2019-2020年高二数学相互独立事件同时发生的概率三 人教版
- 格式:doc
- 大小:63.50 KB
- 文档页数:4
高二数学相互独立事件同时发生的概率知识精讲 人教版【基础知识精讲】1.相互独立事件与事件的积事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件.设A 、B 是两个事件,那么A ·B 表示这样一个事件,它的发生表示A 与B 同时发生,它可以推广到有限多个事件的积.2.相互独立事件发生的概率两个相互独立事件同时发生的概率,等于每个事件发生的概率的积. P(A ·B)=P(A)·P(B) (1)证明:设甲试验共有N 1种等可能的不同结果,其中属于A 发生的结果有m 1种,乙试验共有N 2种等可能的不同结果,其中属于B 发生的结果有m 2种,由于事件A 与B 相互独立,N 1,m 1与N 2,m 2之间是相互没有影响的,那么,甲、乙两试验的结果搭配在一起,总共有N 1·N 2种不同的搭配,显然这些搭配都是具有等可能性的.另外,考察属于事件AB 的试验结果,显然,凡属于A 的任何一种试验的结果同属于B 的任何一种乙试验的结果的搭配,都表示A 与B 同时发生,即属于事件AB ,这种结果总共有m 1·m 2种.因此得:P(AB)=2121N N m m ⋅⋅=11N m ·22N m∴ P(AB)=P(A)P(B)这个公式进一步推广:P(A 1A 2……A n )=P(A 1)P(A 2)…P(A n )即:如果事件A 1,A 2,…,A n 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积.值得注意的是:①事件A 与B(不一定互斥)中至少有一个发生的概率可按下式计算: P(A+B)=P(A)+P(B)-P(AB)特别地,当事件A 与B 互斥时,P(AB)=0,于是上式变为 P(A+B)=P(A)+P(B)②事件间的“互斥”与“相互独立”是两个不同的概念,两事件互斥是指两个事件不可能同时发生,两事件相互独立是指一个事件的发生与否对另一事件发生的概率没有影响.3.独立重复试验.独立重复试验,又叫贝努里试验,是在同样的条件下重复地,各次之间相互独立地进行的一种试验.在这种试验中,每一次试验只有两种结果,即某种事件要么发生,要么不发生,并且任何一次试验中发生的概率都是一样的.一般地,如果在一次试验中某件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生K 次的概率P n (k)=k P k (1-P)n-kP n (k)=k P k (1-p)n-k 可以看成二项式[(1-p)+p ]n展开式中的第k+1项.【重点难点解析】本节的重点是相互独立事件的概念乘法公式,理解并掌握n 次独立重复试验中事件A发生k次的概率公式.难点是n次独立重复试验中事件A发生k次的概率的求法.例1甲、乙两人独立地解同一个问题,甲解决这个问题的概率为P1,乙解决这个问题的概率为P2,那么两人都没能解决这个问题的概率是( )A.2-P1-P2B.1-P1P2C.1-P1-P2+P1P2D.1-(1-P1)(1-P2)E⋃,而解法一:记甲解决成功为E,乙解决成功为F,则两个均未成功为事件FE⋃)=1-P(E∪F)=1-[P(E)+P(F)-P(EF)],由于E、F独立,故P(EF)=P(E)P(F),P(FE⋃)=1-P1-P2+P1P2.故选C.这样,P(F解法二:记号同解法一,所求事件为EF,由于E与F独立,故P(EF)=P(E)·P(F)=(1-P1)(1-P2)=1-P1+P2+P1P2.解法三:可采用极端原则:设P1=1,P2=0,则所求概率为0,而四个选项中只有C此时值为0.故选C.例2甲、乙、丙各进行一次射击,如果甲、乙2人击中目标的概率是0.8,丙击中目标的概率是0.6,计算:(1)3人都击中目标的概率;(2)至少有2人击中目标的概率;(3)其中恰有1人击中目标的概率.解 (1)记“甲、乙、丙各射击一次,击中目标”分别为事件A、B、C彼此独立,三人都击中目标就是事件A·B·C发生,根据相互独立事件的概率乘法公式得:P(A·B·C)=P(A)·P(B)·P(C)=0.8×0.8×0.6=0.384(2)至少有2人击中目标包括两种情况:一种是恰有2人击中,另一种是3人都击中,其中恰有2人击中,又有3种情形,即事件A·B·C,A·B·C,A·B·C分别发生,而这3种事件又互斥,故所求的概率是P(A·B·C)+P(A·B·C)+P(A·B·C)+P(A·B·C)=P(A)P(B)·P(C)+P(A)P(B)P(C)+P(A)P(B)P(C)+P(A)P(B)P(C)=0.8×0.8×0.4+0.8×0.2×0.6+0.2×0.8×0.6+0.8×0.8×0.6=0.832(3)恰有1人击中目标有3种情况,即事件A·B·C,A·B·C,A·B·C,且事件分别互斥,故所求的概率是P(A·B·C)+P(A·B·C)+P(A·B·C)=P(A)·P(B)·P(C)+P(A)·P(B)+P(C)+P(A)·P(B)·P(C)=0.8×0.2×0.4+0.2×0.8×0.4+0.2×0.2×0.6=0.152.答:3人都击中目标的概率是0.384;至少2人击中目标的概率是0.832;恰有1人击中目标的概念是0.152.说明题(3)还可用逆向思考,先求出3人都未击中的概率是0.016,再用1-0.832-0.016可得.例3甲、乙两人各投篮3次,每次投中得分的概率分别为0.6和0.7,求(1)甲、乙得分相同的概率;(2)甲得分比乙多的概率.解 (1)分别令3次投篮中甲投中0次、1次、2次、3次为事件A 0,A 1,A 2,A 3;乙恰投中0次,1次,2次,3次为事件B 0,B 1,B 2,B 3,当且仅当他们投中次数相同时得分才相同,设得分相同为事件D.那么D =A 0B 0+A 1B 1+A 2B 2+A 3B 3所以P(D)=P(A 0B 0)+P(A 1B 1)+P(A 2B 2)+P(A 3B 3)=(1-0.6)3(1-0.7)3+C 31×0.6×(1-0.6)2×C 31×0.7×(1-0.7)2+C 32×0.62×(1-0.6)C 32×0.72×(1-0.7)+0.63×0.73=0.321(2)设“甲得分比乙多”为事件E ,当且仅当甲投中次数比乙多,事件E 发生,所以E =A 1B 0+A 2B 0+A 3B 0+A 2B 1+A 3B 1+A 3B 2利用公式可求得P(E)=0.243例4 工人看管3台机床,在1小时内,3台机床正常工作(不需要照顾)的概率分别是0.9,0.8,0.85,求在任一小时内.(1)3台机床都不需要照顾的概率.(2)3台机床中至少有一台不需要工人照顾的概率. 解 (1)可以认为机床的工作是相互独立的.设A 1,A 2,A 3分别表示第1、2、3台机床不需要工人照顾,则P(A 1A 2A 3)=P(A 1)P(A 2)P(A 3)=0.9×0.8×0.85=0.612.即3台机床都不需要工人照顾的概率为0.612.(2)“3台机床中至少有一名不需要照顾”与“3台都需要工人照顾”是对立事件,即A 1+A 2+A 3与1A 、2A 、3A 是对立事件,所以P(A 1+A 2+A 3)=1-P(321A A A ++) =1-P(321A A A ) =1-P(1A )P(2A )P(3A )=1-(1-0.9)(1-0.8)(1-0.85) =0.997即3名机床中至少有一台不需要照顾的概率为0.997.【难题巧解点拨】例1 有10台同样的机器,每台机器的故障率为0.03,各台机器独立工作,今配有2名维修工人,一般情况下,一台机器故障1个人维修即可,问机器故障无人修的概率是多少?解 A 表示机器故障无人修的事件,A 表示机器故障多不超过2,则P(A )=C 100(0.97)10+C 101(0.97)9(0.03)+C 103(0.97)8(0.03)2=0.9972P(A)=1-P(A )=0.0028.说明 出现故障的机器数大于2时即为机器故障无人修的情况,因为正向思考需考虑8种情况,所以应用逆向思考的方法.例2 设在一袋子内装有5只白球和5只黑球,从袋子内任取5次,每次取一只,每次取出的球又立即放回袋中,求这5次取球中(结果保留两个有效数字)①取得白球3次的概率②至少有一次取得白球的概率解 本题考查事件在n 次独立重复实验中恰好发生k 次的概率.设取得一次白球的事件为A ,A 在一次试验中发生的概率P =0.5,所以取得白球3次的概率即A 在5次独立实验中恰好发生3次的概率.C 530.53(1-0.5)5.3=0.3125≈0.31至少有一次取得的白球的概率为1-C 500.50(1-0.5)5=0.96875≈0.97例3 每周甲去某地的概率是41,乙去某地的概率是51,假定两人的行动之间没有影响,分别求下列事件发生的概率:(1)一周内甲、乙同去某地的概率;(2)一月内(以四周计)甲去某地的概率.解 (1)P =P(AB)=P(A)·P(B)=41×51=201 (2)P =1-C 40(1-41)4(41)0=1-(43)4=256175评析:(1)为相互独立事件同时发生;(2)为n 次独立重复实验恰好发生k 次的事件,也可由P =C 41(41)1(43)3+C 42(41)2(43)2+C 43(41)3(43)+C 44(41)4(43)0求解.【课本难题解答】有甲、乙、丙三批罐头,每100个,共中各1个是不合格的,从三批罐头中各抽出1个,计算:(1)3个中恰有一个不合格的概率; (2)3个中至少有1个不合格的概率.解 (1)P 1=P(A ·B ·C)+P(A ·B ·C)+P(A ·B ·C )=P(A )·P(B)·P(C)+P(A)·P(B )·P(C)+P(A)·P(B)·P(C )=3×(0.01×0.992)≈0.03或者P 1=C 31×0.01×(1-0.01)2=3×0.01×0.992≈0.03(2)1-0.993≈0.03【命题趋势分析】本节主要了解互斥事件与相互独立事件的意义:会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率;了解独立重复试验,会计算事件在n 次独立重复试验中恰好发生k 次的概率.【典型热点考题】例1 将一枚硬币连掷4次,出现“2个正面,2个反面”的概率是( )A.21 B.83 C.52D.1解 掷一枚硬币一次看作一次试验,出现上面事件为A ,则P(A)=21,而连掷4次可看作4次独立重复实验,所求问题即为4次独立重复试验中事件A 恰好发生2次的概率是多少,根据n 次独立重复试验中事件A 发生k 次的概率公式P n (k)=k P k (1-P)n-k得到:P 4(2)=C 42·(21)2·(21)2=83∴应选B.例2 生产某种产品出现次品的概率为2%,生产这种产品4件,至多一件次品的概率为( )A.1-(98%)4B.(98%)4+(98%)3·2%C.(98%)4D.(98%)4+C 41(98%)3·2%解 生产一件产品看作一次试验,产品为次品,记作事件A ,则所求问题就是4次独立重复试验中事件A 发生一次或不发生的概率.由公式 P n (k)=k P k (1-p)n-k.得:P =C 40(2%)·(1-2%)4+C 41(2%)(1-2%)3=(98%)4+C 41(98%)3·2% ∴应选D.本周强化练习: 【同步达纲练习】一、选择题1.若事件P 与Q 独立,则P 与Q ;P 与Q ;P 与Q 相互独立的对数是( ) A.0 B.1 C.2 D.32.下列正确的说法是( ) A.互斥事件是独立事件 B.独立事件是互斥事件C.两个非不可能事件不能同时互斥与独立D.若事件A 与事件B 互斥,则A 与B 独立.3.一个均匀的正四体,第一面是红色,第二面是白色,第三面是黑色,而第四面同时有红、白、黑三种颜色,P 、Q 、R 表示投掷一次四面体接触桌面为红、白、黑颜色事件.则下列结论正确的是( )A.P 、Q 、R 不相互独立B.P 、Q 、R 两两独立C.P 、Q 、R 不会同时发生D.P 、Q 、R 的概率是314.一个口袋中装有3个白球和3个黑球,独立事件是( ) A.第一次摸出是白球与第一次摸出是黑球B.摸出后不放回.第一次摸的是白球,第二次摸的是黑球C.摸出后放回,第一次摸的是白球,第二次摸的是黑球D.一次摸两个球,第一次摸出颜色相同的球与第一次摸出颜色不同的球5.某产品合格率为0.9,下列事件可看作独立重复试验( ) A.一次抽3件,都是合格品 B.一次抽3件,只有2件合格品 C.抽后放回,连续抽三次都是次品D.抽出后,合格品就不放回,是次品就放回,连续抽三次,三次都是合格品6.一批产品100件,其中5件是次品,从中任取三件,恰有一件是次品的概率是( ) A.C 31·0.05·(1-0.05)2B.51C.1005×3D.310025.915C C C7.推毁敌人一个工事,要命中三发炮弹才行,我炮兵射击的命中率是0.8.为了95%的把握摧毁工事,需要发射炮弹的个数是( )A.6B.5C.4D.38.甲、乙两人独立答题,甲能解出的概率为P ,乙不能解出的概率为q ,那么两人都能解出此题的概率是( )A.pqB.p(1-q)C.(1-p)(1-q)D.1-(1-p)(1-q)9.一批产品共有100个,次品率3%,从中任取3个恰有1个次品的概率是( )A.C 310.03(1-0.03)2B.C 31(0.03)2(1-0.03)C.C 31(0.03)3D.310019713C C C10.10颗骰子同时掷出,共掷5次,则至少有一次全部出现一个点的概率是( )A.[1-(65)10]5B.[1-(65)5]10C.1-[1-(61)10]5D.1-[1-(65)5]10二、填空题1.两雷达独立工作,它们发现飞行目标的概率分别是0.9和0.8,则有且仅有1名雷达发现飞行物的概率为.2.一个工人看管10部机器,在某段时间里一部机器需要人照看的概率为31,则在这段时间内,有四部机器需要照看的概率是.3.100个大小一样的球,其中红球90个,白球10个,现从中任取10个球.(1)若取后放回去,连续10个都是红球的概率=;(2)若取后不放回,连续取10个都是红球的概率=.4.每次射击打中目标的概率为0.2,如果射击6次,则至少打中两次的概率=.5.某工人出废品的概率是0.2,则4天中仅有1天出废品的概率=.6.一批棉花中任抽一纤维,长度小于45厘米的概率是0.75,则任抽3根纤维,两根小于45厘米,一根不小于45厘米的概率是.7.盒中有7个白球和3个黑球,从中连续取两次,两次都是白球.(1)如第一个取出后不放回,再取第二个,此时概率为;(2)如第一个球取出后放回,然后再取第二个,此时概率为.8.某气象局预报天气情况的准确率为0.9,那么一周内有五天准确的概率为.三、解答题1.两位乒乓球运动员水平相当,甲四次中胜乙三次的概率与甲八次中胜乙五次的概率哪种大?2.三位同龄工人参加人寿保险,在一年中,每人的死亡率都是0.01,年初交10元保险金,如一年内死亡,则发给家属100元.(1)一年中,保险公司亏本的概率?(2)保险公司一年中要付出200元的概率是多少?3.两个抽屉,各存放五个零件,使用时从任一抽屉中取一个,问过一段时间后第一个抽屉已用完,第二个抽屉还剩2个的概率?【素质优化训练】1.某厂正常用水(一天内用水在额定量之内)的概率为43,求在六天内至少四天用水正常的概率.2.一盒中装有20个弹子球,其中10个红球,6个白球,4个黄球,一小孩随手拿出4个,求至少有3个红球的概率.3.甲、乙两人进行五打三胜制的象棋赛,若甲每盘胜率为53,乙每盘胜率为52(和棋不算),求:(1)比赛以甲比乙为3比0胜出的概率? (2)比赛以甲比乙为3比2胜出的概率?(3)比赛以乙比甲为3比1胜出的概率?4.现有一题面向全班50名同学征求解答,假定每人独立解出此题的概率为0.1,问此题能否在该班独立被解答的概率达95%?5.某人在车站上等车,可坐任何车回家,已知半小时内电车到站的概率为21,公交车到站的概率为41,计算此人十分钟内能乘回家的概率.【生活实际运用】船队要对下月是否出海作出决策,若出海后是好天,可得收益5000元;若出海后天气变坏,将要损失2000元;若不出海,无论天气好坏都要承担1000元的损失费.据预测下月好天气的概率是0.6,坏天气的概率是0.4,问应如何作出决策?解 因为天气好坏是不确定因素,因此作决策时存在一定的风险,我们不能保证所作的决策一定会取得最好的效益,但必须使效益的期望值是最高的.要作出是否出海的决策,其主要依据是效益的高低,根据题意,不出海的效益是-1000元,而出海的效益要视天气而定,有60%的概率获5000元的收益,有40%的概率获-2000元的收益,故可求得出海效益的期望值.E =5000×60%+(-2000)×40% =2200(元).显然高于不出海的收益-1000元.故选择出海.【知识验证实验】证明“五局三胜”制(即比赛五局,先胜三局者为优胜者)是公平的比赛制度,即如果比赛双方赢得每局是等可能的,各局比赛是独立进行的,则双方获胜的概率相同.证 将每一局比赛看作一次试验,考察一方,如甲方胜或负(即乙方负或胜),问题归结为n =5的贝努里试验.设A 表示一局比赛中“甲获胜”事件,由题意,P(A)=21,记B k 为“五局比赛中甲胜k 局”事件,k =0、1、2、3、4、5.则P(“甲获胜”)=P(B 3∪B 4∪B 5).则利用概率的加法公式,注意到C 5k =C 55-k即得 P(“甲获胜”)=P(B 3)+P(B 4)+P(B 5)=C 53(21)5+C 54(21)5+C 55(21)5=21. 而P(“乙获胜”)=P(“甲获胜”)=1-21=21.【知识探究学习】从某鱼池中捕得1200条鱼,做了红色记号之后再放回池中,经过适当的时间后,再从池中捕1000条鱼,计算其中有红色记号的鱼的数目,共有100条,试估计鱼池中共有多少条鱼.解 依次捕鱼的情况有r 个结果,因是有放回地捕鱼,所以每次捕得都有n 种可能,共有n r 个结果,其中有记号的鱼出现k 次的基本事件数目为C r k n 1r (n-n 1)r-k,那么概率为P k (n)=r(n n 1)k (1-nn 1)r-k. 为了求P k (n)的最大值时的n ,我们设x =nn 1,考察函数f(x)=x k (1-x)r-k,x ∈(0,1). 而f(x)=kk r k r k )(1--[(r-k)x ]k [k(1-x)]r-k≤kk r k r k )(1--{[∑=-k i k r 1)(x+∑-=-kr i x k 1)1(]/k+(r-k)}k+(r-k)=k k-r(r-k)-k[rx k k r x k r k )1()()(--+-]k+r-k=rk r k rk r k --)(. 当且仅当(r-k)x =k(1-x),即x =r k 时,上式等号成立,即rk=x 时,f(x)达到最大.于是^n =[k r n 1]时,P k (n)达到最大值,这样我们把[k rn 1]作为鱼池中鱼数n 的估计量.在题中^n =10010001200⨯=12000(条).[参考答案]【同步达纲练习】一、1.D 2.C 3.A 4.C 5.C 6.D 7.A 8.B 9.D 10.C二、1.P(A ·B)+P(A ·B )=0.26 2.0.227 3.0.349,0.330 4.0.34 5.0.410 6.0.422 7.(1)157 (2)0.49 8.C 75·0.95·0.12三、1.C 43·(21)3·21=41.C 85(21)5(21)3=327,前者概率大于后者2.(1)1-(1-0.01)3=0.0297 (2)C 32·(0.01)2·0.99=0.0002973.C 85·0.55(1-0.5)3=327 【素质优化训练】 1.C 64(43)4(41)2+C 65(43)5·(41)+C 66(43)6=0.83 2.P =420410110310C C C C =32322 3.(1)P =(53)3=12527 (2)P =C 53(53)3(52)2=625216 (3)P =C 43(52)3(53)1=62596 4.P =1-0.950=0.995>0.95. 故能够. 5.P =21×41+21×(1-41)+(1-21)×41=85或者P =21+41-21×41=85.。
事件的相互独立性、概率与频率屾一1事件的相互独立性@独立事件对任意两个事件A与B,如果P(A B)= P(A)P(B)成立,则我们称事件A与事件B相互独立,简称独立。
@ n个事件独立n个事件A1,A2,…,A n两两独立时,等式P(A1A2…儿)=P(A1)P(A2)... P(A n)成立。
2频率与概率(I)频率的稳定性一般地,随着试验次数n的增大,频率偏离的概率的幅度会缩小,即事件A发生的频率几(A)会逐渐稳定千事件A发生的概率P(A)我们称频率的这个性质为频率的稳定性。
因此,我们可以用频率儿(A)估计概率P(A)。
案例我扔骰子前3次都是6,那第4次投出骰子是6的可能性有多大呢?理性分析,应该是-,因为第4次投骰子的概率与前三次无关;那假如我扔骰子前300次都是6,那第301次是6的可能性又有多大呢?此时,频率的稳定性会告诉你第301次是6的可能性很大,只能说明骰子是有问题的,这数学不就告诉你赌博十赌九输的原因了么!案例估值兀值。
(可百度下“用概率计算圆周率旷')(2)随机模拟蒙特卡洛方法:利用随机模拟解决问题的方法。
硌)_【题型一】概率与频率【典题1】下列说法中,正确的是()A概率是频率的稳定值,频率是概率的近似伯B做n次随机试验,事件发生m次,则事件发生的频率巴就是事件的概率C频率是不能脱离n次试验的试验值,而概率是具有确定性的不依赖千试验次数的理论值D任意事件A发生的概率P(A)总满足0< P(A) < 1。
【解析】根据题意,依次分析选项:对千A,由概率与频率的关系,A正确;对千B,概率是频率的稳定值,B错误;对千C,由概率与频率的关系,C正确;对千D,任意事件A发生的概率率P(A)总满足0:5 P(A)三1,D错误;故选:AC。
【点拨】正确理解概率与频率之间的关系。
【题型二】独立事件【典题1】已知事件A,B,且P(A)= 0.4, P(B) = 0.2,则下列结论正确的是()A 如果B c;;;A,那么P(AUB)= 0.4, P(AB) = 0.2B如果A与B互斥,那么P(AUB)= 0.6, P(AB) = 0C如果A与B相互独立,那么P(AUB)= 0.6, P(AB) = 0D如果A与B相互独立,那么P(AB)= 0.48, P(AB) = 0.12【解析】事件A,B,且P(A)= 0.4, P(B) = 0.2,对千A,若BgA,则P(AUB)= P(A) = 0.4, P(AB) = P(B) = 0.2,故A正确;对千B,若A与B互斥,则P(AUB)= P(A) + P(B) = 0.6, P(AB) = 0,故B正确;对于C,若A与B相互独立,则P(AB)= P(A)P(B) = 0.08,P(AUB) = P(A) + P(B) -P(AB) = 0.4 + 0.2 -0.08 -0.52,故C错误;对千D,若A与B相互独立,则P(刀B)= P(A)P(B) = 0.6 x 0.8 = 0.48,P(AB) = P(A)P(B) = 0.6 x 0.2 = 0.12,故D正确。
教学目的:
1 理解独立重复试验的概念,明确它的实际意义;
2.引出次独立重复试验中某事件恰好发生次的概率计算公式;
3.了解概率计算公式与二项式定理的内在联系
教学重点:次独立重复试验中某事件恰好发生次的概率计算公式
教学难点:独立重复试验的判定
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;
必然事件:在一定条件下必然发生的事件;
不可能事件:在一定条件下不可能发生的事件
2.随机事件的概率:一般地,在大量重复进行同一试验时,事件发生的频率总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件的概率,记作.
3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;
4.概率的性质:必然事件的概率为,不可能事件的概率为,随机事件的概率为,必然事件和不可能事件看作随机事件的两个极端情形
5 基本事件:一次试验连同其中可能出现的每一个结果(事件)称为一个基本事件
6.等可能性事件:如果一次试验中可能出现的结果有个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是,这种事件叫等可能性事件
7.等可能性事件的概率:如果一次试验中可能出现的结果有个,而且所有结果都是等可能的,如果事件包含个结果,那么事件的概率
8.等可能性事件的概率公式及一般求解方法
9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的
10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+
一般地:如果事件中的任何两个都是互斥的,那么就说事件彼此互斥
11.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=⇒=-
12.互斥事件的概率的求法:如果事件彼此互斥,那么
=12()()()n P A P A P A +++
13.相互独立事件:事件(或)是否发生对事件(或)发生的概率没有影响,这样的两个事件叫做相互独立事件
若与是相互独立事件,则与,与,与也相互独立
14.相互独立事件同时发生的概率:
一般地,如果事件相互独立,那么这个事件同时发生的概率,等于每个事件发生的概率的积,1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅
二、讲解新课:
1 独立重复试验的定义:
指在同样条件下进行的,各次之间相互独立的一种试验
2.独立重复试验的概率公式:
一般地,如果在1次试验中某事件发生的概率是,那么在次独立重复试验中这个事件恰好发生次的概率.
它是展开式的第项
三、讲解范例:
例1.某气象站天气预报的准确率为,计算(结果保留两个有效数字):
(1)5次预报中恰有4次准确的概率;
(2)5次预报中至少有4次准确的概率
解:(1)记“预报1次,结果准确”为事件.预报5次相当于5次独立重复试验,根据次独立重复试验中某事件恰好发生次的概率计算公式,5次预报中恰有4次准确的概率4454455(4)0.8(10.8)0.80.41P C -=⨯⨯-=≈
答:5次预报中恰有4次准确的概率约为0.41.
(2)5次预报中至少有4次准确的概率,就是5次预报中恰有4次准确的概率与5次预报都准确的概率的和,即
4454555555555(4)(5)(4)0.8(10.8)0.8(10.8)P P P P C C --=+==⨯⨯-+⨯⨯-
450.80.80.4100.3280.74=+≈+≈
答:5次预报中至少有4次准确的概率约为0.74.
例2.某车间的5台机床在1小时内需要工人照管的概率都是,求1小时内5台机床中至少2台需要工人照管的概率是多少?(结果保留两个有效数字)
解:记事件=“1小时内,1台机器需要人照管”,1小时内5台机器需要照管相当于5次独立重复试验
1小时内5台机床中没有1台需要工人照管的概率,
1小时内5台机床中恰有1台需要工人照管的概率,
所以1小时内5台机床中至少2台需要工人照管的概率为
[]551(0)(1)0.37P P P =-+≈
答:1小时内5台机床中至少2台需要工人照管的概率约为.
点评:“至多”,“至少”问题往往考虑逆向思维法
例3.某人对一目标进行射击,每次命中率都是0.25,若使至少命中1次的概率不小于0.75,至少应射击几次?
解:设要使至少命中1次的概率不小于0.75,应射击次
记事件=“射击一次,击中目标”,则.
∵射击次相当于次独立重复试验,
∴事件至少发生1次的概率为. 由题意,令,∴,∴1
lg
4 4.823lg 4n ≥≈, ∴至少取5.
答:要使至少命中1次的概率不小于0.75,至少应射击5次
四、课堂练习:
1.每次试验的成功率为,重复进行10次试验,其中前7次都未成功后3次都成功的概率为( )
2.10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中,恰有一人中奖的概率为( )
3.某人有5把钥匙,其中有两把房门钥匙,但忘记了开房门的是哪两把,只好逐把试开,则此人在3次内能开房门的概率是( )
22112
333232()()()()5555C C ⨯⨯+⨯⨯
4.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( )
5.一射手命中10环的概率为0.7,命中9环的概率为0.3,则该射手打3发得到不少于29环的概率为 .(设每次命中的环数都是自然数)
6.一名篮球运动员投篮命中率为,在一次决赛中投10个球,则投中的球数不少于9个的概率为 .
7.一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为,则此射手的命中率为 .
8.某车间有5台车床,每台车床的停车或开车是相互独立的,若每台车床在任一时刻处于停车状态的概率为,求:(1)在任一时刻车间有3台车床处于停车的概率;(2)至少有一台处于停车的概率
9.种植某种树苗,成活率为90%,现在种植这种树苗5棵,试求:
⑴全部成活的概率; ⑵全部死亡的概率;
⑶恰好成活3棵的概率; ⑷至少成活4棵的概率
10.(1)设在四次独立重复试验中,事件至少发生一次的概率为,试求在一次试验中事件发生的概率(2)某人向某个目标射击,直至击中目标为止,每次射击击中目标的概率为,求在第次才击中目标的概率
答案:1. C 2. D 3. A 4. A 5. 0.784 6. 0.046 7. 8.(1)(2)()()5
552211113243P B P B C ⎛⎫=-=-= ⎪⎝⎭ 9.⑴; ⑵;
⑶()332
5530.90.10.0729P C =⋅=; ⑷()()55450.91854P P P =+= 10.(1) (2)
五、小结 :1.独立重复试验要从三方面考虑第一:每次试验是在同样条件下进行第二:各次试验中的事件是相互独立的第三,每次试验都只有两种结果,即事件要么发生,要么不发生
2.如果1次试验中某事件发生的概率是,那么次独立重复试验中这个事件恰好发生次的概率为对于此式可以这么理解:由于1次试验中事件要么发生,要么不发生,所以在次独立重复试验中恰好发生次,则在另外的次中没有发生,即发生,由,所以上面的公式恰为展开式中的第项,可见排列组合、二项式定理及概率间存在着密切的联系
六、课后作业:
七、板书设计(略)
八、课后记:。