重庆市云阳盛堡初级中学八年级数学下册《矩形的判定》导学案
- 格式:doc
- 大小:89.50 KB
- 文档页数:2
18.2.1 矩形第2课时矩形的判定一、新课导入1.导入课题工人师傅为了检验两组对边相等的四边形窗框是否成矩形,一种方法是量一量这个四边形的两条对角线长度,如果对角线长相等,则窗框一定是矩形,你知道为什么吗?(板书课题)2.学习目标(1)能推导归纳判定一个四边形是矩形的几种方法.(2)能选取适当的判定方法判定一个四边形是矩形.3.学习重、难点重点:矩形的判定方法的探究.难点:矩形的性质与判定的综合运用.二、分层学习1.自学指导(1)自学内容:P53最后二行至P54例2前的内容.(2)自学时间:10分钟.(3)自学要求:用已学的矩形意义和性质推导出矩形的判定方法.(4)自学参考提纲:①按定义:有一个角是直角的平行四边形是矩形.②“矩形的对角线相等”的逆命题是对角线相等的平行四边形是矩形,这个命题成立吗?请给予证明.③有三个角是直角的四边形是矩形.④判断:a.对角线相等的四边形是矩形.(×)b.对角线相等且互相平分的四边形是矩形.(√)2.自学:结合自学指导自主学习.3.助学(1)师助生:①明了学情:关注学生是否能完成对两个判定定理的推导,命题证明存在的障碍在哪里?②差异指导:指导学生依据矩形定义完成两个定理的论证及证明一个四边形是矩形的方法步骤.(2)生助生:同桌之间相互研讨.4.强化归纳矩形的三种判定方法及几何推理格式:方法1:有一个角是直角的平行四边形是矩形;方法2:有三个角是直角的四边形是矩形;方法3:对角线相等的平行四边形是矩形.1.自学指导(1)自学内容:P54至P55例2.(2)自学时间:5分钟.(3)自学方法:边看例题,边思考解题思路及解答过程中的每步依据.(4)自学参考提纲:①课本中求∠OAB 的度数的思路是:50()OAD OAB DAB OAD ∠=︒∠=−−−−−→∠∠-求∠DAB 的度数→证明∠DAB=90°→证明四边形ABCD 是矩形.②(证明)解答第一步推理运用了平行四边形的性质:对角线互相平分.第二步由OA=OD 得到AC=BD 的依据是等量代换.第三步由AC=BD 得到四边形ABCD 是矩形的依据是对角线相等的平行四边形是矩形.③完成课本P55练习第2题,参照例2的思路写出解答过程.2.自学:结合自参考提纲进行自学.3.助学(1)师助生:①明了学情:关注学生是否理解例2的解题思路和步骤,存在的困难在哪里.②差异指导:对练习第2题的条件进行分析,猜测有什么结论.(2)生助生:学生之间相互交流帮助.4.强化(1)矩形的判定方法.(2)由条件到问题之间的联系如何分析.三、评价1.学生自我评价(围绕三维目标):各组学生代表介绍自己的学习方法、收获及困惑.2.教师对学生的评价:(1)表现性评价:点评学生课堂学习中的态度、学习方式、成果及不足之处.(2)纸笔评价:评价作业.3.教师的自我评价(教学反思).本节课通过观察、探究,让学生掌握矩形的三个判定方法:(1)有一个角是直角的平行四边形是矩形;(2)对角线相等的平行四边形是矩形;(3)有三个角是直角的四边形是矩形.教学过程中应将矩形的判定与平行四边形的判定作比较,让同学之间相互交流,说出矩形与平行四边形的区别与联系,进而更好地掌握知识.在本节课的教学中,教师应最大限度地将课堂交给学生,提高学生学习的积极性主动性.(时间:12分钟满分:100分)一、基础巩固(50分)1.(20分)下列判定矩形的说法是否正确?什么?(1)有一个角是直角的四边形是矩形.(×)(2)四个角都相等的四边形是矩形.(√)(3)对角线相等的四边形是矩形.(×)(4)对角线互相平分,且有一个角是直角的四边形是矩形. (√)2.(10分)下列四边形中不一定是矩形的是 (C)A.有三个角直角的四边形B.四角都相等的四边形C.一组对边平行且对角相等的四边形D.对角线相等且互相平分的四边形3.(20分)如图:(1)当AC=BD 时, ABCD是矩形;(2)当∠ABC=∠BCD=∠CDA=90°时,四边形ABCD是矩形.二、综合应用(20分)4.已知平行四边形ABCD的对角线AC,BD交于点O,△AOB是等边三角形,AB=4cm.(1)这平行四边形是矩形吗?说明你的理由;(2)求这个平行四边形的面积.解:(1)是.∵△AOB是等边三角形,∴AO=BO,又∵AO=12AC,BO=12BD.(平行四边形的性质)∴AC=BD. ∴ ABCD 是矩形.(2)()212344163.2ABCD S cm =⨯⨯⨯= 三、拓展延伸(30分)5.如图,在△ABC 中,D 在AB 边上,AD=BD=CD ,DE ∥AC ,DF ∥BC.求证:四边形DECF 是矩形. 证明:∵AD=BD=CD ,∴△ABC 为直角三角形,∠FCE=90°,∵DE ∥AC,DF ∥BC,∴四边形DECF 为平行四边形,又∵∠FCE=90°,∴平行四边形DECF 是矩形.【素材积累】1、只要心中有希望存摘,旧有幸福存摘。
八年级数学下册 18.2.1《矩形》矩形的判定导学案(新版)新人教版18、2、1《矩形》矩形的判定学习目标:1、理解并掌握矩形的判定方法、2、能熟练应用矩形的性质、判定等知识进行有关证明和计算、重点:会证明矩形的判定定理难点:会运用矩形的三种判定方法解决相关问题。
学习过程:一、自主探究探究一:下面给大家介绍一下工人制作窗框的过程、1、先截出两对符合规格的铝合金窗料如图,使AB=CD,EF=GH2、摆成四边形(如第2个图),这时窗框的形状是平行四边形,依据的数学道理是_________________________是平行四边形、3、将直角尺紧靠窗框的一个角(如第3个图),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时,说明窗框合格,这时窗框是矩形,依据的数学道理是__________________________ 是矩形、探究二:1、除了上面制作矩形的方法外,还有其他的方法吗?请你画一个矩形;、交流画矩形的方法,得到矩形的判定方法;(自学教材54页)矩形的判定定理(1)__________________________________几何语言:∵_______________________________∴_______________________________矩形的判定定理(2)__________________________________几何语言:∵_______________________________∴_______________________________证明矩形的判定定理(1)已知:求证:证明:证明矩形的判定定理(2)已知:求证:证明:探究三:二、典例展示三、巩固练习。
八年级数学下册导学案(二十三)杨成超八年级数学下册平行矩形的判定导学案【教学目标】:1.会证明矩形的判定定理。
2.能运用矩形的判定定理进行计算与证明。
3.能运用矩形的性质定理与判定定理进行综合推理与证明。
【教学重难点】:矩形判定定理的证明以及运用矩形的判定定理进行计算与证明。
【自学指导】:➢学生看P105---P106注意以下问题:✧自学具备什么条件的平行四边形是矩形?具备什么条件的四边形是矩形?✧你能证明我们曾探索得到的矩形的判定方法是正确的吗?【自学检测】:判断题(1)有一个角是直角的四边形是矩形。
()(2)四个角都相等的四边形是矩形。
()(3)对角线相等,且有一个直角的四边形是矩形。
()(4)一组邻边垂直,一组对边平行且相等的四边形是矩形。
()(5)对角线相等且互相垂直的四边形的矩形。
()(6)两对角线互相垂直平分的四边形是矩形。
()下列各句判定矩形的说法是否正确?为什么?(1)有一个角是直角的四边形是矩形;()(2)有四个角是直角的四边形是矩形;()(3)四个角都相等的四边形是矩形;()(4)对角线相等的四边形是矩形;()(5)对角线相等且互相垂直的四边形是矩形;()(6)对角线互相平分且相等的四边形是矩形;()(7)对角线相等,且有一个角是直角的四边形是矩形;()(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;()(9)两组对边分别平行,且对角线相等的四边形是矩形.( )【师生共同探究,总结】:✓有一个角是直角的平行四边形是矩形.回忆学过的矩形定义,深刻理解定义可作为矩形判定的方法之一,并归纳出通俗易记的构架:先证→再证一个Rt△→矩形.应用格式:∵ 四边形ABCD 是平行四边形 ∠A=90°∴ 平行四边形ABCD 是矩形✓ 对角线相等的平行四边形是矩形.也就是说,要证明一个四边形是矩形,先证它是平行四边形,再证两条对角线相等.先证→再证对角线相等→矩形.应用格式:∵ 四边形ABCD 是平行四边形 AC=BD∴ 平行四边形ABCD 是矩形✓ 判定一个四边形是矩形的方法与思路是:✓ 对角线相等且互相平分的四边形是矩形。
第2课时矩形的判定1.能应用矩形概念、判定定理,解决简单的证明题和计算题,进一步培育分析能力.2.培育综合应用知识分析解决问题的能力.自学指导:阅读讲义54页至55页,完成下列问题.(1)角:①有一个角是直角的平行四边形是矩形.②有三个角是直角的四边形是矩形.(2)对角线:①对角线相等的平行四边形是矩形.②对角线相等且彼此平分的四边形是矩形.知识探讨1.按照概念双重性,能够得出判定矩形的一种方式:有一个角是直角的平行四边形是矩形.2.工人师傅为了查验两组对边相等的四边形窗框是不是成矩形,一种方式是量一量那个四边形的两条对角线长度,若是对角线长相等,则窗框必然是矩形,你明白为何吗?命题:对角线相等的平行四边形是矩形.已知:平行四边形ABCD如图,AC=BD.求证:四边形ABCD是矩形.按照平行四边形的对边相等,再加上AC=BD,AB=AB得出△ABC≌△BAD,得出∠ABC=∠BAD;又AD∥BC,得出∠ABC+∠BAD=180°,∴∠ABC=∠BAD=90°.∴对角线相等的平行四边形是矩形.3.李芳同窗用四步画出了一个四边形,她的画法是“边——直角、边——直角、边——直角、边”,她说这就是一个矩形,她的判断对吗?为何?命题:有三个角是直角的四边形是平行四边形.已知:四边形ABCD,∠A=∠B=∠C=90°.求证:四边形ABCD是矩形.∠A=∠B=90°得出AD∥BC,∠B=∠C=90°得出AB∥DC,得出四边形ABCD 是平行四边形,又有角是90°,所以是矩形.自学反馈1.能够判断一个四边形是矩形的条件是( C )A.对角线相等B.对角线垂直C.对角线彼此平分且相等D.对角线垂直且相等2.矩形的一组邻边别离长3 cm和4 cm,则它的对角线长5cm.3.如图,直线EF∥MN,PQ交EF、MN于A、C两点,AB、CB、CD、AD别离是∠EAC、∠MCA、∠NCA、∠FAC的角平分线,(1)AB和CD、BC和AD的位置关系?解:AB∥CD,BC∥AD.(2)∠ABC、∠BCD、∠CDA、∠DAB各等于多少度?解:90°.(3)四边形ABCD是( C )A.菱形B.平行四边形C.矩形D.不能肯定(4)AC和BD有如何的大小关系?为何?解:相等.因为矩形的对角线相等.活动1 小组讨论例如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE.求证:(1)△ABF≌△DCE;(2)四边形ABCD是矩形.证明:(1)∵四边形ABCD是平行四边形,∴AB=CD.又∵BE=CF,∴BE+EF=CF+EF,∴BF=CE.在△ABF与△DCE中,AB=CD,BF=CE,AF=DE,∴△ABF≌△DCE.(2)△ABF≌△DCE,∴∠B=∠C∵平行四边形ABCD,∴AB∥CD,∴∠B+∠C=180°,∴∠B=90°,∴四边形ABCD是矩形.矩形的判定通常有两种情形:(1)先证四边形是平行四边形,再证有一个角是直角或对角线相等.(2)直接证四边形有三个角是直角.活动2 跟踪训练1.下列四边形中不是矩形的是( C )A.有三个角是直角的四边形是矩形B.四个角都相等的四边形C.一组对边平行且对角相等的四边形D.对角线相等且彼此平分的四边形2.若是E、F、G、H是四边形ABCD四条边的中点,要使四边形EFGH是矩形,那么四边形ABCD应具有的条件是( C )A.一组对边平行而另一组对边不平行B.对角线相等C.对角线彼此垂直D.对角线相等且彼此平分3.已知:如图,□ABCD 的四个内角的平分线别离相交于E 、F 、G 、H. 求证:四边形EFGH 为矩形.证明:∵□ABCD,∴AD ∥BC,∴∠BAD+∠ABC=180°.又BG 、AE 平分∠ABC 与∠BAD,∴∠BAF+∠ABF=90°,即∠AFB=90°,∴∠EFG=∠AFB=90°.同理:∠FEH=∠FGH=∠GHE=∠GFE=90°,∴四边形EFGH 为矩形.4.已知平行四边形ABCD 的对角线AC ,BD 交于点O ,△AOB 是等边三角形,AB=4 cm.(1)平行四边形是矩形吗?说明你的理由.(2)求那个平行四边形的面积.(1)是.△AOB 是等边三角形,AO=BO=4 cm 按照平行四边形对角线彼此平分,可得AC=BD=8 cm.由对角线相等的平行四边形是矩形可知平行四边形ABCD 是矩形.(2)矩形一边是 4 cm ,按照勾股定理可知另一边为2284 =43(cm).故面积为3(cm 2).活动3 课堂小结矩形的判定方式:1.概念:有一个角是直角的平行四边形是矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是平行四边形.。
八年级数学下册 18.2.1矩形(第1课时)导学案1(新版)新人教版掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系、学习难点: 会初步运用矩形的概念和性质来解决有关问题、教学流程【导课】平行四边形有哪此性质?边:平行四边形的( )角:平行四边形的( )对角线:平行四边形( )对称性:( )【多元互动合作探究】1、矩形的定义、教具演示活动平行四边形的的变化过程,当变化到一个角是直角时停止,让学生观察这是什么图形?引出本课题及矩形定义:( )平行四边形叫做( )(通常也叫长方形)、思考:为什么不说有两个、三个、四个角是直角呢?2、探究矩形的性质:(自学课本94页探究)矩形是特殊的平行四边形有一个角是( )的平行四边形,所以具有平行四边形的所有性质,课前也作了回顾。
我们是按照边、角、对角线三个元素去描述的。
通过和学生一起逐一探究得到矩形的性质,并让学生口述证明角:对角线;对称性:3、探究直角三角形斜边上的中线的性质:提问:⑴如图,通过以上对矩形性质的探究,你能进一步发现图中有多少个直角三角形吗?有多少个等腰三角形吗?你能发现线段AO、CO、BO、DO 之间的大小关系吗?这四条线段与AC、BD又是什么关系呢?如果只看直角三角形ABC, BO是什么边上的什么线?你能说说这个结论吗?⑵通过和学生一起回答上面的问题得到:直角三角形斜边上的中线的性质:【训练检测目标探究】1、矩形具有而平行四边行不具有的的性质是()(A)对角相等(B对角线相等(C)对角线互相平分(D)对边平行且相等2、矩形的一条对角线与一边的夹角为40,则两条对角线相交所成的锐角是()(A)20 (B)40 (C)60 (D)803、两条直角边的长分别为12和5,则斜边上的中线长为()(A)26 (B)13 (C)8。
5 (D)6。
54、已知:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60,AB=4cm,则矩形对角线的长为 cm5如果矩形的一条对角线的长为8 cm,两条对角线的一个交角为120,求矩形的边长。
人教版初中数学八年级下册18.2.2 矩形的判定导学案一、学习目标:1.经历矩形判定定理的猜想与证明过程,理解并掌握矩形的判定定理.2.能应用矩形的判定解决简单的证明题和计算题.重点:矩形判定定理的运用.难点:矩形判定方法的理解及应用.二、学习过程:课前自测1.矩形的定义:_________________________________.2.矩形的性质:①__________________________;②__________________________.自主学习一想一想:工人师傅做铝合金窗框,分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料,如图①,使AB=CD,EF=GH;(2)摆放成如图②所示的四边形,则这时窗框的形状是___________,根据的数学道理是______________________________________;(3)将直角尺靠窗框的一个角,如图③,调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时,如图④,说明窗框合格,这时窗框是_____,根据的数学道理是__________________.工人师傅在做门窗或矩形零件时,不仅要测量两组对边的长是否分别相等,常常还要测量它们的两条对角线是否相等,以确保图形是矩形. 你知道其中的道理吗?思考:我们知道,矩形的对角线相等.反过来,对角线相等的平行四边形是矩形吗?猜想:________________________________.已知:四边形ABCD是平行四边形,且AC=BD.求证:四边形ABCD是矩形.【归纳】矩形的判定定理1:___________________________________.几何符号语言:∵ _______________________________;∴ ______________________.想一想:对角线互相平分且相等的四边形是矩形吗?为什么?典例解析例1.如图,在□ABCD中,对角线AC,BD相交于点O,且OA=OD,∠OAD=50°.求∠OAB的度数.【针对练习】如图,□ABCD的对角线AC、BD相交于点O,△OAB是等边三角形,且AB=4,求□ABCD的面积.例2.已知在四边形ABCD中,作AE∥BC交BD于O点且OB=OD,交DC于点E,连接BE,∠ABD=∠EAB,∠DBE=∠EBC.求证:四边形ABED为矩形.【针对练习】如图,矩形ABCD的对角线AC、BD相交于点O,E、F、G、H分别是AO、BO、CO、DO上的一点,且AE=BF=CG=DH.求证:四边形EFGH是矩形.自主学习二思考:前面我们研究了矩形的四个角,知道它们都是直角.它的逆命题成立吗?即四个角都是直角的四边形是矩形吗?进一步,至少有几个角是直角的四边形是矩形?已知:如图,在四边形ABCD中,∠A=∠B=∠C=90°.求证:四边形ABCD是矩形.【归纳】矩形的判定定理2:________________________________.几何符号语言:∵ __________________________;∴ __________________________.典例解析例3.如图,平行四边形ABCD的四个内角的平分线分别相交于E、F、G、H,求证:四边形EFGH 是矩形.【针对练习】已知:如图,P,B,C在同一条直线上,BD,BE分别是∠ABC与∠ABP的平分线,AE⊥BE,AP⊥BD,E,D为垂足.求证:四边形AEBD是矩形.例4.如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为E,求证:四边形ADCE为矩形.例5.在矩形ABCD中,AB=4,BC=3.若点P是CD上任意一点,如图①,PE⊥BD于点E,PF⊥AC 于点F.(1)猜想PE和PF之间有怎样的数量关系?写出你的理由.(2)当点P是AD上任意一点时,如图②,猜想PE和PF之间的数量关系(3)当点P是DC上任意一点时,如图③,猜想PE和PF之间有怎样的数量关系?写出推理过程.达标检测1.在数学活动课.上,老师让同学们判断一个四边形门框是否为矩形,下面是某合作小组的四位同学拟定的方案,其中正确的是( )A.测量对角线是否互相平分B. 测量两组对边是否分别相等C.测量一组对角是否为直角D.测量其中三个角是否为直角2.已知平行四边形ABCD中,下列条件:①AB=BC; ②AC=BD;③AC⊥BD;④AC平分∠BAD.其中能说明平行四边形ABCD是矩形的是( )A.①B.②C.③D.④3.如图,在□ABCD中,对角线AC、BD相交于点O,且OA=OB.若AD=4,∠ABD=30°,则AB的长为( )A.43B.23C.8D. 834.如图,在△ABC中,AC的垂直平分线分别交AC,AB于点D、F,BE⊥DF交DF的延长线于点E,已知∠A=30°, BC=2,AF=BF,则四边形BCDE的面积是( )A.23B.43C.45D.255.如图,是四根木棒搭成的平行四边形框架,AB=8cm,AD=6cm,使AB固定,转动AD,当∠DAB=_____时,□ABCD的面积最大,此时□ ABCD是_____形,面积为______cm2.6.如图,在矩形ABCD中,M为AD边的中点,P为BC上一点,PE⊥MC,PF⊥MB,当AB、BC满足条件___________时,四边形PEMF为矩形.7.如图,在矩形ABCD中AD=3,CD=4,点P是AC上一个动点(点P与点A,C不重合),过点P 分别作PE⊥BC于点E,PF // BC交AB于点F,连接EF,则EF的最小值为______.8.已知:如图,在四边形ABCD中,AB=AD,CB=CD,点M,N,P,Q分别是AB,BC,CD,DA的中点.求证:四边形MNPQ是矩形.9.如图,一张矩形纸片ABCD,点E在边AB上,将△BCE沿直线CE对折,点B落在对角线AC 上,记为点F.(1)若AB=4,BC=3,求AE的长.(2)连接DF,若点D,F,E在同一条直线上,且DF=2,求AE的长.10.如图,在四边形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以3cm/s的速度运动,动点P,Q分别从点A,C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t秒.(1)当t为何值时,四边形ABQP为矩形?(2)当t为何值时,四边形PQCD为平行四边形?。
18.2 特殊的平行四边形18.2.1 矩形 第2课时 矩形的判定学习目标:1、学习矩形的判定定理,解决简单的证明题和计算题,进一步培养分析能力;2、培养综合应用知识分析解决问题的能力. 重难点:掌握矩形的判定定理 学习过程: 一、复习旧知二、探究新知1、探究归纳矩形的判定定理,并用模式表示:(1)你能确定有三个角是直角的四边形是矩形吗?(自己探究)。
判定定理1(从四边形⇒矩形):有三个角是直角的四边形是矩形。
几何语言 在四边形ABCD 中,∵ ∴(2)我们知道矩形的定义:有一个角是直角的平行四边形叫做矩形。
由此这个定义可以作为一个判定吗?判定定理2(从平行四边形⇒矩形):有一个角是直角(900)的平行四边形是矩形。
几何语言 在平行四边形ABCD 中, ∵ 或 或 或 ∴(3)矩形的对角线 ,对角线相等的平行四边形是矩形吗?(证明你的回答)A BD A BD证明:判定定理3(从平行四边形 矩形):对角线相等的平行四边形是矩形。
几何语言在平行四边形ABCD中,∵∴【归纳总结】矩形的判定方法:1、有一个角是的平行四边形是矩形;2、四个角都是的四边形是矩形;3、对角线的四边形是矩形。
或者说,对角线的平行四边形是矩形三、课堂练习思考:下列命题是否正确,正确的加以证明,不正确的通过举反例或画图加以说明(1)有一个角是直角的四边形是矩形(2)对角线互相平分且又相等的四边形是矩形(3)四个角都相等的四边形是矩形四、课堂小结(1)证明四边形是矩形的方法:一般先证明它是平行四边形,然后再证明一个直角或者对角线相等(2)证明平行四边形是矩形的方法:一般可在角上找条件,也可在对角线上找条件。
判定方法:从角的条件看、( 种)D C从对角线的条件看。
五、课后作业1、在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是().A、测量对角线是否相互平分B、测量两组对边是否分别相等C、测量一组对角是否都为直角D、测量其中三个角是否都为直角2、如图,已知ABCD的对角线AC、BD 相交于O,△ABO是等边三角形,AB=4cm,求这个平行四边形的面积六、课后反思。
八年级数学下册 18.2.1 矩形第2课时矩形的判定学案 (新版)新人教版课前预习要点感知矩形的判定:①有一个角是直角的平行四边形是矩形;②对角线相等的平行四边形是矩形;③有三个角是直角的四边形是矩形、预习练习如图所示,已知▱ABCD,下列条件:①AC=BD,②AB=AD,③∠1=∠2,④AB⊥BC中,能说明▱ABCD是矩形的有①④(填写序号)、02当堂训练知识点1 有一个角是直角的平行四边形是矩形1、如图,在四边形ABCD中,AD∥BC,∠D=90,若再添加一个条件,就能推出四边形ABCD是矩形,你所添加的条件是答案不唯一,如AD=BC或AB∥CD等、(写出一种情况即可)2、如图,在△ABC中,AB=AC,AD是BC边上的中线,四边形ADBE是平行四边形、求证:四边形ADBE是矩形、证明:∵AB =AC,AD是BC边上的中线,∴AD⊥BC、∴∠ADB=90、又∵四边形ADBE是平行四边形,∴四边形ADBE是矩形、知识点2 对角线相等的平行四边形是矩形3、能判断四边形是矩形的条件是(C)A、两条对角线互相平分B、两条对角线相等C、两条对角线互相平分且相等D、两条对角线互相垂直4、如图所示,矩形ABCD的对角线相交于点O,E、F、G、H 分别是AO、BO、CO、DO的中点,请问四边形EFGH是矩形吗?请说明理由、解:四边形EFGH是矩形、理由如下:∵四边形ABCD 是矩形,∴AC=BD,AO=BO=CO=DO、∵E、F、G、H分别是AO、BO、CO、DO的中点,∴EO=FO=GO=HO、∴OE=OG,OF=OH、∴四边形EFGH是平行四边形、∵EO+GO=FO+HO,即EG=FH,∴四边形EFGH是矩形、知识点3 有三个角是直角的四边形是矩形5、如图,直角∠AOB内的任意一点P到这个角的两边的距离之和为6,则图中四边形的周长为12、6、已知:如图,在▱ABCD中,AF,BH,CH,DF分别是∠BAD,∠ABC,∠BCD,∠ADC的平分线、求证:四边形EFGH为矩形、证明:∵四边形ABCD是平行四边形,∴∠DAB+∠ADC=180、∵AF,DF平分∠DAB,∠ADC,∴∠FAD=∠BAE=∠DAB、∴∠ADF=∠CDF=∠ADC、∴∠FAD+∠FDA=90、∴∠AFD=90、同理:∠BHC=∠HEF=90、∴四边形EFGH是矩形、03课后作业7、已知O为四边形ABCD对角线的交点,下列条件能使四边形ABCD成为矩形的是(D)A、OA=OC,OB=ODB、AC=BDC、AC⊥BDD、∠ABC=∠BCD=∠CDA=908、下面命题正确的个数是(C)(1)矩形是轴对称图形;(2)矩形的对角线不小于夹在两对边间的任意线段;(3)两条对角线相等的四边形是矩形;(4)有两个角相等的平行四边形是矩形;(5)两条对角线相等且互相平分的四边形是矩形、A、5个B、4个C、3个D、2个9、(呼和浩特中考)如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点、若AC=8,BD=6,则四边形EFGH的面积为12、10、(聊城中考)如图,在△ABC中,AB=BC,BD平分∠ABC,四边形ABED是平行四边形,DE交BC于点F,连接CE、求证:四边形BECD是矩形、证明:∵BD平分∠ABC,∴∠ABD=∠CBD、∵AB=BC,BD平分∠ABC,∴AD=CD、又∵四边形ABED是平行四边形,∴AD∥BE且AD=BE,AB =DE、∵AD=CD,∴CD∥BE且CD=BE、∴四边形BECD是平行四边形、∵AB=BC,∴BC=DE、∴四边形BECD是矩形、11、(百色中考)如图,已知点E,F在四边形ABCD的对角线延长线上,AE=CF,DE∥BF,∠1=∠2(1)求证:△AED≌△CFB;(2)若AD⊥CD,四边形ABCD是什么特殊四边形?请说明理由、证明:(1)∵DE∥BF,∴∠E=∠F、又∵∠1=∠2,AE=CF,∴△AED≌△CFB(AAS)(2)四边形ABCD是矩形,理由如下:∵△AED≌△CFB,∴AD=CB,∠EAD=∠FCB、∴180-∠EAD=180-∠FCB,即∠DAC=∠BCA、∴AD∥BC、∴四边形ABCD为平行四边形、∵AD⊥CD,∴∠ADC=90、∴▱ABCD为矩形、挑战自我12、(张家界中考)如图,在△ABC中,点O是边AC上一个动点,过O作直线MN∥BC、设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F、(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由、解:(1)证明:∵CF平分∠ACD,且MN∥BD,∴∠ACF=∠FCD=∠CFO、∴OF=OC、同理可证:OC=OE、∴OE=OF、(2)由(1)知:OF=OC,OC =OE,∴∠OCF=∠OFC,∠OCE=∠OEC、∴∠OCF+∠OCE=∠OFC+∠OEC、而∠OCF+∠OCE+∠OFC+∠OEC=180,∴∠ECF=∠OCF +∠OCE=90、∴EF===13、∴OC=EF=、(3)当点O移动到AC中点时,四边形AECF 为矩形、理由如下:连接AE、AF、由(1)知OE=OF,当点O移动到AC中点时有OA=OC,∴四边形AECF为平行四边形、又∵∠ECF =90,∴四边形AECF为矩形、。
新人教版八年级数学下册第十八章《矩形的性质和判定的应用》导学案学习目标:1.掌握矩形的性质和判定方法.2.能熟练应用矩形定义、判定等知识,解决简单的证明和计算,培养学生的分析能力学习重点:矩形的性质和判定.学习难点:矩形的判定及性质的综合应用.学习过程:一、自学指导(1)矩形概念:(2)矩形性质:边:角:对角线:(3)矩形与平行四边形之间的关系?3. 通过讨论得到矩形的判定方法.判定矩形最基本的判定方法是:矩形判定方法1:().矩形判定方法2:().二、自学检测:1.下列说法正确的是().(A)有一组对角是直角的四边形一定是矩形(B)有一组邻角是直角的四边形一定是矩形(C)对角线互相平分的四边形是矩形(D)对角互补的平行四边形是矩形2.下列命题中不正确的是( )。
(A)直角三角形斜边中线等于斜边的一半 (B)矩形的对角线相等(C)矩形的对角线互相垂直 (D)矩形是轴对称图形3、矩形的两条对角线的夹角为60°,一边长为10,则另一边长为____________4、矩形具有而一般的平行四边形不具有的性质是( )A、对角相等B、对边相等C、对角线相等D、对角线互相平分5.已知在ABCD中,对角线AC,BD相交于点O,且∠OBC=∠OCB.求证:四边形ABCD 是矩形三、课堂练习6.若矩形对角线相交所成钝角为120°,短边长3.6cm,则对角线的长为( )。
(A)3.6cm (B)7.2cm (C)1.8cm (D)14.4cmM D CB A7.矩形邻边之比3∶4,对角线长为10cm ,则周长为( )。
(A)14cm(B)28cm (C)20cm (D)22cm8如图,矩形ABCD 的周长为24,M 为BC 的中点,∠AMD=90°,求矩形相邻两边的长.9.如图,把一张长方形ABCD 的纸片沿EF 折叠后,ED 与BC 的交点为G ,点D 、C 分别落在D ′、C ′的位置上,若∠EFG=55°,求∠AEG 和∠ECB 的度数.。
矩形的判定
学生的分析能力 二、自主学习
1、矩形的性质有: , 。
2、直角三角形的性质:
(1)直角三角形 等于 ,
(2)直角三角形中如果有一个 那么 。
3、矩形与平行四边形有什么共同之处?有什么不同之处?
相同点: 。
不同点: 。
4、矩形的定义: 。
三、问题探究
1、利用矩形的定义可以判定一个平行四边形是矩形,由此你发现什么?
你的发现成立吗?如何证明?
2、还有哪些方法可以证明一个四边形是矩形?如何证明?
四、反馈提升
已知:如图,平行四边形ABCD 的四个内角的
平分线分别相交于点E 、F 、G 、H 。
求证:四边形EFGH 是矩形。
五、达标运用
1、下列各句判定矩形的说法是否正确?为什么?
(1)有一个角是直角的四边形是矩形; ( ) (2)有四个角是直角的四边形是矩形; ( ) (3)四个角都相等的四边形是矩形; ( ) (4)对角线相等的四边形是矩形; ( ) (5)对角线相等且互相垂直的四边形是矩形; ( ) (6)对角线互相平分且相等的四边形是矩形; ( )
(7)对角线相等,且有一个角是直角的四边形是矩形;()
(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;()
(9)两组对边分别平行,且对角线相等的四边形是矩形.
2、已知
ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4 cm,
求这个平行四边形的面积.
3、已知:如图,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得 DE=CD.连结A E,BE,则四边形ACBE为矩形.
(*今天的内容全做对了,真了不起,送自己张笑脸)
(*今天上课状态不错,进步不小,送自己张笑脸)
今日表现:组长评价:
教师寄语:我深深地理解,耗费了多少时间,战胜了多少困难,你才取得眼前的成绩。
请你相信,在你追求、拼搏和苦干的过程中,我将永远面带微笑地站在你的身旁。