新北师大版九年级数学上册知识点
- 格式:doc
- 大小:156.36 KB
- 文档页数:7
北师大版初三数学知识点总结北师大版初三数学知识点总结1直角三角形的判定方法:判定1:定义,有一个角为90°的三角形是直角三角形。
判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。
如果三角形的三边a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形。
〔勾股定理的逆定理〕。
判定3:假设一个三角形30°内角所对的边是某一边的一半,那么这个三角形是以这条长边为斜边的直角三角形。
判定4:两个锐角互为余角〔两角相加等于90°〕的三角形是直角三角形。
判定5:假设两直线相交且它们的斜率之积互为负倒数,那么两直线互相垂直。
那么判定6:假设在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。
判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,那么这个三角形为直角三角形。
〔与判定3不同,此定理用于斜边的三角形。
〕北师大版初三数学知识点总结2全套教科书包含了课程标准(实验稿)规定的“数与代数〞“空间与图形〞“统计与概率〞“实践与综合应用〞四个领域的内容,在体系结构的设计上力求反映这些内容之间的联系与综合,使它们形成一个有机的整体。
九年级上册包括二次根式、一元二次方程、旋转、圆、概率初步五章内容,学习内容涉及到了《课程标准》的四个领域。
本册书内容分析如下:第21章二次根式学生已经学过整式与分式,知道用式子可以表示实际问题中的数量关系。
解决与数量关系有关的问题还会遇到二次根式。
“二次根式〞一章就来认识这种式子,探索它的性质,掌握它的运算。
在这一章,首先让学生了解二次根式的概念,并掌握以下重要结论:注:关于二次根式的运算,由于二次根式的乘除相对于二次根式的加减来说更易于掌握,教科书先安排二次根式的乘除,再安排二次根式的加减。
“二次根式的乘除〞一节的内容有两条开展的线索。
一条是用具体计算的例子体会二次根式乘除法那么的合理性,并运用二次根式的乘除法那么进行运算;一条是由二次根式的乘除法那么得到并运用它们进行二次根式的化简。
九(上)数学知识点第一章证明(一)1、你能证明它吗?(1)三角形全等的性质及判定全等三角形的对应边相等,对应角也相等判定:SSS、SAS、ASA、AAS、(2)等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)(3)等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴。
判定定理:有一个角是60度的等腰三角形是等边三角形。
或者三个角都相等的三角形是等边三角形。
(4)含30度的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。
2、直角三角形(1)勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方。
逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
(2)命题包括已知和结论两部分;逆命题是将倒是的已知和结论交换;正确的逆命题就是逆定理。
(3)直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)3、线段的垂直平分线(1)线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等。
判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。
(2)三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
(3)如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A、B为圆心,以大于AB的一半长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线。
4、角平分线(1)角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上。
九年级上册数学知识点归纳总结北师大版3.九班级上册数学学问点归纳总结北师大版篇三1.直线与圆有公共点时,叫做直线与圆相切。
2.三角形的外接圆的圆心叫做三角形的外心。
3.弦切角等于所夹的弧所对的圆心角。
4.三角形的内切圆的圆心叫做三角形的内心。
5.垂直于半径的直线必为圆的切线。
6.过半径的外端点并且垂直于半径的直线是圆的切线。
7.垂直于半径的直线是圆的切线。
8.圆的切线垂直于过切点的半径。
4.九班级上册数学学问点归纳总结北师大版篇四单项式与多项式仅含有一些数和字母的乘法包括乘方运算的式子叫做单项式单独的一个数或字母也是单项式。
单项式中的数字因数叫做这个单项式或字母因数的数字系数,简称系数。
当一个单项式的系数是1或—1时,“1”通常省略不写。
一个单项式中,全部字母的指数的和叫做这个单项式的次数。
假如在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项全部的常数都是同类项。
1、多项式有有限个单项式的代数和组成的式子,叫做多项式。
多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。
单项式可以看作是多项式的特例把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。
在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。
2、多项式的值任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。
3、多项式的恒等对于两个一元多项式fx、gx来说,当未知数x同取任一个数值a 时,假如它们所得的值都是相等的,即fa=ga,那么,这两个多项式就称为是恒等的记为fx==gx,或简记为fx=gx。
性质1假如fx==gx,那么,对于任一个数值a,都有fa=ga。
性质2假如fx==gx,那么,这两个多项式的个同类项系数就肯定对应相等。
九年级第一章特殊的平行四边形一、菱形知识点1:菱形的概念概念:有一组邻边相等的平行四边形叫菱形知识点2:菱形的性质1 面积:①底×高②对角线乘积的一半2 边:四条边相等;对边平行;对边相等3 角:对角相等;邻角互补4 对角线:对角线互相垂直平分,并且每一条对角线平分一组对角5 对称性:轴对称图形 + 中心对称图形知识点3:菱形的判定1 四边形+四条边相等2 平行四边形+一组邻边相等3 平行四边形+对角线互相垂直二、矩形知识点1:矩形的概念概念:有一个角是直角的平行四边形叫做矩形知识点2:矩形的性质1 面积:长×宽2 边:对边平行;对边相等3 角:四个角都是直角;对角相等;邻角互补4 对角线:对角线相等,对角线互相平分5 对称性:轴对称图形 + 中心对称图形6 斜边中线性质:直角三角形斜边上的中线等于斜边的一半知识点3:矩形的判定1 四边形+三个角是直角2 平行四边形+对角线相等三、正方形知识点1:正方形的概念概念:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形知识点2:正方形的性质1 面积:边长×边长2 边:四条边相等;对边平行;对边相等3 角:四个角都是直角;对角相等;邻角互补4 对角线:对角线相等且互相垂直平分,每一组对角线平分一组对角5 对称性:轴对称图形 + 中心对称图形知识点3:正方形的判定1 从平行四边形出发:平行四边形+一组邻边相等+一个直角2 从矩形出发:矩形+一组邻边相等矩形+对角线互相垂直3 从菱形出发:菱形+一个直角菱形+对角线相等四、中点四边形知识点1:中点四边形的概念概念:顺次链接任意四边形各边中点所组成的四边形叫中点四边形知识点2:常见的中点四边形1 任意四边形的中点四边形是平行四边形2 平行四边形的中点四边形是平行四边形3 矩形的中点四边形是菱形4 菱形得到中点四边形是矩形5 正方形的中点四边形是正方形。
北师大版九年级数学上册第三章知识点总结《北师大版九年级数学上册第三章知识点总结》嘿,宝子们。
今天咱们来唠唠北师大版九年级数学上册第三章的那些知识点。
这一章呢,有好多重要的东西。
像证明(三)这部分,平行四边形可是个大主角。
平行四边形的性质可不少,对边平行且相等,对角也相等呢。
就好比咱们生活中的那种平行的栏杆,两边总是规规矩矩地保持着自己的状态。
而且平行四边形的对角线互相平分,这就像两个人分东西,分得那叫一个公平。
再说说特殊的平行四边形吧。
矩形,这家伙可特别了。
它是平行四边形的一种特殊情况,四个角都是直角。
想象一下家里的那种方方正正的相框,四个角都是九十度,规规矩矩的。
矩形的对角线不仅互相平分,还相等呢。
这就好比它比普通的平行四边形又多了点“小特权”。
菱形也不甘示弱呀。
菱形的四条边都相等,就像一个规规矩矩的小方块被拉成了斜斜的样子,但是四条边依旧保持着相等的长度。
它的对角线互相垂直,而且还平分每一组对角呢。
感觉菱形就像是一个很有个性的平行四边形,有着自己独特的魅力。
还有正方形呢,正方形可就厉害了。
它既是矩形又是菱形,所以它既有矩形四个角是直角的特点,又有菱形四条边相等的优点。
就像是一个集万千优点于一身的学霸,啥都好。
在证明这些图形的性质和判定的时候,也有很多小窍门。
比如说要证明一个四边形是平行四边形,咱们可以从对边相等、对边平行、对角线互相平分等方面入手。
要是证明矩形呢,就可以先证明它是平行四边形,再加上一个角是直角这个条件。
菱形的话,可以先证平行四边形,再加上邻边相等之类的。
这些知识点在咱们做数学题的时候可太重要了。
就像盖房子的砖头一样,少了哪一块都不行。
有时候遇到一道几何证明题,你就得在脑袋里把这些知识点过一遍,看看哪个能用得上。
就像从自己的小百宝箱里找工具一样,找对了工具,问题就迎刃而解了。
我觉得这一章的知识点虽然有点多,但是只要咱们把每个图形的特点和判定方法都搞清楚,就像熟悉自己的朋友一样,做数学题的时候就不会害怕了。
新版九年级数学上册知识点归纳北师大版新版九年级数学上册知识点归纳(北师大版)一、整数的运算1. 整数的加法和减法运算a) 同号数相加、相减b) 异号数相加、相减c) 加法的交换律和结合律d) 减法与加法的关系2. 整数的乘法和除法运算a) 同号数相乘、相除b) 异号数相乘、相除c) 乘法的交换律和结合律d) 除法的定义和性质3. 整数运算的综合应用a) 数线和整数运算b) 整数的乘方运算c) 分数与整数的运算d) 整数运算在解决实际问题中的应用二、平方根与立方根1. 平方根的定义和性质a) 平方根的概念b) 完全平方数和非完全平方数c) 求平方根的方法2. 平方根的运算a) 平方根的加法和减法b) 平方根的乘法和除法c) 求平方根的应用3. 立方根的定义和性质a) 立方根的概念b) 立方根的运算三、代数式的定义与运算1. 代数式的概念和基本性质a) 变量、常数和代数式的关系b) 代数式的展开与因式分解2. 代数式的加法和减法a) 同类项与合并同类项b) 代数式的加减运算规则c) 根据题意列代数式3. 代数式的乘法和除法a) 代数式的乘法规则b) 代数式的除法规则c) 根据题意列代数式四、一次函数1. 一次函数的定义和性质a) 一次函数的概念b) 一次函数的图象特点c) 一次函数的斜率和截距2. 一次函数的图象与方程a) 一次函数的图象和方程的关系b) 根据图象写出方程c) 根据方程画出图象3. 一次函数的应用a) 一次函数在实际问题中的应用b) 利润、成本和收入的关系五、二次根式1. 二次根式的定义和性质a) 二次根式的概念b) 二次根式的化简与还原c) 二次根式的近似计算2. 二次根式的加法和减法a) 同类项的概念和加减运算b) 多个二次根式的相加相减3. 二次根式的乘法和除法a) 二次根式的乘法运算b) 二次根式的除法运算4. 二次根式的应用a) 二次根式在图形的计算中的应用b) 二次根式在实际问题中的应用六、三角形的性质1. 三角形的基本概念a) 三角形的定义b) 三角形的分类2. 三角形的角度与边的关系a) 三角形内部角的性质b) 三角形外角的性质3. 三角形的边与边的关系a) 三角形边长的大小关系b) 三角形边长的和差关系4. 三角形的中线与垂直平分线a) 三角形的中线性质b) 三角形的垂直平分线性质七、相似三角形1. 相似三角形的概念和性质a) 相似三角形的定义b) 相似三角形的判定条件c) 相似三角形的性质2. 相似三角形的比例关系a) 相似三角形的边比例b) 相似三角形的角度对应关系3. 相似三角形的应用a) 相似三角形在图形中的应用b) 相似三角形在实际问题中的应用以上是新版九年级数学上册的知识点归纳,包括整数的运算、平方根与立方根、代数式的定义与运算、一次函数、二次根式、三角形的性质以及相似三角形等内容。
北师大版初中数学九年级(上册)各章知识点第一章特殊平行四边形第二章一元二次方程第三章概率的进一步认识第四章图形的相似第五章投影与视图第六章反比例函数第一章特殊平行四边形1.1菱形的性质与判定菱形的定义:一组邻边相等的平行四边形叫做菱形。
※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
※菱形的判别方法:一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
1.2 矩形的性质与判定※矩形的定义:有一个角是直角的平行四边形叫矩形..。
矩形是特殊的平行四边形。
※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。
(矩形是轴对称图形,有两条对称轴)※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。
对角线相等的平行四边形是矩形。
四个角都相等的四边形是矩形。
※推论:直角三角形斜边上的中线等于斜边的一半。
1.3 正方形的性质与判定正方形的定义:一组邻边相等的矩形叫做正方形。
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。
(正方形是轴对称图形,有两条对称轴)※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形; 对角线相等的菱形是正方形; 对角线互相垂直的矩形是正方形。
正方形、矩形、菱形和平行边形四者之间的关系(如图3所示): ※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。
※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。
同一底上的两个内角相等的梯形是等腰梯形。
※三角形的中位线平行于第三边,并且等于第三边的一半。
※夹在两条平行线间的平行线段相等。
※在直角三角形中,斜边上的中线等于斜边的一半第二章 一元二次方程2.1 认识一元二次方程......2.2 ...用.配方法求解.....一元二次方程...... 2.3 用公式法求解一元二次方程 2.4 用因式分解法求解一元二次方程 2.5 一元二次方程的跟与系数的关系 2.6 应用一元二次方程※只含有一个未知数的整式方程,且都可以化为02=++c bx ax (a 、b 、c 为 常数,a ≠0)的形式,这样的方程叫一元二次方程......。
※把02=++c bx ax (a 、b 、c 为常数,a ≠0)称为一元二次方程的一般形式,a 为二次项系数;b 为一次项系数;c 为常数项。
※解一元二次方程的方法:①配方法 <即将其变为0)(2=+m x 的形式>②公式法 aacb b x 242-±-= (注意在找abc 时须先把方程化为一般形式)③分解因式法 把方程的一边变成0,另一边变成两个一次因式的乘积来求解。
(主要包括“提公因式”和“十字相乘”)※配方法解一元二次方程的基本步骤:①把方程化成一元二次方程的一般形式;②将二次项系数化成1;③把常数项移到方程的右边;④两边加上一次项系数的一半的平方;⑤把方程转化成0)(2=+m x 的形式;鹏翔教图3⑥两边开方求其根。
※根与系数的关系:当b 2-4ac>0时,方程有两个不等的实数根;当b 2-4ac=0时,方程有两个相等的实数根;当b 2-4ac<0时,方程无实数根。
※如果一元二次方程02=++c bx ax 的两根分别为x 1、x 2,则有:ac x x ab x x =⋅-=+2121。
※一元二次方程的根与系数的关系的作用: (1)已知方程的一根,求另一根;(2)不解方程,求二次方程的根x 1、x 2的对称式的值,特别注意以下公式:①2122122212)(x x x x x x -+=+ ②21212111x x x x x x +=+ ③212212214)()(x x x x x x -+=-④21221214)(||x x x x x x -+=- ⑤||22)(|)||(|2121221221x x x x x x x x +-+=+ ⑥)(3)(21213213231x x x x x x x x +-+=+ ⑦其他能用21x x +或21x x 表达的代数式。
(3)已知方程的两根x 1、x 2,可以构造一元二次方程:0)(21221=++-x x x x x x(4)已知两数x 1、x 2的和与积,求此两数的问题,可以转化为求一元二次方程0)(21221=++-x x x x x x 的根※在利用方程来解应用题时,主要分为两个步骤:①设未知数(在设未知数时,大多数情况只要设问题为x ;但也有时也须根据已知条件及等量关系等诸多方面考虑);②寻找等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程)。
※处理问题的过程可以进一步概括为: 解答检验求解方程抽象分析问题→→ 第三章 概率的进一步认识3.1 用树状图或表格求概率3.2 用频率估计概率※在频率分布表里,落在各小组内的数据的个数叫做频数..; 每一小组的频数与数据总数的比值叫做这一小组的频率..; 即:实验次数频数数据总数频数频率== 在频率分布直方图中,由于各个小长方形的面积等于相应各组的频率,而各组频率的和等于1。
因此,各个小长方形的面积的和等于1。
※频率分布表和频率分布直方图是一组数据的频率分布的两种不同表示形式,前者准确,后者直观。
用一件事件发生的频率来估计这一件事件发生的概率。
可用列表的方法求出概率,但此方法不太适用较复杂情况。
※假设布袋内有m 个黑球,通过多次试验,我们可以估计出布袋内随机摸出一球,它为白球的概率; ※要估算池塘里有多少条鱼,我们可先从池塘里捉上100条鱼做记号,再放回池塘,之后再从池塘中捉上200条鱼,如果其中有10条鱼是有标记的,再设池塘共有x 条鱼,则可依照20010100=x 估算出鱼的条数。
(注意估算出来的数据不是确切的,所以应谓之“约是XX ”)※生活中存在大量的不确定事件,概率是描述不确定现象的数学模型,它能准确地衡量出事件发生的可能性的大小,并不表示一定会发生。
概率的求法:(1)一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 个结果,那么事件A 发生的概率为P (A )=nm (2)、列表法用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。
(3)树状图法通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。
(当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。
)第四章 图形的相似4.1 成正比线段 4.2 平行线段成比例 4.3 形似多边形4.4 探索三角形相似的条件 4.5 相似三角形判定定理的证明 4.6 利用相似三角形测高 4.7 相似三角形的性质 4.8 图形的位似一. 线段的比※1. 如果选用同一个长度单位量得两条线段AB, CD 的长度分别是m 、n,那么就说这两条线段的比AB:CD=m:n ,或写成nm B A =. ※2. 四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即dcb a =,那么这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段.※3. 注意点:①a:b=k,说明a 是b 的k 倍; ②由于线段a 、b 的长度都是正数,所以k 是正数;③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致; ④除了a=b 之外,a:b ≠b:a, b a与ab 互为倒数; ⑤比例的基本性质:若d c b a =, 则ad=bc; 若ad=bc, 则dc b a = _ 图1_ B_ C_ A二. 黄金分割※1. 如图1,点C 把线段AB 分成两条线段AC 和BC,如果ACBCAB AC =,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.1:618.0215:≈-=AB AC ※2.黄金分割点是最优美、最令人赏心悦目的点. 四. 相似多边形¤1. 一般地,形状相同的图形称为相似图形.※2. 对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.五. 相似三角形※1. 在相似多边形中,最为简简单的就是相似三角形.※2. 对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.※3. 全等三角形是相似三角的特例,这时相似比等于 1. 注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上. ※4. 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比. ※5. 相似三角形周长的比等于相似比. ※6. 相似三角形面积的比等于相似比的平方. 六.探索三角形相似的条件 ※1. 相似三角形的判定方法:延长线)相交的直线,所截得的三角形与原三角形相似.._ 图2_F _ E _ D _C _ B _ A _ l _3_ l _2 _ l _1如图2, l 1 // l 2 // l 3,则EFBCDE AB. ※3. 平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.八. 相似的多边形的性质※相似多边形的周长等于相似比;面积比等于相似比的平方. 九. 图形的放大与缩小※1. 如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形; 这个点叫做位似中心; 这时的相似比又称为位似比.※2. 位似图形上任意一对对应点到位似中心的距离之比等于位似比. ◎3. 位似变换:①变换后的图形,不仅与原图相似,而且对应顶点的连线相交于一点,并且对应点到这一交点的距离成比例.像这种特殊的相似变换叫做位似变换.这个交点叫做位似中心.②一个图形经过位似变换后得到另一个图形,这两个图形就叫做位似形. ③利用位似的方法,可以把一个图形放大或缩小.第五章 投影与视图5.1 投影 5.2 视图※三视图包括:主视图、俯视图和左视图。
三视图之间要保持长对正,高平齐,宽相等。
一般地,俯视图要画在主视图的下方,左视图要画在正视图的右边。
主视图:基本可认为从物体正面视得的图象 俯视图:基本可认为从物体上面视得的图象 左视图:基本可认为从物体左面视得的图象※视图中每一个闭合的线框都表示物体上一个表面(平面或曲面),而相连的两个闭合线框一定不在一个平面上。
※在一个外形线框内所包括的各个小线框,一定是平面体(或曲面体)上凸出或凹的各个小的平面体(或曲面体)。
※在画视图时,看得见的部分的轮廓线通常画成实线,看不见的部分轮廓线通常画成虚线。