解得c =1或c =-3(舍去),所以b =3. 因为a sin A =c sin C ,所以sin C =c sin A a =2114, 设BC 边上的高为h ,则h =b sin C =32114.14.在①(2a +b )sin A +(2b +a )sin B =2c sin C ,②a =3c sin A -a cos C ,③△ABC 的面积S △ABC =34(a 2+b 2-c 2)这三个条件中任选一个,补充在下面的问题中,作为问题的条件,再解答这个问题.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若c =3,且________,探究三角形ABC 的周长l 是否存在最大值?若存在,求出l 的最大值;若不存在,说明理由.解:若选①,因为(2a +b )sin A +(2b +a )sin B =2c sin C , 所以由正弦定理可得(2a +b )a +(2b +a )b =2c 2, 即a 2+b 2-c 2=-ab ,所以cos C =a 2+b 2-c 22ab =-12,因为C ∈(0,π),所以C =2π3.又c =3,所以由正弦定理可得a sin A =b sin B =332=2,所以a =2sin A ,b =2sin B ,则l =a +b +c =2sin A +2sin B +3=2sin A +2sin ⎝ ⎛⎭⎪⎫π3-A +3=sin A +3cos A +3=2sin ⎝ ⎛⎭⎪⎫A +π3+3, 因为0<A <π3,所以23<2sin ⎝ ⎛⎭⎪⎫A +π3+3≤2+3,即△ABC 的周长l 存在最大值,且最大值为2+ 3. 若选②,因为a =3c sin A -a cos C ,所以由正弦定理可得sin A =3sin C sin A -sin A cos C , 因为sin A ≠0,所以3sin C -cos C =1, 所以sin ⎝ ⎛⎭⎪⎫C -π6=12,又0<C <π,故C =π3,又c =3,所以由正弦定理可得a sin A =b sin B =332=2,所以a =2sin A ,b =2sin B ,则l =a +b +c =2sin A +2sin B +3=2sin A +2sin ⎝ ⎛⎭⎪⎫2π3-A +3=3sin A +3cos A +3=23sin ⎝ ⎛⎭⎪⎫A +π6+3,因为0<A <2π3,所以23<23sin ⎝ ⎛⎭⎪⎫A +π6+3≤33,即△ABC 的周长l 存在最大值,且最大值为3 3. 若选③,因为△ABC 的面积S △ABC =34(a 2+b 2-c 2),所以12ab sin C =34(a 2+b 2-c 2),所以sin C =3×a 2+b 2-c 22ab ,由余弦定理可得sin C =3cos C ,即tan C =3, 又因为0<C <π,故C =π3,又c =3,所以由正弦定理可得a sin A =b sin B =332=2,所以a =2sin A ,b =2sin B ,则l =a +b +c =2sin A +2sin B +3=2sin A +2sin ⎝ ⎛⎭⎪⎫2π3-A +3=23sin ⎝ ⎛⎭⎪⎫A +π6+3, 因为0<A <2π3,所以23<23sin ⎝ ⎛⎭⎪⎫A +π6+3≤33,即△ABC 的周长l 存在最大值,且最大值为3 3.[C 级 创新练]15.(2020·河南豫南九校联考)我国南宋著名数学家秦九韶提出了由三角形三边求三角形面积的“三斜求积”公式.设△ABC 三个内角A ,B ,C 所对的边分别为a ,b ,c ,面积为S ,则“三斜求积”公式为S =14⎣⎢⎡⎦⎥⎤a 2c 2-⎝ ⎛⎭⎪⎫a 2+c 2-b 222.若a 2sin C =2sin A ,(a +c )2=6+b 2,则用“三斜求积”公式求得的△ABC 的面积为( )A . 3B .1C .32D .12解析:选C.因为a 2sin C =2sin A ,所以a 2c =2a .又a >0,所以ac =2. 因为(a +c )2=6+b 2,所以a 2+c 2+2ac =6+b 2,所以a 2+c 2-b 2=6-2ac =6-4=2.所以△ABC 的面积为S =14×⎣⎢⎡⎦⎥⎤22-⎝ ⎛⎭⎪⎫222=32.故选C. 16.(2020·山东潍坊月考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若1tan A ,1tan B ,1tan C 依次成等差数列,则下列结论中不一定成立的是( )A .a ,b ,c 依次成等差数列 B.a ,b ,c 依次成等差数列 C .a 2,b 2,c 2依次成等差数列 D .a 3,b 3,c 3依次成等差数列解析:选ABD.在△ABC 中,若1tan A ,1tan B ,1tan C 依次成等差数列,则2tan B =1tan A +1tan C .所以2cos B sin B =cos A sin A +cos Csin C .利用正弦定理和余弦定理得,2·a 2+c 2-b 22abc =b 2+c 2-a 22abc +a 2+b 2-c 22abc ,整理得2b 2=a 2+c 2,即a 2,b 2,c 2依次成等差数列.此时对等差数列a2,b2,c2的每一项取相同的运算得到数列a,b,c或a,b,c或a3,b3,c3,这些数列一般都不可能是等差数列,除非a=b =c.故都不一定成立.故选ABD.第6讲正弦定理和余弦定理最新考纲考向预测掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.命题趋势以利用正弦、余弦定理解三角形为主,常与三角函数的图象和性质、三角恒等变换、三角形中的几何计算交汇考查,加强数形结合思想的应用意识.题型多样,中档难度.核心素养逻辑推理、数学运算1.正弦定理和余弦定理定理正弦定理余弦定理内容asin A=bsin B=csin C=2R(R为△ABC外接圆半径)a2=b2+c2-2bc cos__A;b2=c2+a2-2ca cos__B;c2=a2+b2-2ab cos__C变形(1)a=2R sin A,b=2R sin__B,c=2R sin__C;(2)a∶b∶c=sin__A∶sin__B∶sin__C;(3)a sin B=b sin A,b sin C=c sin B,a sin C=c sin Acos A=b2+c2-a22bc;cos B=c2+a2-b22ca;cos C=a2+b2-c22ab(1)S△ABC=12a·h(h表示边a上的高).(2)S△ABC=12ab sin C=12ac sin B=12bc sin A.(3)S△ABC=12r(a+b+c)(r为△ABC内切圆半径).3.三角形解的判断A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b解的个数一解两解一解一解[注意]上表中A为锐角时,a<b sin A,无解.A为钝角或直角时,a=b,a<b均无解.常用结论1.在△ABC中,两边之和大于第三边,两边之差小于第三边,A>B⇔a>b⇔sin A>sin B⇔cos A<cos B.2.三角形中的三角函数关系(1)sin(A+B)=sin C.(2)cos(A+B)=-cos C.(3)sin A+B2=cosC2.(4)cos A+B2=sinC2.3.三角形中的射影定理在△ABC中,a=b cos C+c cos B;b=a cos C+c cos A;c=b cos A+a cos B.常见误区1.在△ABC中,已知a,b和A,利用正弦定理时,会出现解的不确定性,应注意根据“大边对大角”来取舍.2.在判断三角形的形状时,等式两边一般不要约去公因式,应移项提取公因式,以免漏解.1.判断正误(正确的打“√”,错误的打“×”)(1)三角形中三边之比等于相应的三个内角之比.( ) (2)在△ABC 中,若sin A >sin B ,则A >B .( )(3)在△ABC 中的六个元素中,已知任意三个元素可求其他元素.( ) 答案:(1)× (2)√ (3)×2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若A =60°,a 2=bc ,则sin B sin C =( )A.12 B.32 C.35D.34解析:选D.因为a 2=bc ,所以sin 2A =sin B sin C .因为A =60°,所以sin B sin C =sin 2A =34.故选D.3.(多选)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =4,sin A =45,cos C =210,则下列结论正确的是( )A .cos A =±35 B .B =π4C .b =522D .△ABC 的面积为7 2解析:选BC.由sin A =45,得cos A =±35,由cos C =210,得sin C =7210,若cos A =-35,则sin B =sin(A +C )=-17250<0,与sin B >0矛盾,故cos A =35,A 错误,则sin(A +C )=22,由sin A =45,cos C =210,得A >π4,C >π4,所以A +C >π2,所以A +C =3π4,故B =π4,B 正确.由正弦定理a sin A =b sin B ,得b =522,C 正确,所以△ABC 的面积为12×4×522×7210=7,D 错误.4.(易错题)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.解析:由题意得,b sin B =c sin C ,即sin B =b sin C c =6×323=22,结合b <c可得B =45°,则A =180°-B -C =75°.答案:75°利用正、余弦定理解三角形(2020·高考天津卷节选)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =22,b =5,c =13.(1)求角C 的大小; (2)求sin A 的值.【解】 (1)在△ABC 中,由余弦定理及a =22,b =5,c =13,有cos C =a 2+b 2-c 22ab =22.又因为C ∈(0,π),所以C =π4.(2)在△ABC 中,由正弦定理及C =π4,a =22,c =13,可得sin A =a sin Cc =21313.(1)正、余弦定理的选用①利用正弦定理可解决两类三角形问题:一是已知两角和一角的对边,求其他边或角;二是已知两边和一边的对角,求其他边或角;②利用余弦定理可解决两类三角形问题:一是已知两边和它们的夹角,求其他边或角;二是已知三边求角.由于这两种情形下的三角形是唯一确定的,所以其解也是唯一的.(2)三角形解的个数的判断已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.1.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解C .无解D .有解但解的个数不确定解析:选C.由正弦定理得b sin B =csin C , 所以sin B =b sin Cc =40×3220=3>1.所以角B 不存在,即满足条件的三角形不存在.2.(2020·广东省七校联考)若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知2b sin 2A =3a sin B ,且c =2b ,则ab =( )A.32 B. 2 C.43D. 3解析:选B.由2b sin 2A =3a sin B ,及正弦定理可得4sin B sin A cos A =3sin A sin B .由于sin A ≠0,sin B ≠0,所以cos A =34,又c =2b ,所以a 2=b 2+c 2-2bc cos A =b 2+4b 2-2b ×2b ×34=2b 2,所以ab =2,故选B.3.(2019·高考全国卷Ⅰ改编)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设(sin B -sin C )2=sin 2A -sin B sin C .(1)求A ;(2)若2a +b =2c ,求C .解:(1)由已知得sin 2B +sin 2C -sin 2A =sin B sin C ,故由正弦定理得b 2+c 2-a 2=bc .由余弦定理得cos A =b 2+c 2-a 22bc =12. 因为0°<A <180°,所以A =60°.(2)由(1)知B =120°-C ,由题设及正弦定理得2sin A +sin(120°-C )=2sin C ,即62+32cos C +12sin C =2sin C ,可得cos(C +60°)=-22.由于0°<C <120°,所以C +60°=135°,判断三角形的形状(1)(一题多解)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .直角三角形B .锐角三角形C .钝角三角形D .不确定(2)在△ABC 中,若c -a cos B =(2a -b )cos A ,则△ABC 的形状为________. 【解析】 (1)方法一:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a 即sin A =1,故A =π2,因此△ABC 是直角三角形.方法二:因为b cos C +c cos B =a sin A , 所以sin B cos C +sin C cos B =sin 2 A , 即sin(B +C )=sin 2 A ,所以sin A =sin 2 A , 故sin A =1,即A =π2,因此△ABC 是直角三角形.(2)因为c -a cos B =(2a -b )cos A ,所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A ,所以sin(A +B )-sin A cos B =2sin A cos A -sin B cos A , 故cos A (sin B -sin A )=0, 所以cos A =0或sin A =sin B , 即A =π2或A =B ,故△ABC 为等腰三角形或直角三角形. 【答案】 (1)A (2)等腰三角形或直角三角形【引申探究】 (变条件)若将本例(1)条件改为“2sin A cos B =sin C ”,试判断△ABC 的形状.解:方法一:由已知得2sin A cos B =sin C =sin(A +B )=sin A cos B +cos A sin B ,即sin(A -B )=0,因为-π<A -B <π,所以A =B ,故△ABC 为等腰三角形.方法二:由正弦定理得2a cos B =c ,再由余弦定理得2a ·a 2+c 2-b 22ac =c ⇒a 2=b 2⇒a =b , 故△ABC 为等腰三角形.判定三角形形状的两种常用途径[提醒] “角化边”后要注意用因式分解、配方等方法得出边的相应关系;“边化角”后要注意用三角恒等变换公式、三角形内角和定理及诱导公式推出角的关系.1.在△ABC 中,a ∶b ∶c =3∶5∶7,那么△ABC 是( ) A .直角三角形 B .钝角三角形 C .锐角三角形D .非钝角三角形解析:选B.因为a ∶b ∶c =3∶5∶7,所以可设a =3t ,b =5t ,c =7t ,由余弦定理可得cos C =9t 2+25t 2-49t 22×3t ×5t =-12,所以C =120°,△ABC 是钝角三角形,故选B.2.(多选)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,则下列四个命题中正确的是( )A .若a cos A =b cosB =ccos C ,则△ABC 一定是等边三角形 B .若a cos A =b cos B ,则△ABC 一定是等腰三角形 C .若b cos C +c cos B =b ,则△ABC 一定是等腰三角形 D .若a 2+b 2-c 2>0,则△ABC 一定是锐角三角形解析:选AC.由a cos A =b cos B =c cos C 及正弦定理得,sin A cos A =sin B cos B =sin Ccos C ,即tan A =tan B =tan C ,所以A =B =C ,所以△ABC 是等边三角形,A 正确.由a cos A =b cos B 及正弦定理得,sin A cos A =sin B cos B ,解得sin 2A =sin 2B ,则2A =2B 或2A +2B =π,所以△ABC 是等腰三角形或直角三角形,B 不正确.由b cos C +c cos B =b 及正弦定理得,sin B cos C +sin C cos B =sin B ,即sin(B +C )=sin B ,所以sin A =sin B ,则A =B ,所以△ABC 是等腰三角形,C 正确.由余弦定理得,cos C =a 2+b 2-c 22ab >0,所以角C 为锐角.而角A ,B 不一定是锐角,故D 不正确.故选AC.与三角形面积有关的问题 角度一 计算三角形的面积(1)(2020·高考全国卷Ⅰ改编)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.若a =3c ,b =27,则△ABC 的面积为________.(2)(2020·福建五校第二次联考)在△ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,已知a 2+b 2-c 2=3ab ,且ac sin B =23sin C ,则△ABC 的面积为________.【解析】 (1)由题设及余弦定理得28=3c 2+c 2-2×3c 2×cos 150°. 解得c =-2(舍去),c =2,从而a =2 3. △ABC 的面积为12×23×2×sin 150°= 3.(2)因为a 2+b 2-c 2=3ab ,所以由余弦定理得cos C =a 2+b 2-c 22ab =3ab 2ab =32,又0<C <π,所以C =π6.因为ac sin B =23sin C ,结合正弦定理可得abc =23c ,所以ab =2 3.故S △ABC =12ab sin C =12×23sin π6=32.【答案】 (1)3 (2)32求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积;(2)若已知三角形的三边,可先求其中一个角的余弦值,再求其正弦值,代入公式求面积,总之,结合图形恰当选择面积公式是解题的关键.角度二 已知三角形的面积解三角形(2020·广州市调研检测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知c sin ⎝ ⎛⎭⎪⎫A +π3-a sin C =0.(1)求角A 的值;(2)若△ABC 的面积为3,周长为6,求a 的值. 【解】 (1)因为c sin ⎝ ⎛⎭⎪⎫A +π3-a sin C =0, 所以由正弦定理得sin C ⎝ ⎛⎭⎪⎫12sin A +32cos A -sin A ·sin C =0.因为sin C >0,所以32cos A -12sin A =0,即tan A =3, 因为A ∈(0,π),所以A =π3.(2)因为△ABC 的面积为3,所以12bc sin A =3,得bc =4.由余弦定理a 2=b 2+c 2-2bc cos A ,得a 2=b 2+c 2-bc =(b +c )2-3bc =(b +c )2-12,因为△ABC 的周长为6,即a +b +c =6, 所以a 2=(6-a )2-12, 所以a =2.已知三角形面积求边、角的方法(1)若求角,就寻求这个角的两边的关系,利用面积公式列方程求解; (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解. [注意] 正弦定理、余弦定理与三角函数性质的综合应用中,要注意三角函数公式的工具性作用.1.(2020·福州市质量检测)在钝角△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知c =7,b =1,若△ABC 的面积为62,则a 的长为________.解析:因为△ABC 的面积S =12bc sin A ,所以62=12×1×7sin A ,所以sin A=67,所以cos A=±77,当cos A=77时,由a2=b2+c2-2bc cos A得a=6,此时△ABC为直角三角形(舍去);当cos A=-77时,由a2=b2+c2-2bc cos A得a=10,经检验,a=10符合题意.综上,a=10.答案:102.(2020·合肥第一次教学检测)在△ABC中,内角A,B,C所对的边分别为a,b,c,若a=2,a cos C+c cos A+2b cos B=0.(1)求B;(2)若BC边的中线AM长为5,求△ABC的面积.解:(1)在△ABC中,asin A=bsin B=csin C,且a cos C+c cos A+2b cos B=0,所以sin A cos C+sin C cos A+2sin B cos B=0,所以sin B·(1+2cos B)=0,又sin B≠0,所以cos B=-2 2.因为B是三角形的内角,所以B=3π4.(2)在△ABM中,BM=1,AM=5,B=3π4,AB=c,由余弦定理AM2=c2+BM2-2c·BM·cos B,得c2+2c-4=0,因为c>0,所以c= 2.在△ABC中,a=2,c=2,B=3π4,所以△ABC的面积S=12ac sin B=1.高考新声音系列4解三角形中的结构不良型开放型问题新高考卷Ⅰ第17题别具匠心地设计了开放性试题,设问方式追求创新,补充已知条件(三选一)并解答,条件不同,结论不同,不同的选择会有不同的结论,难度也会有区别.(2020·新高考卷Ⅰ)在①ac =3,②c sin A =3,③c =3b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC ,它的内角A ,B ,C 的对边分别为a ,b ,c ,且sin A =3sin B ,C =π6,________________?【解】 方案一:选条件①.由C =π6和余弦定理得a 2+b 2-c 22ab =32. 由sin A =3sin B 及正弦定理得a =3b . 于是3b 2+b 2-c 223b 2=32,由此可得b =c . 由①ac =3,解得a =3,b =c =1.因此,选条件①时问题中的三角形存在,此时c =1. 方案二:选条件②.由C =π6和余弦定理得a 2+b 2-c 22ab =32. 由sin A =3sin B 及正弦定理得a =3b .于是3b 2+b 2-c 223b 2=32,由此可得b =c ,B =C =π6,A =2π3. 由②c sin A =3,所以c =b =23,a =6.因此,选条件②时问题中的三角形存在,此时c =2 3. 方案三:选条件③.由C =π6和余弦定理得a 2+b 2-c 22ab =32.由sin A =3sin B 及正弦定理得a =3b . 于是3b 2+b 2-c 223b 2=32,由此可得b =c . 由③c =3b ,与b =c 矛盾.因此,选条件③时问题中的三角形不存在.本题以解三角形为背景命制,给定了若干条件(在这些条件下三角形并不能随之确定),在此基础上让学生在另外给出的几个条件中自主选择,在所选条件下,若问题中的三角形存在,求解三角形;若问题中的三角形不存在,说明理由.在①sin B=32,②cos B=34,③cos C=-79这三个条件中选择一个,补充在下面的问题中,并判断三角形是否有解.若有解,求出a的值;若无解,请说明理由.在△ABC中,已知a,b,c分别是角A,B,C的对边,且满足C=2B,b +c=10,________.解:若选择①sin B=32,则B=60°或B=120°,因为C=2B,所以C=120°或C=240°,显然矛盾,此时三角形无解.若选择②cos B=3 4,则由正弦定理可得cb=sin Csin B=sin 2Bsin B=2sin B cos Bsin B=2cos B=2×34=32,又b+c=10,所以c=6,b=4.由余弦定理b2=a2+c2-2ac cos B,可得16=a2+36-9a,解得a=4或a=5.若a=4,则由b=4知A=B,又C=2B,所以B+B+2B=180°,解得B=45°,这与cos B=34矛盾,舍去.经检验知,当a=5时适合题意.故a的值为5.若选择③cos C=-7 9,因为C=2B,所以cos 2B=-7 9,即2cos2B-1=-79,得cos B=13,此时cb=sin Csin B=sin 2Bsin B=2cos B=23<1,所以c<b,这与C=2B矛盾,。
第七节余弦定理、正弦定理应用举例测量中的几个有关术语术语名称术语意义图形表示仰角与俯角在目标视线与水平视线(两者在同一铅垂平面内)所成的角中,目标视线在水平视线01上方的叫做仰角,目标视线在水平视线02下方的叫做俯角方位角从某点的指北方向线起按顺时针方向到目标方向线之间的夹角叫做方位角.方位角θ的范围是0°≤θ<360°方向角正北或正南方向线与目标方向线所成的锐角,通常表达为北(南)偏东(西)α(1)北偏东α:(2)南偏西α:坡角与坡比坡面与水平面所成的锐二面角叫坡角(θ为坡角);坡面的垂直高度与水平长度之比叫坡比(坡度),即i =hl=tan θ解三角形应用问题的步骤:1.概念辨析(正确的打“√”,错误的打“×”)(1)东南方向与南偏东45°方向相同.()(2)若从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α=β.()(3)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.()(4)俯角是铅垂线与目标视线所成的角,其范围为0,π2.()(5)在方向角中,始边一定是南或北,旋转方向一定是顺时针.()答案(1)√(2)√(3)√(4)×(5)×2.小题热身(1)如图所示,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC的距离为50m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B两点间的距离为()A.502m B.503m C.252m D.2522m 答案A解析在△ABC中,由正弦定理得ABsin∠ACB=ACsin∠CBA,又∠CBA=180°-45°-105°=30°,所以AB=AC sin∠ACBsin∠CBA=50×2212=502(m).故选A.(2)(人教A必修第二册6.4.3例10改编)如图所示,为测量某树的高度,在地面上选取A,B两点,从A,B两点分别测得树尖的仰角为30°,45°,且A,B两点之间的距离为60m,则树的高度为()A.(303+30)m B.(153+30)m C.(303+15)m D.(153+15)m 答案A解析在△ABP中,∠APB=45°-30°,所以sin∠APB=sin(45°-30°)=22×32-22×12=6-24,由正弦定理得PB=AB sin30°sin∠APB=60×126-24=30(6+2),所以该树的高度为30(6+2)sin45°=303+30(m).故选A.(3)如图,某住宅小区的平面图呈圆心角为120°的扇形AOB,C是该小区的一个出入口,且小区里有一条平行于AO的小路CD.已知某人从O沿OD走到D用了2min,从D沿着DC走到C用了3min.若此人步行的速度为每分钟50m,则该扇形的半径为________m.答案507解析连接OC ,在△OCD 中,OD =100,CD =150,∠CDO =60°,由余弦定理可得OC 2=1002+1502-2×100×150×12=17500,解得OC =507.则该扇形的半径为507m.考点探究——提素养考点一测量距离问题例1(2024·重庆模拟)一个骑行爱好者从A 地出发,向西骑行了2km 到达B 地,然后再由B地向北偏西60°骑行了23km 到达C 地,再从C 地向南偏西30°骑行了5km 到达D 地,则A 地到D 地的直线距离是()A .8kmB .37kmC .33kmD .5km答案B解析如图,在△ABC 中,∠ABC =150°,AB =2,BC =23,依题意,∠BCD =90°,在△ABC中,由余弦定理得AC =AB 2+BC 2-2AB ·BC cos ∠ABC =4+12+83×32=27,由正弦定理得sin ∠ACB =AB sin ∠ABC AC=714,在△ACD 中,cos ∠ACD =cos(90°+∠ACB )=-sin ∠ACB =-714,由余弦定理得AD =AC 2+CD 2-2AC ·CD cos ∠ACD =28+25+2×27×5×714=37.所以A 地到D 地的直线距离是37km.故选B.【通性通法】距离问题的类型及解法(1)类型:①两点间既不可达也不可视;②两点间可视但不可达;③两点都不可达.(2)解法:选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.【巩固迁移】1.已知某渔船在渔港O的南偏东60°方向,距离渔港约160海里的B处出现险情,此时在渔港的正上方恰好有一架海事巡逻飞机A接到渔船的求救信号,海事巡逻飞机迅速将情况通知了在C处的渔政船并要求其迅速赶往出事地点施救.若海事巡逻飞机测得渔船B的俯角为68.20°,测得渔政船C的俯角为63.43°,且渔政船位于渔船的北偏东60°方向上.(1)计算渔政船C与渔港O的距离;(2)若渔政船以每小时25海里的速度直线行驶,能否在3小时内赶到出事地点?(参考数据:sin68.20°≈0.93,tan68.20°≈2.50,sin63.43°≈0.89,tan63.43°≈2.00,11≈3.32,13≈3.61)解(1)∵AO⊥OB,∠OBA=68.20°,OB=160,∴AO=OB tan∠OBA≈160×2.50=400,∵AO⊥OC,∠OCA=63.43°,∴OC=OAtan63.43°≈4002.00=200.即渔政船C与渔港O的距离为200海里.(2)由题意知∠OBC=60°+60°=120°,在△OBC中,由余弦定理得OC2=OB2+BC2-2OB·BC cos∠OBC,即40000=25600+BC2+160BC,解得BC=-80-4013(舍去)或BC=-80+4013,即BC≈-80+40×3.61=64.4,∵64.425=2.576<3,∴渔政船以每小时25海里的速度直线行驶,能在3小时内赶到出事地点.考点二测量高度问题例2(1)(2024·江苏南通调研)湖北宜昌三峡大瀑布是国家4A 级景区,也是神农架探秘的必经之地,为了测量湖北宜昌三峡大瀑布的某一处实际高度,李华同学设计了如下测量方案:有一段水平山道,且山道与瀑布不在同一平面内,瀑布底端与山道在同一平面内,可粗略认为瀑布与该水平山道所在平面垂直,在水平山道上A 点位置测得瀑布顶端仰角的正切值为32,沿山道继续走20m ,抵达B 点位置测得瀑布顶端的仰角为π3.已知该同学沿山道行进的方向与他第一次望向瀑布底端的方向所成的角为π3,则该瀑布的高度约为()A .60mB .90mC .108mD .120m答案A解析根据题意作出示意图,其中tan α=32,β=θ=π3,AB =20,在Rt △AOH 中,tan α=OHOA,所以OA =23OH .在Rt △BOH 中,tan β=OH OB ,所以OB =33OH .在△AOB 中,由余弦定理,得OB 2=OA 2+AB 2-2OA ·AB cos θ,即13OH 2=49OH 2+202-2×23OH ×20×12,解得OH =60.所以该瀑布的高度约为60m .故选A.(2)(2023·辽宁协作校联考)山东省滨州市的黄河楼位于蒲湖水面内东南方向的东关岛上,渤海五路以西,南环路以北.整个黄河楼颜色质感为灰红,意味黄河楼气势恢宏,更在气势上体现黄河的宏壮.如图,小张为了测量黄河楼的实际高度AB ,选取了与楼底B 在同一水平面内的两个测量基点C ,D ,现测得∠BCD =30°,∠BDC =95°,CD =116m ,在点D 处测得黄河楼顶A 的仰角为45°,求黄河楼的实际高度.(结果精确到0.1m ,取sin55°=0.82)解由题知,∠CBD =180°-∠BCD -∠BDC =55°,在△BCD 中,由正弦定理得BD sin ∠BCD =CDsin ∠CBD ,则BD =CD sin ∠BCD sin ∠CBD=116×sin30°sin55°=580.82≈70.7m ,在△ABD 中,AB ⊥BD ,∠ADB =45°,所以AB =BD tan ∠ADB =BD ≈70.7m.故黄河楼的实际高度约为70.7m.【通性通法】(1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角.(2)在实际问题中,若遇到空间与平面(地面)同时研究的问题,最好画两个图形,一个空间图形,一个平面图形.(3)注意山或塔垂直于地面或海平面,把空间问题转化为平面问题.(4)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用.【巩固迁移】2.(2023·安徽蚌埠模拟)圭表是我国古代通过观察记录正午时影子长度的长短变化来确定季节变化的一种天文仪器,它包括一根直立的标杆(称为“表”)和一把呈南北方向水平固定摆放的与标杆垂直的长尺(称为“圭”).当正午阳光照射在表上时,影子就会落在圭面上,圭面上影子长度最长的那一天定为冬至,影子长度最短的那一天定为夏至.如图是根据蚌埠市(北纬32.92°)的地理位置设计的圭表的示意图,已知蚌埠市冬至正午太阳高度角(即∠ABC )约为33.65°,夏至正午太阳高度角(即∠ADC )约为80.51°.圭面上冬至线和夏至线之间的距离(即BD 的长)为7米,则表高(即AC 的长)约为()A .cos80.51°7tan46.86°B .7tan46.86°sin33.65°C .7sin33.65°sin80.51°sin46.86°D .sin33.65°7sin80.51°答案C解析由图可知∠BAD =∠ADC -∠ABC =80.51°-33.65°=46.86°.在△ABD 中,BDsin ∠BAD=AD sin ∠ABC ,得AD =7sin33.65°sin46.86°.在△ACD 中,AC =AD sin ∠ADC =7sin33.65°sin80.51°sin46.86°.故选C.考点三测量角度问题例3已知在岛A 南偏西38°方向,距岛A 3海里的B 处有一艘缉私艇.岛A 处的一艘走私船正以10海里/小时的速度向岛A 北偏西22°方向行驶,问缉私艇朝何方向以多大速度行驶,恰好用0.5sin38°≈5314,解如图,设缉私艇在C 处截住走私船,D 为岛A 正南方向上一点,缉私艇的速度为x 海里/小时,则BC =0.5x ,AC =5,依题意,∠BAC =180°-38°-22°=120°,由余弦定理可得BC 2=AB 2+AC 2-2AB ·AC cos120°,所以BC 2=49,所以BC =0.5x =7,解得x =14.又由正弦定理得sin ∠ABC =AC sin ∠BAC BC =5×327=5314,所以∠ABC =38°,又∠BAD =38°,所以BC ∥AD .故缉私艇以14海里/小时的速度向正北方向行驶,恰好用0.5小时截住该走私船.【通性通法】(1)测量角度问题的关键是在弄清题意的基础上,画出表示实际问题的图形,并在图形中标出有关的角和距离,再用正弦定理或余弦定理解三角形,最后将解得的结果转化为实际问题的解.(2)方向角是相对于某点而言的,因此在确定方向角时,必须先弄清楚是哪一个点的方向角.【巩固迁移】3.如图所示,在坡度一定的山坡A 处测得山顶上一建筑物CD 的顶端C 对于山坡的斜度为15°,向山顶前进100m 到达B 处,又测得C 对于山坡的斜度为45°,若CD =50m ,山坡对于地平面的坡角为θ,则cos θ=()A .33B .6-2C .3-1D .2-1答案C解析由题意知,∠CAD =15°,∠CBD =45°,所以∠ACB =30°,∠ABC =135°.在△ABC 中,由正弦定理,得AB sin30°=ACsin135°,又AB =100m ,所以AC =1002m .在△ADC 中,∠ADC =90°+θ,CD =50m ,由正弦定理,得AC sin (θ+90°)=CDsin15°,所以cos θ=sin(θ+90°)=AC sin15°CD=3-1.故选C.课时作业一、单项选择题1.如图,两座相距60m 的建筑物AB ,CD 的高度分别为20m ,50m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角为()A .30°B .45°C .60°D .75°答案B解析由已知,得AD =2010m ,AC =305m ,又CD =50m ,所以在△ACD 中,由余弦定理得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD=(305)2+(2010)2-5022×305×2010=600060002=22,又0°<∠CAD <180°,所以∠CAD =45°,所以从顶端A 看建筑物CD 的张角为45°.故选B.2.如图,设A ,B 两点在河的两岸,在A 所在河岸边选一定点C ,测量AC 的距离为50m ,∠ACB =30°,∠CAB =105°,则A ,B 两点间的距离是()A .252mB .502mC .253mD .503m答案A解析在△ABC 中,∠ACB =30°,∠CAB =105°,所以∠ABC =180°-30°-105°=45°,由正弦定理AC sin ∠ABC =AB sin ∠ACB ,得AB =AC sin ∠ACB sin ∠ABC =50sin30°sin45°=50×1222=252(m).故选A.3.(2023·山东济南模拟)如图,一架飞机从A 地飞往B 地,两地相距500km.飞行员为了避开某一区域的雷雨云层,从A 点起飞以后,就沿与原来的飞行方向AB 成12°角的方向飞行,飞行到中途C 点,再沿与原来的飞行方向AB 成18°角的方向继续飞行到终点B 点.这样飞机的飞行路程比原来的路程500km 大约多飞了(sin12°≈0.21,sin18°≈0.31)()A .10kmB .20kmC .30kmD .40km 答案B 解析在△ABC 中,由A =12°,B =18°,得C =150°,由正弦定理,得500sin150°=BC sin12°=AC sin18°,所以50012≈BC 0.21≈AC 0.31,所以AC ≈310km ,BC ≈210km ,所以AC +BC -AB ≈20(km).故选B.4.(2023·安徽六安一中校考模拟预测)《孔雀东南飞》中曾叙“十三能织素,十四学裁衣,十五弹箜篌,十六诵诗书.”箜篌历史悠久、源远流长,音域宽广、音色柔美清澈,表现力强.如图是箜篌的一种常见的形制,对其进行绘制,发现近似一扇形,在圆弧的两个端点A ,B 处分别作切线相交于点C ,测得AC =100cm ,BC =100cm ,AB =180cm ,根据测量数据可估算出该圆弧所对圆心角的余弦值为()A .0.62B .0.56C .-0.56D .-0.62答案A 解析如图所示,设弧AB 对应的圆心是O ,根据题意可知,OA ⊥AC ,OB ⊥BC ,则∠AOB+∠ACB =π,因为AC =100,BC =100,AB =180,则在△ACB 中,cos ∠ACB =AC 2+BC 2-AB 22AC ·BC =1002+1002-18022×100×100=-0.62,所以cos ∠AOB =cos(π-∠ACB )=-cos ∠ACB =0.62.故选A.5.(2023·山西太原模拟)如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,若河流的宽度BC 为60m ,则此时气球的高度为()A .15(3-1)mB .15(3+1)mC .30(3-1)mD .30(3+1)m 答案B 解析在△ABC 中,∠ACB =30°,∠BAC =75°-30°=45°,BC =60m ,则∠ABC =180°-45°-30°=105°.又sin105°=sin(60°+45°)=32×22+12×22=6+24,BC sin ∠BAC =AC sin ∠ABC ,所以AC =60×6+2422=30(3+1)m ,所以气球的高度为AC sin ∠ACB =30(3+1)×12=15(3+1)m .故选B.6.(2023·福州模拟)我国无人机技术处于世界领先水平,并广泛用于抢险救灾、视频拍摄、环保监测等领域.如图,有一个从地面A 处垂直上升的无人机P ,对地面B ,C 两受灾点的视角为∠BPC ,且tan ∠BPC =13.已知地面上三处受灾点B ,C ,D 共线,且∠ADB =90°,BC =CD =DA =1km ,则无人机P 到地面受灾点D 处的遥测距离PD 的长度是()A .2kmB .2kmC .3kmD .4km 答案B 解析解法一:由题意得BD ⊥平面PAD ,∴BD ⊥PD .设PD =x ,∠PBD =α,∠PCD =β,则tanα=x2,tanβ=x,∴tan∠BPC=tan(β-α)=x-x21+x·x2=xx2+2=13,解得x=1或x=2,又在Rt△PDA中有x>1,∴x=2.故选B.解法二:由题意知BD⊥平面PAD,∴BD⊥PD.设PA=x,则PB2=x2+5,PC2=x2+2.由tan∠BPC=13,可得cos∠BPC=31010,在△PBC中,由余弦定理得x2+5+x2+2-1=2x2+5·x2+2·31010,解得x2=3,进而PD=x2+1=2.故选B.7.大型城雕“商”字坐落在商丘市睢阳区神火大道与南京路交汇处,“商”字城雕有着厚重悠久的历史和文化,它时刻撬动着人们认识商丘、走进商丘的欲望.吴斌同学在今年国庆期间到商丘去旅游,经过“商”字城雕时,他想利用解三角形的知识测量一下该雕塑的高度(即图中线段AB的长度).他在该雕塑塔的正东C处沿着南偏西60°的方向前进72米后到达D处(A,C,D三点在同一个水平面内),测得图中线段AB在东北方向,且测得点B的仰角为71.565°,则该雕塑的高度大约是(参考数据:tan71.565°≈3)()A.19米B.20米C.21米D.22米答案C解析在△ACD中,∠CAD=135°,∠ACD=30°,CD=72,由正弦定理得ADsin∠ACD=CDsin∠CAD,所以AD=CD sin∠ACDsin∠CAD=7(米),在Rt△ABD中,∠BDA=71.565°,所以AB=AD tan71.565°≈7×3=21(米).故选C.8.(2023·泸州模拟)如图,航空测量的飞机航线和山顶在同一铅直平面内,已知飞机飞行的海拔高度为10000m,速度为50m/s.某一时刻飞机看山顶的俯角为15°,经过420s后看山顶的俯角为45°,则山顶的海拔高度大约为(2≈1.4,3≈1.7)()A.7350m B.2650mC.3650m D.4650m答案B解析如图,设飞机的初始位置为点A,经过420s后的位置为点B,山顶为点C,作CD⊥AB于点D,则∠BAC=15°,∠CBD=45°,所以∠ACB=30°,在△ABC中,AB=50×420=21000(m),由正弦定理得ABsin∠ACB=BCsin∠BAC,则BC=2100012×sin15°=10500(6-2)(m),因为CD⊥AB,所以CD=BC sin45°=10500(6-2)×22=10500(3-1)≈7350(m),所以山顶的海拔高度大约为10000-7350=2650(m).故选B.二、多项选择题9.某人向正东走了x km后向右转了150°,然后沿新方向走了3km,结果离出发点恰好3km,那么x的值是()A.3B.23C.3D.6答案AB解析如图,AB=x,BC=3,AC=3,∠ABC=30°.由余弦定理,得3=x2+9-2×3×x×cos30°,解得x=23或x= 3.故选AB.10.某货轮在A处看灯塔B在货轮的北偏东75°,距离为126n mile;在A处看灯塔C在货轮的北偏西30°,距离为83n mile.货轮由A处向正北航行到D处时,再看灯塔B在南偏东60°,则下列说法正确的是()A.A处与D处之间的距离是24n mileB .灯塔C 与D 处之间的距离是83n mileC .灯塔C 在D 处的南偏西30°D .D 处在灯塔B 的北偏西30°答案ABC 解析在△ABD 中,由已知,得∠ADB =60°,∠DAB =75°,则∠B =45°.由正弦定理,得AD=AB sin B sin ∠ADB =126×2232=24,所以A 处与D 处之间的距离为24n mile ,故A 正确;在△ADC中,由余弦定理,得CD 2=AD 2+AC 2-2AD ·AC cos30°,又AC =83,所以CD =8 3.所以灯塔C 与D 处之间的距离为83n mile ,故B 正确;因为AC =CD =83,所以∠CDA =∠CAD =30°,所以灯塔C 在D 处的南偏西30°,故C正确;因为灯塔B 在D 处的南偏东60°,所以D 处在灯塔B 的北偏西60°,故D 错误.故选ABC.三、填空题11.神舟载人飞船返回舱成功着陆,标志着返回任务取得圆满成功.假设返回舱D 垂直下落于点C ,某时刻地面上A ,B 两个观测点,观测到点D 的仰角分别为45°,75°,若点A ,B间的距离为10千米(其中向量CA →与CB →同向),估算该时刻返回舱距离地面的距离CD 约为________千米.(结果保留整数,参考数据:3≈1.732)答案14解析在△ABD 中,A =45°,∠ABD =180°-75°=105°,∠ADB =30°,由正弦定理得AB sin30°=AD sin105°,AD =20sin105°=20sin(60°+45°)=5(6+2),所以CD =AD sin A =5(6+2)×22=53+5≈14(千米).12.魏晋南北朝时期,数学在测量学取得了长足进展.刘徽提出重差术,应用中国传统的出入相补原理,通过多次观测,测量山高谷深等数值,进而使中国的测量学达到登峰造极的地步.关于重差术的注文在唐代成书,因其第一题为测量海岛的高和远的问题,故将《重差》更名为《海岛算经》.受此启发,小明同学依照此法测量泾阳县崇文塔的高度(示意图如图所示),测得以下数据(单位:米):前表却行DG =1,表高CD =EF =2,后表却行FH =3,表间DF =85.则塔高AB =________米.答案87解析由题意可知,△EFH ∽△ABH ,△CDG ∽△ABG ,所以EF AB =FH BH ,CD AB =DG BG,又EF =CD =2,DG =1,FH =3,DF =85,所以2AB =3BD +88,2AB =1BD +1,则3BD +88=1BD +1,解得BD =852,所以AB =2BD +2=87.13.海面上有相距10n mile 的A ,B 两个小岛,从A 岛望C 岛,和B 岛成60°的视角,从B 岛望C 岛,和A 岛成75°的视角,则B ,C 间的距离为________n mile.答案56解析由题意,知C =45°,A =60°,AB =10.由BC sin A =AB sin C,得BC =56n mile.14.山东省科技馆新馆目前成为济南科教新地标(如图1),其主体建筑采用与地形吻合的矩形设计,将数学符号“∞”完美嵌入其中,寓意无限未知、无限发展、无限可能和无限的科技创新.如图2,为了测量科技馆最高点A 与其附近一建筑物楼顶B 之间的距离,无人机在点C 测得点A 和点B 的俯角分别为75°,30°,随后无人机沿水平方向飞行600米到点D ,此时测得点A 和点B 的俯角分别为45°,60°(A ,B ,C ,D 在同一铅垂面内),则A ,B 两点之间的距离为________米.答案10015解析由题意,∠DCB =30°,∠CDB =60°,所以∠CBD =90°,所以在Rt △CBD 中,BD =12CD =300,BC =32CD =3003,又∠DCA =75°,∠CDA =45°,所以∠CAD =60°,在△ACD 中,由正弦定理,得AC sin45°=CD sin60°,所以AC =60032×22=2006,在△ABC 中,∠ACB =∠ACD -∠BCD =75°-30°=45°,由余弦定理得,AB 2=AC 2+BC 2-2AC ·BC cos ∠ACB =(2006)2+(3003)2-2×2006×3003×22=150000,所以AB =10015.四、解答题15.某市广场有一块不规则的绿地,如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为△ABC ,△ABD ,经测量AD =BD =7米,BC =5米,AC =8米,∠C =∠D .(1)求AB 的长度;(2)若不考虑其他因素,小李、小王谁的设计使建造费用更低(请说明理由)?解(1)在△ABC 中,由余弦定理得cos C =AC 2+BC 2-AB 22AC ·BC =82+52-AB 22×8×5,①在△ABD 中,由余弦定理得cos D =AD 2+BD 2-AB 22AD ·BD =72+72-AB 22×7×7.②由∠C =∠D 得cos C =cos D ,解得AB =7,所以AB 的长度为7米.(2)小李的设计使建造费用更低.理由如下:易知S △ABD =12AD ·BD sin D ,S △ABC =12AC ·BC sin C ,因为AD ·BD >AC ·BC ,且∠C =∠D ,所以S △ABD >S △ABC .故选择△ABC 的形状建造环境标志费用更低.16.一颗人造地球卫星在地球上空1600km 处沿着圆形的轨道运行,每2h 沿轨道绕地球旋转一圈.假设卫星于中午12点正通过卫星跟踪站点A 的正上空,地球半径约为6400km.(1)求人造卫星与卫星跟踪站在12:03时相隔的距离;(2)如果此时卫星跟踪站天线指向人造卫星,那么天线瞄准的方向与水平线的夹角的余弦值是多少?(参考数据:cos9°≈0.988,sin9°≈0.156)解(1)如图所示,设人造卫星在12:03时位于点C ,其中∠AOC =β,则β=360°×3120=9°,在△ACO 中,OA =6400km ,OC =6400+1600=8000(km),β=9°,由余弦定理得AC 2=64002+80002-2×6400×8000cos9°≈3.79×106,解得AC ≈1.95×103,因此在12:03时,人造卫星与卫星跟踪站相距约1950km.(2)如图所示,设此时天线瞄准的方向与水平线的夹角为γ,则∠CAO =γ+90°,由正弦定理得1950sin9°=8000sin (γ+90°),故sin(γ+90°)=80001950·sin9°≈0.64,即cos γ≈0.64,因此,天线瞄准的方向与水平线的夹角的余弦值约为0.64.17.近年来临夏州深入实施生态环境保护和流域综合治理,城区面貌焕然一新.某片水域,如图,OA ,OB 为直线型岸线,OA =200米,OB =400米,∠AOB =π3,该水域的水面边界是某圆的一段弧AB ︵,过弧AB ︵上一点P 按线段PA 和PB 修建垃圾过滤网,已知∠APB =3π4(1)求岸线上点A 与点B 之间的距离;(2)如果线段PA 上的垃圾过滤网每米可为环卫公司节约50元的经济效益,线段PB 上的垃圾过滤网每米可为环卫公司节约402元的经济效益,则这两段垃圾过滤网可为环卫公司节约的经济总效益最高约为多少元?(参考数据:102≈10.1,170≈13.04)解(1)由题意,OA =200米,OB =400米,∠AOB =π3,故AB =OA 2+OB 2-2OA ·OB cos ∠AOB=2002+4002-2×200×400×12=2003(米).(2)设∠PAB =θ,θ则在△PAB 中,ABsin ∠APB =PA =PB sin θ,即2003sin 3π4=PA =PB sin θ,故PA =2006sin PB =2006sin θ,设这两段垃圾过滤网可为环卫公司节约的经济总效益为y 元,则y =50PA +402PB =100006160003sin θ=100006θ-22sin 160003sin θ=60003sin θ+100003cos θ=20003(3sin θ+5cos θ)=2000102sin(θ+φ),其中φ为辅助角,不妨取其为锐角,tan φ=53<3,则φ当θ+φ=π2,即θ=π2-φ时,y 取到最大值2000102,故经济总效益的最大值为2000102≈2000×10.1=20200(元),即这两段垃圾过滤网可为环卫公司节约的经济总效益最高约为20200元.18.如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 处沿直线步行到C 处,另一种是先从A 处沿索道乘缆车到B 处,然后从B 处沿直线步行到C 处.现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50m/min ,在甲出发2min 后,乙从A 处乘缆车到B 处,在B 处停留1min 后,再从B 处匀速步行到C 处.假设缆车匀速直线运行的速度为130m/min ,山路AC 的长为1260m ,经测量,cos A =1213,cos C =35.(1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?解(1)在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45,从而sin B =sin[π-(A +C )]=sin(A +C )=sin A cos C +cos A sin C =513×35+1213×45=6365.由正弦定理得AB =AC sin B ·sin C =12606365×45=1040(m),所以索道AB 的长为1040m.(2)假设乙出发t min 后,甲、乙两游客的距离为d m ,此时,甲行走了(100+50t )m ,乙距离A 处130t m ,所以由余弦定理得d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50)=+6251369.因为0≤t ≤1040130,即0≤t ≤8,所以当t =3537时,甲、乙两游客距离最短,即乙出发3537min 后,乙在缆车上与甲的距离最短.。
高考数学专题复习:余弦定理与正弦定理一、单选题1.在ABC 中,若3sin 5A =,120C =︒,BC =AB =( )A .5B C .D .32.在ABC 中,AB =BC ,2CA =,则ABC 外接圆的面积为( ) A .23π16B .23π24C .24π23D .16π233.在ABC 中,a ,b ,c 是角A ,B ,C 分别所对的边,若::1:2:3A B C =,则::a b c =( )A .1:2:3B .3:2:1C .2D .4.在ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,60A ∠=︒,a =b =B =( ).A .45︒或135︒B .135︒C .45︒D .以上都不对5.在ABC 中,2,3,6a c C π==∠=,那么等于sin A =( )A B C .13D .236.在ABC 中,2,1,3a b C π===,那么的面积等于( )A .12B C D .17.在ABC 中,若ABC 的面积()22214S a b c =+-,则C =( ) A .4πB .6πC .3π D .2π 8.在锐角三角形ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足()(sin sin )()sin a b A B c b C -+=-,若a =22b c -的取值范围是( )A .()3,3-B .()3,5-C .)⎡-⎣D .(3,9.在△ABC 中,角,,A B C 的对边分别是,,,a b c 向量()2,sin ,b c p C =+向量()sin ,21)B c b q =+,且满足2sin ,p A q a =⋅则角A =( )A .6πB .3π C .23π D .56π10.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知4a =,则cos cos b C c B +=( )A .1B C .2D .411.在ABC 中,已知1,45b c B ==,则a =( )A .2B C D12.在ABC 中,若60,1,B a b ===,则ABCS 等于( )A B C D .2二、填空题13.如图,在ABC 中,D 是AB 边上的点,且满足3AD BD =,2AD AC BD BC +=+=,CD ,则cos A =________.14.在ABC 中,60A =,4AC =,BC =ABC 的面积为________.15.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若5a =,b =cos C =,则sin B =________.16.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a =2b =,3c =,则sin sin sin a b cA B C________.三、解答题17.在ABC 中内角A 、B 、C 的对边分别是a 、b 、c ,已知a =c =60A =︒. (1)求B 、C ∠的值;(2)求ABC 的面积.18.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若sin cos a C A . (1)求角A .(2)若a =2c =求△ABC 的面积.19.如图,在ABC 中,45B ∠=︒,点D 在BC 边上,且2CD =,3AD =,1cos 3ADC ∠=(1)求AC 的长; (2)求sin BAD ∠的值.20.在ABC 中,内角,,A B C 的对边分别是,,a b c ,已知()sin sin sin a A b B c C +=. (1)求角C 的值;(2)若sin sin A B 2c =,求ABC 的面积.21.在ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 2c A b a =-. (1)求角C ;(2)若4c =,ABC 的面积为ABC 的周长.22.如图,在平面四边形ABCD 中,90DAB CBD ∠=∠=︒,BC .(1)若22BD AB ==,求AC 的长;(2)若1BD =,30BAC ∠=︒,求四边形ABCD 的面积.参考答案1.A 【分析】使用正弦定理求解即可. 【详解】 由正弦定理得:sin sin a cA C =,即sin sin BC AB A C=,5=5AB =.故选:A . 【点睛】本题考查了正弦定理得使用,正确代入相关数值进行计算是关键. 2.C 【分析】首先根据余弦定理求cos B ,再求sin B ,再根据正弦定理求ABC 外接圆的半径,即可求得圆的面积. 【详解】由余弦定理可知222cos 2AB BC CA B AB BC +-===⋅所以sin B =,根据正弦定理,2sin CA R B ==,即R 所以ABC 外接圆的面积22423S R ππ==.故选:C 3.C 【分析】先求出角,,A B C ,再利用正弦定理求解 【详解】由题::1:2:3A B C =且,,632A B C A B C ππππ++=∴===由正弦定理得1::sin :sin :sin 2a b c A B C ===2 故选:C 4.C 【分析】由正弦定理求出sin B 的值,再根据b a <,得B A <,求得B 的取值. 【详解】根据题意,由于正弦定理可知sin sin a bA B=,所以sin sin a B b A ===故可知sin B由于b =a =b a <,可知角B A <,因此B 为锐角,故45B ︒= 故选:C . 5.C 【分析】利用正弦定理求得sin A . 【详解】由正弦定理得s sin sin 12in 12sin 33a a C A c c A C ⨯=⇒===. 故选:C 6.C 【分析】由三角形面积公式即可得到答案. 【详解】由三角形的面积公式可知,三角形的面积121sin 23S π=⨯⨯⨯=故选:C. 7.A【分析】由已知三角形的面积公式,余弦定理和同角三角函数的基本关系式,求得tan 1C =,即可求解答案. 【详解】由题意可知,在ABC 中,满足2221()4S a b c =+-,即22211sin ()24ab C a b c =+-,又由222cos 2a b c C ab+-=,所以11sin cos 22ab C ab C =,即sin cos C C =,因为(0,)C π∈,所以当cos 0C =即2C π=时显然不成立.所以tan 1C =,又由(0,)C π∈,所以4C π.故选:A 8.A 【分析】根据正弦定理,结合余弦定理求出内角A ,再根据正弦定理,结合降幂公式、辅助角公式、正弦型函数的性质进行求解即可. 【详解】因为()(sin sin )()sin a b A B c b C -+=-,所以由正弦定理可得:222222()()()a b a b c b c a b c bc a b c bc -+=-⇒-=-⇒=+-, 由余弦定理可知:2222cos a b c bc A =+-⋅,所以1cos 2A =,因为三角形ABC 是锐角三角形,所以3A π=,因此有2sin sin sin sin 3a b c A B C =====, 所以2sin ,2sin b B c C ==,因此22221cos 21cos 24sin 4sin 442cos 22cos 222b c B CB C C B --=-=⋅-⋅=-- 因为3A π=,所以233B C C πππ=--=-, 因此2222cos 22cos[2()]2cos 22cos(2)33C C b C c C ππ=--=+--2cos 22(coscos 2sinsin 2)3cos 22)333C C C C C C πππ=++==+, 因为三角形ABC 是锐角三角形,由220023263B C C πππππ<<⇒<-<⇒<<,而02C <<π,所以62C ππ<<,因此242333C πππ<+<,所以sin(2)3)366C C ππ<+<⇒-<+<,即 2233b c -<-<, 故选:A 9.D 【分析】利用向量数量积的坐标表示及已知条件,并应用正弦边角关系可得222b c a +=,再由余弦定理有222cos 2b c a A bc+-=,即可求角A .【详解】由题意,(2)sin 2sin 1)sin 2sin ,b c B c C b C a A p q =+++=⋅∴22(2)21)2b c b c bc a +++=,即222b c a +=,∴222cos 2b c a A bc +-==,又(0,)A π∈, ∴56A π=.故选:D 10.D 【分析】利用余弦定理对cos cos b C c B +化简可得答案 【详解】解:由余弦定理得,222222cos cos 22b a c a c b b C c B b c ab ac +-+-+=⋅+⋅2222222b a c a c b a+-++-=2242a a a===, 故选:D 11.B 【分析】根据给定条件利用余弦定理列出方程求解即得. 【详解】在ABC 中,因1,45b c B ===,于是由余弦定理2222cos b a c ac B =+-得:221a =+,即210a -=,而0a >,解得a =,所以a =. 故选:B 12.C 【分析】根据给定条件,先利用正弦定理求出角A ,进而求得角C ,再利用三角形面积定理求解即得. 【详解】在ABC 中,因60,1,B a b ==sin sin a bA B=得: sin 1sin2a B A b ===,而a b <,即A B <,则30A =,于是得90C =,所以113sin 1sin 90222ABCSab C ==⋅=故选:C 13.0 【分析】设BD x =,则3AD x =,23AC x =-,2BC x =-,利用余弦定理计算cos ADC ∠、cos BDC ∠,由cos cos BDC ADC ∠=-∠可得x 的值,进而可得AD 、AC 的长,在ADC 中求角A ,进而可得cos A 的值. 【详解】设BD x =,则3AD x =,23AC x =-,2BC x =-,在ADC 中,由余弦定理得:222229223cos2x x AD CD ACADC AD CD +--+-∠==⋅ 在BDC 中,由余弦定理得:2222222cos2x x BD CD BCBDC BD CD +--+-∠=⋅ 因为πBDC ADC ∠+∠=,所以cos cos BDC ADC ∠=-∠, 2222=整理可得:212423x x --=,解得:13x =,所以1AD =,1AC =,在ADC 中,222AD AC CD +=,所以AD AC ⊥,所以π2A =, 所以cos 0A =, 故答案为:0.14.【分析】先由余弦定理求出AB 的长,再由三角形的面积公式即可求解. 【详解】在ABC 中,由余弦定理可得: 2222cos BC AB AC AB AC A =+-⋅,代入数据可得:211216242AB AB =+-⨯⨯,即2440AB AB -+=,解得:2AB =,由三角形的面积公式可得ABC 的面积为:11sin 2422AB AC A ⋅⋅⋅=⨯⨯=故答案为:15【分析】根据余弦定理求得c ,再由正弦定理可求得答案. 【详解】由余弦定理知:222+2cos c a b ab C =-,即(2225+25c =-⨯⨯解得c =又1sin 3C =,由正弦定理得sin sin c b C B =3,解得sin B =16【分析】由余弦定理求得cos A 再得sin A ,然后由正弦定理计算.【详解】由题意可知,在△ABC 中,由余弦定理可得cos A =2222b c a bc+-=497223+-⨯⨯=12, 因为A ∈(0,π),所以sin Asin sin sin a b c A B C ==== 所以aA ,bB ,cC , 所以sin sin sin a b c A B C ++++=sin sin )3sin sin sin A B C A B C++++17.(1)45C =︒,75B =︒;(2)3S =【分析】(1)由正弦定理求得C ,再由三角形内角和得出B ;(2)由面积公式计算.【详解】(1)由正弦定理得sin sin a c A C =,所以sin sin c A C a = 又a c >,所以A C >,所以C 是锐角,45C =︒,180604575B =︒-︒-︒=︒;(2)11sin 7530)22ABC S ac B ==⨯︒=︒+︒145cos30cos5sin 30))32=︒︒+︒︒== 18.(1)3A π=;(2【分析】 (1)由正弦定理边角关系,结合三角形内角性质得sin A A =,进而求角A . (2)由余弦定理得2230b b --=求b ,再利用三角形面积公式求△ABC 的面积.【详解】(1)由正弦定理,sin sin cos A C C A ,又sin 0C ≠,sin A A ∴,即tan A (0,)A π∈,得3A π=.(2)由余弦定理知:2222cos a b c bc A =+-,∴2230b b --=,解得3b =,1sin 2ABC S bc A ∴==19.(1)3(2【分析】(1)由已知利用余弦定理直接求解.(2)利用=BAD ADC B ∠∠-∠,结合两角差的正弦公式即可得解.【详解】(1)2CD =,3AD =,1cos 3ADC ∠=, ∴在ADC 中,由余弦定理得222222321cos 22323AD CD AC AC ADC AD CD +-+-∠===⋅⨯⨯,29,3AC AC =∴=∴ (2)1cos 3ADC ∠=,所以sin ADC ∠==BAD ADC B ∠∠-∠,sin =sin()sin cos cos sin BAD ADC B ADC B ADC B ∴∠∠-∠=∠∠-∠∠13=-=20.(1)6C π=;(2)1【分析】(1)根据所给条件,利用正弦定理角化边,再用余弦定理即可得解;(2)借助正弦定理用角A ,B 分别表示边a ,b ,再用三角形面积定理求解即得.【详解】(1)ABC中,由()sin sin sin a A b B c C +=及正弦定理得22()a a b c +=,即222a b c +-由余弦定理得222cos 2a b c C ab -=+,而0πC <<,6C π=, 所以角C 的值是6π;(2)设ABC 外接圆的半径为R ,则由正弦定理得224πsin sin 6c R C ===, 于是得2sin 4sin a R A A ==,2sin 4sin b R B B ==,即16sin sin 4(1ab A B ==,111sin 4(11222ABC a S b C ==⋅⋅=所以ABC 的面积是121.(1)3C π=;(2)12.【分析】(1)由正弦定理结合两角和的正弦公式化简求出cos C 的值,结合角C 的取值范围可求得角C 的值;(2)利用三角形的面积公式可求得ab 的值,利用余弦定理可求得a b +的值,进而可求得ABC 的周长.【详解】(1)2cos 2c A b a =-,由正弦定理得2sin cos 2sin sin C A B A =-,即()2sin cos 2sin 2sin 2sin cos 2cos sin sin C A A C A A C A C A =+-=+-,整理可得sin 2cos sin A C A =,()0,A π∈,sin 0A ∴>,所以,1cos 2C =, 又()0,C π∈,故3C π=;(2)ABC 的面积1sin 2ABC S ab C ===△16ab =, 由余弦定理得()()22222162cos 3483c a b ab a b ab a b π==+-=+-=+-,解得8a b +=, 所以ABC 的周长为12a b c ++=.22.(1)AC (2 【分析】(1)根据题意,可得60ABD ∠=︒,根据余弦定理,即可求得答案.(2)设ABD θ∠=,可得60ACB θ∠=︒-,cos AB θ=,根据正弦定理,结合同角三角函数的关系,可求得sin θ,cos θ的值,进而可得AB 、AD ,代入面积公式,即可得答案.【详解】解:(1)如图所示:在Rt △ABD 中,22BD AB ==,所以1cos 2AB ABD AD ∠==,所以60ABD ∠=︒, 又90DAB CBD ∠=∠=︒,所以150ABC ∠=︒,在ABC 中,由余弦定理得2222cos AC AB BC AB BC ABC =+-⨯⨯⨯∠,1321cos15013217⎛=+-⨯︒=+-⨯= ⎝⎭.所以AC .(2)设ABD θ∠=,则60ACB θ∠=︒-,cos AB θ=, 在ABC 中,由正弦定理得sin sin AB BC ACB BAC =∠∠,所以()cos sin 60θθ=︒-()1cos 602θθ=︒-化简得cos θθ=, 代入22sin cos 1θθ+=,得24sin 7θ=,又θ为锐角,所以sin θ=cos θ=所以cos AB θ==,sin AD θ=,∴ABCD 的面积11122ABD BCD S S S =+=⨯⨯.。
第06节 正弦定理和余弦定理【考纲解读】【知识清单】1.正弦定理正弦定理:a sin A =b sin B =csin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:a ∶b ∶c =sin A ∶sin B ∶sin C ; a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;sin A =a 2R ,sin B =b 2R ,sin C =c2R 等形式,以解决不同的三角形问题.面积公式S =12ab sin C =12bc sin A =12ac sin B对点练习:【2017浙江省高考模拟】在ABC ∆中,内角A ,B ,C 所对的边分别是a ,b ,c ,若a =3C π=,3tan 4A =,则sin A =________,b =__________.【答案】35,42. 余弦定理 余弦定理:2222c o s a b c a b C +-=, 2222cos b c a ac A +-= ,2222cos c a b ac B +-=.变形公式cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,os C =a 2+b 2-c 22ab3. 正弦定理与余弦定理的综合运用应熟练掌握正、余弦定理及其变形.解三角形时,有时可用正弦定理,也可用余弦定理,应注意用哪一个定理更方便、简捷就用哪一个定理. 对点练习:【2017浙江湖州、衢州、丽水三市4月联考】在ABC 中,内角,,A B C 所对的边分别是,,a b c若a =3c =,A=60°,则__________, ABC 的面积S=__________.【答案】 1或2 S =S =【考点深度剖析】高考对正弦定理和余弦定理的考查较为灵活,题型多变,选择题、填空题的形式往往独立考查正弦定理或余弦定理,解答题往往综合考查定理在确定三角形边角中的应用,多与三角形周长、面积有关;有时也会与平面向量、三角恒等变换等结合考查,试题难度控制在中等以下,主要考查灵活运用公式求解计算能力、推理论证能力、数学应用意识、数形结合思想等.【重点难点突破】考点1 正弦定理【1-1】【2018届河南省新乡市第一中学8月】在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,3,2,60a b A ===︒,则cos B = ( )3C.3- 【答案】A【解析】2sin cos sin sin sin a b B B A B B=⇒=⇒=⇒=,故选A . 【1-2】【2017浙江台州上学期】已知在错误!未找到引用源。
中,内角错误!未找到引用源。
的对边分别为错误!未找到引用源。
且错误!未找到引用源。
,则错误!未找到引用源。
的面积为__________.【答案】错误!未找到引用源。
【1-3】在ABC ∆中,角A B C ,,的对边分别为a b c ,,,若角A B C ,,依次成等差数列,且1a =,b =ABC S ∆= . 【答案】23∴11122ABC S ab ∆==⨯=. 【领悟技法】已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则a <b sin Aa =b sin Ab sin A <a<ba ≥ba >ba ≤b【触类旁通】【变式1】【2018届安徽合肥一中、马鞍山二中等六校第一次联考】在ABC ∆中,角,,A B C 的对边分别为,,a b c .已知11,,cos 43b B A π===,则a =( ) A.4334【答案】A 【解析】由1cos 3A =得sin 3A ==43a =, 故选A.【变式2】在中,已知,等腰直角三角形 C.锐角非等边三角形 D.钝角三角形 【答案】B又,【 2-1】【2018届安徽合肥调研】在ABC ∆中,角,,A B C 对应的边分别为,,a b c ,ABC ∆cB a =cos 2()π,0,∈B B A =∴60,4,C a b c =︒=,则ABC ∆的面积为( )【答案】A【解析】由余弦定理得22221317413a b ab b b =+-⇒-=,即213131,4b b a =⇒==,故11sin 41222ABC S ab C ∆==⨯⨯⨯= A.【2-2】ABC ∆中,角,A B C ,所对的边分别为,,a b c .若3,60a A ===︒,则边c =( ) A .1 B .2 C .4 D .6 【答案】C【2-3】【2017浙江温州二模】在错误!未找到引用源。
中,内角错误!未找到引用源。
,错误!未找到引用源。
,错误!未找到引用源。
的对边分别为错误!未找到引用源。
,错误!未找到引用源。
,错误!未找到引用源。
若错误!未找到引用源。
,错误!未找到引用源。
,错误!未找到引用源。
,则错误!未找到引用源。
_______,错误!未找到引用源。
的面积错误!未找到引用源。
_______.【答案】错误!未找到引用源。
【解析】由余弦定理可得错误!未找到引用源。
;由三角形的面积公式可得错误!未找到引用源。
,应填答案 错误!未找到引用源。
和 错误!未找到引用源。
. 【领悟技法】已知三边(a b c 如、、),由余弦定理求A B 、,再由180A B C ++=求角C ,在有解时只有一解.已知两边和夹角(a b C 如、、),余弦定理求出对对边. 【触类旁通】【变式1】在ABC ∆中,内角,,A B C 所对应的边分别为,,a b c ,若22()6c a b =-+,3C π=,则ABC ∆的面积为( )A .3BCD .【答案】C【解析】 由22()6c a b =-+可得22226a b c ab +-=-;由3C π=及余弦定理可得222a b c ab +-=,所以6ab =,所以1sin 2ABC S ab C ∆=3sin 32π==. 【变式2】ABC ∆各角的对应边分别为c b a ,,,满足1≥+++ba cc a b ,则角A 的范围是( ) A .(0,]3πB .(0,]6πC .[,)3ππD .[,)6ππ【答案】A 【解析】由1≥+++ba cc a b ,得()()()()b a c a c a c b a b ++≥+++,整理得bc a c b ≥-+222,由余弦定理得2122cos 222≥≥-+=bc bc bc a c b A ,⎥⎦⎤⎝⎛∈∴3,0πA . 考点3 正弦定理与余弦定理的综合运用【3-1】在ABC ∆中,三内角A ,B ,C 的对边分别为a ,b ,c 且222a b c bc =++,aS 为ABC ∆的面积,则cos S B C 的最大值为( )(A )1 (B 1 (C (D )3 【答案】C【3-2】【2018届广东省阳春市第一中学上学期第一次月考】在ABC 中,内角,,A B C 的对边分别为,,a b c sin cos A a B =.(1)求B ;(2)若3,sin b C A ==,求,a c .【答案】(1)6B π=(2)3,a c ==【解析】试题分析:(1sin cos BsinA sinA B =,即得tan B =6B π=.(2)由正弦定理将角化为边得c =,再根据余弦定理得229a c +=,解方程组可得,a c .(2)由sin C A =及正弦定理,得c =,①由余弦定理2222cos b a c ac B =+-得, 22232cos6a c ac π=+-即229a c +=,②由①②,解得3,a c ==【3-3】【2017届浙江嘉兴测试】在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知cos sin B b A =.(1)求角B 的大小;(2)若ABC ∆的面积2S =,求a c 的值.【答案】(1)3π=B ;(2)1=ca. 【解析】试题分析:(1)由正弦定理,将条件中的边化成角,可得tan B =进而可得B 的值;(2)由三角形面积公式1sin 2S ac =B 可得2b ac =,再由余弦定理可得a c =,得最后结论.试题解析:(1)A B B A sin sin cos sin 3=⋅,又0sin >A ∴B B cos 3sin =3tan =⇒B 又()π,0∈B 得3π=B(2)由ac B ac b S 43sin 21432===, ∴ac b =2 又B ac c a b cos 2222-+=得()002222=-⇔=-+c a ac c a , ∴c a = 得1=c a.【领悟技法】依据已知条件中的边角关系判断三角形的形状时,主要有如下两种方法:(1)利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;(2)利用正、余弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用A +B +C =π这个结论. [注意] 在上述两种方法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.判断三角形的形状的基本思想是:利用正、余弦定理进行边角的统一.即将条件化为只含角的三角函数关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系.结论一般为特殊的三角形.如等边三角形、等腰三角形、直角三角形、等腰直角三角形等.另外,在变形过程中要注意A ,B ,C 的范围对三角函数值的影响.提醒:1.在△ABC 中有如下结论sin A >sin B ⇔a >b .2.当b 2+c 2-a 2>0时,角A 为锐角,若可判定其他两角也为锐角,则三角形为锐角三角形; 当b 2+c 2-a 2=0时,角A 为直角,三角形为直角三角形; 当b 2+c 2-a 2<0时,角A 为钝角,三角形为钝角三角形. 【触类旁通】【变式1】在ABC ∆中,内角,,A B C 所对的边分别是,,a b c .已知14b c a -=,2sin 3sin B C =,则cos A 的值为_______.【答案】41-【变式2】【2018届河南省名校联盟第一次段考】锐角错误!未找到引用源。
的内角错误!未找到引用源。
,错误!未找到引用源。
,错误!未找到引用源。
的对边分别为错误!未找到引用源。
,错误!未找到引用源。
,错误!未找到引用源。
,已知错误!未找到引用源。