专题11++三角函数的图像与性质中的易错点-2019年高考数学(理)命题热点全覆盖(教师版)
- 格式:doc
- 大小:1.58 MB
- 文档页数:17
三角函数易错点总结三角函数是高中数学中的重要内容,也是高考中的必考知识点。
然而,由于三角函数涉及的概念、公式较多,且运算较为复杂,同学们在学习和解题过程中常常会出现各种错误。
下面就为大家总结一下三角函数中的易错点。
一、概念理解不清1、象限角与终边相同角的概念混淆象限角是指角的终边落在哪个象限,而终边相同角是指具有相同终边的角。
例如,角α与角β的终边相同,则β =α +k×360°(k∈Z)。
很多同学在判断角所在象限时,容易忽略终边相同角的情况,导致出错。
2、弧度制与角度制的换算错误弧度制与角度制的换算公式为:180°=π 弧度。
在进行换算时,要注意系数的转换。
有些同学容易将换算公式记错,或者在计算过程中出现粗心大意的情况。
3、三角函数的定义理解不准确三角函数的定义是在单位圆中给出的,例如正弦函数sinα = y/r,余弦函数cosα = x/r,正切函数tanα = y/x。
在运用定义解题时,要注意坐标的正负以及 r 的取值为 1。
有些同学在计算时容易忽略这些细节,导致结果错误。
二、公式运用错误1、同角三角函数基本关系式的运用错误同角三角函数的基本关系式有:s in²α +cos²α = 1,tanα =sinα/cosα。
在运用这些关系式进行化简、求值时,要注意三角函数值的正负以及分母不为零的情况。
很多同学在解题时,没有考虑到这些条件,从而得出错误的结果。
2、诱导公式的运用错误诱导公式有很多组,记忆时容易混淆。
例如,sin(π α) =sinα,cos(π α) =cosα 等。
在运用诱导公式时,要注意符号的变化以及角的变化规律。
有些同学在使用诱导公式时,没有正确判断符号,或者记错了角的变化关系,导致计算错误。
3、两角和与差的三角函数公式的运用错误两角和与差的三角函数公式有:sin(α ± β) =sinαcosβ ± cosαsinβ,cos(α ± β) =cosαcosβ ∓ sinαsinβ,tan(α ± β) =(tanα ± tanβ)/(1 ∓tanαtanβ)。
2019高考数学复习重要知识点:三角函数的图象与性质三角函数在研究三角形和圆等几何形状的性质时有重要作用,下面是2019高考数学复习重要知识点:三角函数的图象与性质,希望对考生有帮助。
1、周期函数的定义:对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数.T叫做这个函数的周期.2、最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.1、求三角函数定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.2、求解涉及三角函数的值域(最值)的题目一般常用以下方法:(1)、利用sin x、cos x的值域;教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。
如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。
(2)、形式复杂的函数应化为y=Asin(ωx+φ)+k的形式逐步分析ωx+φ的范围,根据正弦函数单调性写出函数的值域(如本例以题试法(2));观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。
随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。
我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。
看得清才能说得正确。
在观察过程中指导。
我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。
第一讲三角函数的图象与性质函数y=A sin(ωx+φ)的图象与变换授课提示:对应学生用书第19页[悟通——方法结论]函数y=A sin(ωx+φ)的图象(1)“五点法”作图:设z=ωx+φ,令z=0,π2,π,3π2,2π,求出x的值与相应的y的值,描点、连线可得.(2)图象变换:y=sin x――→向左(φ>0)或向右(φ<0)平移|φ|个单位y=sin(x+φ)――→纵坐标变为原来的A(A>0)倍横坐标不变y=A sin(ωx+φ).[全练——快速解答]1.(2017·高考全国卷Ⅰ)已知曲线C1:y=cos x,C2:y=sin⎝⎛⎭⎫2x+2π3,则下面结论正确的是( )A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2解析:易知C 1:y =cos x =sin ⎝⎛⎭⎫x +π2,把曲线C 1上的各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y =sin ⎝⎛⎭⎫2x +π2的图象,再把所得函数的图象向左平移π12个单位长度,可得函数y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π12+π2=sin ⎝⎛⎭⎫2x +2π3的图象,即曲线C 2,故选D. 答案:D2.(2018·南昌模拟)函数y =sin ⎝⎛⎭⎫x 2+π6的图象可以由函数y =cos x2的图象( ) A .向右平移π3个单位长度得到B .向右平移2π3个单位长度得到C .向左平移π3个单位长度得到D .向左平移2π3个单位长度得到解析:由y =cos x2=sin ⎝⎛⎭⎫x 2+π2,y =sin ⎣⎡⎦⎤12⎝⎛⎭⎫x -2π3+π2=sin ⎝⎛⎭⎫x 2+π6,知函数y =sin ⎝⎛⎭⎫x 2+π6的图象可以由y =cos x 2的图象向右平移2π3个单位长度得到.答案:B3.(2018·益阳、湘潭联考)若将函数f(x)=2sin ⎝⎛⎭⎫x +π6的图象向右平移π4个单位长度,再把所得图象上的点的横坐标扩大到原来的2倍,得到函数g(x)的图象,则函数g(x)图象的一条对称轴的方程为( )A .x =π12B .x =7π24C .x =7π12D .x =7π6解析:将函数f(x)=2sin ⎝⎛⎭⎫x +π6的图象向右平移π4个单位长度,得到f ⎝⎛⎭⎫x -π4=2sin ⎝⎛⎭⎫x -π4+π6=2sin ⎝⎛⎭⎫x -π12的图象,再把所得图象上的点的横坐标扩大到原来的2倍,得到函数g(x)=2sin ⎝⎛⎭⎫12x -π12的图象.令12x -π12=π2+k π,k ∈Z ,解得x =7π6+2k π,k ∈Z .当k =0时,函数g (x )图象的一条对称轴的方程为x =7π6,故选D.答案:D4.(2018·唐山模拟)将函数y =3cos 2x -sin 2x 的图象向右平移π3个单位长度,所得图象对应的函数为g (x ),则g (x )=( )A .2sin 2xB .-2sin 2xC .2cos ⎝⎛⎭⎫2x -π6 D .2sin ⎝⎛⎭⎫2x -π6 解析:因为y =3cos 2x -sin 2x =2cos ⎝⎛⎭⎫2x +π6, 将其图象向右平移π3个单位长度得到g (x )=2cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π3+π6=2cos ⎝⎛⎭⎫2x -π2=2sin 2x 的图象. 答案:A在图象变换过程中务必分清是先相位变换,还是先周期变换,变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向.由图象求y =A sin(ωx +φ)的解析式授课提示:对应学生用书第20页[悟通——方法结论]函数y =A sin(ωx +φ)解析式的确定利用函数图象的最高点和最低点确定A ,利用周期确定ω,利用图象的某一已知点确定φ.[全练——快速解答]1.(2018·郑州模拟)将函数f (x )的图象向左平移π6个单位长度后得到函数g (x )的图象如图所示,则函数f (x )的解析式是( )A .f (x )=sin ⎝⎛⎭⎫2x -π6(x ∈R ) B .f (x )=sin ⎝⎛⎭⎫2x +π6(x ∈R ) C .f (x )=sin ⎝⎛⎭⎫2x -π3(x ∈R ) D .f (x )=sin ⎝⎛⎭⎫2x +π3(x ∈R ) 解析:依题意,设g (x )=sin(ωx +θ),其中ω>0,|θ|<π2,则有T =2πω=4⎝⎛⎭⎫5π12-π6=π,ω=2,g ⎝⎛⎭⎫π6=sin ⎝⎛⎭⎫π3+θ=1,则θ=π6,因此g (x )=sin ⎝⎛⎭⎫2x +π6,f (x )=g ⎝⎛⎭⎫x -π6=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6+π6=sin ⎝⎛⎭⎫2x -π6,故选A. 答案:A2.(2018·贵阳模拟)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π),其导数f ′(x )的图象如图所示,则f ⎝⎛⎭⎫π2的值为( )A .2 2 B. 2 C .-22D .-24解析:依题意得f ′(x )=A ωcos(ωx +φ),结合函数y =f ′(x )的图象可知,T =2πω=4⎝⎛⎭⎫3π8-π8=π,ω=2.又A ω=1,因此A =12.因为0<φ<π,3π4<3π4+φ<7π4,且f ′⎝⎛⎭⎫3π8=cos ⎝⎛⎭⎫3π4+φ=-1,所以3π4+φ=π,φ=π4,f (x )=12sin ⎝⎛⎭⎫2x +π4,f ⎝⎛⎭⎫π2=12sin ⎝⎛⎭⎫π+π4=-12×22=-24,故选D. 答案:D3.(2018·山西八校联考)已知函数y =A sin(ωx +φ)(A >0,ω>0,-π<φ<0)的部分图象如图所示,则φ=________.解析:由函数图象得A =2,所以y =2sin(ωx +φ),因为图象过点(0,-1),所以sin φ=-12,因为x =0位于图象的单调递减区间,所以φ=2k π-5π6(k ∈Z ),又-π<φ<0,所以φ=-5π6.答案:-5π6用五点法求φ值时,往往以寻找“五点法”中的第一个点为突破口.“第一点”(即图象上升时与x 轴的交点)时ωx +φ=0;“第二点”(即图象的“峰点”)时ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)时ωx +φ=π;“第四点”(即图象的“谷点”)时ωx +φ=3π2;“第五点”时ωx +φ=2π.三角函数的性质授课提示:对应学生用书第20页[悟通——方法结论]1.三角函数的单调区间y =sin x 的单调递增区间是⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z ),单调递减区间是⎣⎡⎦⎤2k π+π2,2k π+3π2(k ∈Z );y =cos x 的单调递增区间是[2k π-π,2k π](k ∈Z ),单调递减区间是[2k π,2k π+π](k ∈Z ); y =tan x 的单调递增区间是⎝⎛⎭⎫k π-π2,k π+π2(k ∈Z ). 2.三角函数奇偶性判断y =A sin(ωx +φ),当φ=k π(k ∈Z )时为奇函数;当φ=k π+π2(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π+π2(k ∈Z )求得.y =A cos(ωx +φ),当φ=k π+π2(k ∈Z )时为奇函数;当φ=k π(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π(k ∈Z )求得.y =A tan(ωx +φ),当φ=k π(k ∈Z )时为奇函数. 3.三角函数周期性的求法函数y =A sin(ωx +φ)(或y =A cos(ωx +φ))的最小正周期T =2π|ω|.应特别注意y =|A sin(ωx+φ)|的周期为T =π|ω|.4.求解三角函数的值域(最值)常见到以下几种类型(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域).(2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值).(3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).[全练——快速解答]1.(2018·高考全国卷Ⅱ)若ƒ(x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( ) A.π4 B.π2 C.3π4D .π解析:ƒ(x )=cos x -sin x =-2⎝⎛⎭⎫sin x ·22-cos x ·22=-2sin ⎝⎛⎭⎫x -π4,当x ∈⎣⎡⎦⎤-π4,34π,即x -π4∈⎣⎡⎦⎤-π2,π2时,y =sin ⎝⎛⎭⎫x -π4单调递增,y =-2sin ⎝⎛⎭⎫x -π4单调递减.∵函数ƒ(x )在[-a ,a ]是减函数, ∴[-a ,a ]⊆⎣⎡⎦⎤-π4,34π, ∴0<a ≤π4,∴a 的最大值为π4.故选A. 答案:A2.(2017·高考全国卷Ⅲ)函数f (x )=15sin ⎝⎛⎭⎫x +π3+cos ⎝⎛⎭⎫x -π6的最大值为( ) A.65 B .1 C.35D.15解析:因为cos ⎝⎛⎭⎫x -π6=cos ⎣⎡⎦⎤⎝⎛⎭⎫x +π3-π2=sin ⎝⎛⎭⎫x +π3,所以f (x )=65sin ⎝⎛⎭⎫x +π3,于是f (x )的最大值为65.答案:A3.(2016·高考全国卷Ⅰ)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝⎛⎭⎫π18,5π36上单调,则ω的最大值为( ) A .11 B .9 C .7D .5解析:由题意得⎩⎨⎧-π4ω+φ=k 1π,k 1∈Z ,π4ω+φ=k 2π+π2,k 2∈Z ,则ω=2k +1,k ∈Z ,φ=π4或φ=-π4.又函数f (x )在(π8,5π36)上单调,所以π12≤12×2πω,即ω≤12.若ω=11,则φ=-π4,此时f (x )=sin ⎝⎛⎭⎫11x -π4, f (x )在区间⎝⎛⎭⎫π18,3π44上单调递增,在区间⎝⎛⎭⎫3π44,5π36上单调递减,不满足f (x )在区间⎝⎛⎭⎫π18,5π36上单调;若ω=9,则φ=π4,此时f (x )=sin ⎝⎛⎭⎫9x +π4,满足f (x )在区间⎝⎛⎭⎫π18,5π36上单调递减,故选B.答案:B1.三角函数单调性的求法:求形如y =A sin(ωx +φ)(或y =A cos(ωx +φ))(A 、ω、φ为常数,A ≠0,ω>0)的单调性的一般思路是令ωx +φ=z ,则y =A sin z (或y =A cos z ),然后由复合函数的单调性求解.2.三角函数的最值问题注意判断类型,尤其是可化为A sin(ωx +φ)型的值求解时注意x 的范围对ωx +φ范围的影响.[练通——即学即用]1.(2017·高考全国卷Ⅲ)设函数f (x )=cos ⎝⎛⎭⎫x +π3,则下列结论错误的是( ) A .f (x )的一个周期为-2πB .y =f (x )的图象关于直线x =8π3对称C .f (x +π)的一个零点为x =π6D .f (x )在⎝⎛⎭⎫π2,π单调递减解析:根据函数解析式可知函数f (x )的最小正周期为2π,所以函数的一个周期为-2π,A 正确;当x =8π3时,x +π3=3π,所以cos ⎝⎛⎭⎫x +π3=-1,所以B 正确; f (x +π)=cos ⎝⎛⎭⎫x +π+π3=cos ⎝⎛⎭⎫x +4π3,当x =π6时,x +4π3=3π2,所以f (x +π)=0,所以C 正确;函数f (x )=cos ⎝⎛⎭⎫x +π3在⎝⎛⎭⎫π2,2π3上单调递减,在⎣⎡⎭⎫2π3,π上单调递增,故D 不正确. 答案:D2.(2018·太原模拟)已知函数f (x )=sin ωx -3cos ωx (ω>0)在(0,π)上有且只有两个零点,则实数ω的取值范围为( )A.⎝⎛⎦⎤0,43 B.⎝⎛⎦⎤43,73 C.⎝⎛⎦⎤73,103D.⎝⎛⎦⎤103,133解析:易得f (x )=2sin ⎝⎛⎭⎫ωx -π3,设t =ωx -π3,因为0<x <π,所以-π3<t<ωπ-π3,因为函数f (x )在(0,π)上有且仅有两个零点,所以π<ωπ-π3≤2π,解得43<ω≤73,故选B.答案:B3.(2018·高考全国卷Ⅰ)已知函数ƒ(x )=2sin x +sin 2x ,则ƒ(x )的最小值是________. 解析:ƒ′(x )=2cos x +2cos 2x =2cos x +2(2cos 2x -1) =2(2cos 2x +cos x -1)=2(2cos x -1)(cos x +1). ∵cos x +1≥0,∴当cos x <12时,ƒ′(x )<0,ƒ(x )单调递减;当cos x >12时,ƒ′(x )>0,ƒ(x )单调递增.∴当cos x =12,ƒ(x )有最小值.又ƒ(x )=2sin x +sin 2x =2sin x (1+cos x ), ∴当sin x =-32时,ƒ(x )有最小值, 即ƒ(x )min =2×⎝⎛⎭⎫-32×⎝⎛⎭⎫1+12=-332.答案:-332授课提示:对应学生用书第122页一、选择题1.(2018·湖北七校联考)要得到函数y =sin ⎝⎛⎭⎫2x +π3的图象,只需将函数y =sin 2x 的图象( )A .向左平移π6个单位长度B .向右平移π3个单位长度C .向左平移π3个单位长度D .向右平移π6个单位长度解析:∵y =sin ⎝⎛⎭⎫2x +π3=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6,∴只需将函数y =sin 2x 的图象向左平移π6个单位长度即可得到函数y =sin ⎝⎛⎭⎫2x +π3的图象. 答案:A2.(2018·宝鸡模拟)为了得到函数y =sin ⎝⎛⎭⎫2x -π3的图象,只需把函数y =cos ⎝⎛⎭⎫2x -4π3的图象( )A .向左平移π4个单位长度B .向右平移π4个单位长度C .向左平移π2个单位长度D .向右平移π2个单位长度解析:y =cos ⎝⎛⎭⎫2x -4π3=sin ⎣⎡⎦⎤π2+⎝⎛⎭⎫2x -4π3=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -5π12,故要得到函数y =sin ⎝⎛⎭⎫2x -π3的图象,只需要平移⎝⎛⎭⎫x -π6-⎝⎛⎭⎫x -5π12=π4个单位长度,又π4>0,所以应向左平移,故选A. 答案:A3.函数f (x )=sin 2x +3sin x cos x 在⎣⎡⎦⎤π4,π2上的最小值是( ) A .1 B.1+32C .1+ 3D.32解析:f (x )=sin 2x +3sin x cos x =12-12cos 2x +32sin 2x =sin ⎝⎛⎭⎫2x -π6+12,因为π4≤x ≤π2,所以π3≤2x -π6≤5π6,所以当2x -π6=5π6,即x =π2时,函数f (x )=sin 2x +3sin x cos x 取得最小值,且最小值为12+12=1.答案:A4.(2018·高考全国卷Ⅲ)函数ƒ(x )=tan x1+tan 2x 的最小正周期为( )A.π4B.π2 C .πD .2π解析:由已知得ƒ(x )=tan x 1+tan 2x=sin x cos x 1+(sin x cos x )2=sin x cos x cos 2x +sin 2x cos 2x =sin x ·cos x =12sin 2x ,所以ƒ(x )的最小正周期为T =2π2=π.故选C. 答案:C5.(2018·贵阳模拟)已知函数f (x )=A sin(ωx +φ)(ω>0,-π2<φ<π2)的部分图象如图所示,则φ的值为( )A .-π3B.π3 C .-π6D.π6解析:由题意,得T 2=π3+π6=π2,所以T =π,由T =2πω,得ω=2,由图可知A =1,所以f (x )=sin(2x +φ).又f ⎝⎛⎭⎫π3=sin ⎝⎛⎭⎫2π3+φ=0,-π2<φ<π2,所以φ=π3,故选B. 答案:B6.(2018·湘中名校高三联考)已知函数f (x )=sin ⎝⎛⎭⎫ωx -π6+12,ω>0,x ∈R ,且f (α)=-12,f (β)=12.若|α-β|的最小值为3π4,则函数f (x )的单调递增区间为( )A.⎣⎡⎦⎤-π2+2k π,π+2k π,k ∈Z B.⎣⎡⎦⎤-π2+3k π,π+3k π,k ∈Z C.⎣⎡⎦⎤π+2k π,5π2+2k π,k ∈Z D.⎣⎡⎦⎤π+3k π,5π2+3k π,k ∈Z 解析:由f (α)=-12,f (β)=12,|α-β|的最小值为3π4,知T 4=3π4,即T =3π=2πω,所以ω=23, 所以f (x )=sin ⎝⎛⎭⎫23x -π6+12,由-π2+2k π≤23x -π6≤π2+2k π(k ∈Z ),得-π2+3k π≤x ≤π+3k π(k ∈Z ),故选B.答案:B7.(2018·郑州质检)已知函数f (x )=A sin(πx +φ)的部分图象如图所示,点B ,C 是该图象与x 轴的交点,过点C 的直线与该图象交于D ,E 两点,则(BD →+BE →)·(BE →-CE →)的值为( )A .-1B .-12C .12D .2解析:(BD →+BE →)·(BE →-CE →)=(BD →+BE →)·BC →=2BC →·BC →=2|BC →|2,显然|BC →|的长度为半个周期,周期T =2ππ=2,∴|BC →|=1,所求值为2.答案:D8.(2018·成都模拟)设函数f (x )=sin ⎝⎛⎭⎫2x +π3,若x 1x 2<0,且f (x 1)+f (x 2)=0,则|x 2-x 1|的取值范围为( )A.⎝⎛⎭⎫π6,+∞ B.⎝⎛⎭⎫π3,+∞ C.⎝⎛⎭⎫2π3,+∞ D.⎝⎛⎭⎫4π3,+∞ 解析:f (x 1)+f (x 2)=0⇔f (x 1)=-f (x 2),|x 2-x 1|可视为直线y =m 与函数y =f (x )、函数y =-f (x )的图象的交点的横坐标的距离,作出函数y =f (x )与函数y =-f (x )的图象如图所示,设A ,B 分别为直线y =m 与函数y =f (x )、函数y =-f (x )的图象的两个相邻交点,因为x 1x 2<0,且当直线y =m 过y =f (x )的图象与y 轴的交点⎝⎛⎭⎫0,32时,直线为y =32,|AB |=π3,所以当直线y =m 向上移动时,线段AB 的长度会增加,当直线y =m 向下移动时,线段AB 的长度也会增加,所以|x 2-x 1|>π3.答案:B9.已知函数f (x )=sin(x +φ)-2cos(x +φ)(0<φ<π)的图象关于直线x =π对称,则cos 2φ=( )A.35 B .-35C.45D .-45解析:由题意可得f (x )=5sin(x +φ-γ),其中sin γ=255,cos γ=55.当x =π时,由π+φ-γ=k π+π2,得2φ=2k π-π+2γ,则cos 2φ=cos(2k π-π+2γ)=-cos 2γ=sin 2γ-cos 2γ=35.故选A. 答案:A10.(2018·广西三市联考)已知x =π12是函数f (x )=3sin(2x +φ)+cos(2x +φ)(0<φ<π)图象的一条对称轴,将函数f (x )的图象向右平移3π4个单位长度后得到函数g (x )的图象,则函数g (x )在⎣⎡⎦⎤-π4,π6上的最小值为( ) A .-2 B .-1 C .- 2D .- 3解析:∵x =π12是f (x )=2sin ⎝⎛⎭⎫2x +π6+φ图象的一条对称轴, ∴π3+φ=k π+π2(k ∈Z ), 即φ=π6+k π(k ∈Z ).∵0<φ<π,∴φ=π6,则f (x )=2sin ⎝⎛⎭⎫2x +π3, ∴g (x )=2sin ⎝⎛⎭⎫2x -7π6=2sin ⎝⎛⎭⎫2x +5π6. 又∵-π4≤x ≤π6,∴π3≤2x +5π6≤7π6,∴-1≤2sin ⎝⎛⎭⎫2x +5π6≤2. ∴g (x )在⎣⎡⎦⎤-π4,π6上的最小值为-1. 答案:B11.已知函数f (x )=1+2cos x cos(x +3φ)是偶函数,其中φ∈⎝⎛⎭⎫0,π2,则下列关于函数g (x )=cos(2x -φ)的正确描述是( )A .g (x )在区间⎣⎡⎦⎤-π12,π3上的最小值为-1 B .g (x )的图象可由函数f (x )的图象向上平移2个单位长度,向右平移π3个单位长度得到C .g (x )的图象的一个对称中心是⎝⎛⎭⎫-π12,0 D .g (x )的一个单调递减区间是⎣⎡⎦⎤0,π2 解析:∵函数f (x )=1+2cos x cos(x +3φ)是偶函数,y =1,y =2cos x 都是偶函数,∴y =cos(x +3φ)是偶函数,∴3φ=k π,k ∈Z ,∴φ=k π3,k ∈Z ,又0<φ<π2,∴φ=π3,∴g (x )=cos ⎝⎛⎭⎫2x -π3.当-π12≤x ≤π3时,-π2≤2x -π3≤π3,cos ⎝⎛⎭⎫2x -π3∈[0,1],故A 错误;f (x )=1+2cos x cos(x +π)=1-2cos 2x =-cos 2x ,显然B 错误;当x =-π12时,g (x )=cos ⎝⎛⎭⎫-π2=0,故C 正确;当0≤x ≤π2时,-π3≤2x -π3≤2π3,g (x )=cos ⎝⎛⎭⎫2x -π3有增有减,故D 错误.故选C. 答案:C12.(2018·肇庆一模)设向量a =(a 1,a 2),b =(b 1,b 2),定义一种向量积:a ⊗b =(a 1,a 2)⊗(b 1,b 2)=(a 1b 1,a 2b 2).已知向量m =⎝⎛⎭⎫12,4,n =⎝⎛⎭⎫π6,0,点P 在y =cos x 的图象上运动,点Q 在y =f (x )的图象上运动,且满足OQ →=m ⊗OP →+n (其中O 为坐标原点),则y =f (x )在区间⎣⎡⎦⎤π6,π3上的最大值是( ) A .2 2 B .2 3 C .2D .4解析:由题意,设点P 的坐标为(x 0,cos x 0),点Q 的坐标为(x ,y ), 则OQ →=m ⊗OP →+n =⎝⎛⎭⎫12,4⊗(x 0,cos x 0)+⎝⎛⎭⎫π6,0⇒(x ,y )=⎝⎛⎭⎫12x 0+π6,4cos x 0⇒⎩⎪⎨⎪⎧x =12x 0+π6,y =4cos x 0,即⎩⎪⎨⎪⎧x 0=2⎝⎛⎭⎫x -π6,y =4cos x 0⇒y =4cos ⎝⎛⎭⎫2x -π3, 当x ∈⎣⎡⎦⎤π6,π3时,0≤2x -π3≤π3⇒12≤cos ⎝⎛⎭⎫2x -π3≤1⇒2≤4cos ⎝⎛⎭⎫2x -π3≤4,所以函数y =f (x )在区间⎣⎡⎦⎤π6,π3上的最大值是4.答案:D 二、填空题13.函数f (x )=2sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<π2的图象如图所示,已知图象经过点A (0,1),B ⎝⎛⎭⎫π3,-1,则f (x )=________.解析:由已知得T 2=π3,∴T =2π3,又T =2πω,∴ω=3.∵sin φ=12,0<φ<π2,∴φ=π6.∴函数f (x )=2sin ⎝⎛⎭⎫3x +π6. 答案:2sin ⎝⎛⎭⎫3x +π6 14.(2018·沈阳质检)函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,则f ⎝⎛⎭⎫π4的值为________.解析:由图象可知A =2,34T =11π12-π6=3π4,∴T =π,∴ω=2,∵当x =π6时,函数f (x )取得最大值,∴2×π6+φ=π2+2k π(k ∈Z ),∴φ=π6+2k π(k ∈Z ),∵0<φ<π,∴φ=π6,∴f (x )=2sin ⎝⎛⎭⎫2x +π6, 则f ⎝⎛⎭⎫π4=2sin ⎝⎛⎭⎫π2+π6=2cos π6= 3. 答案: 315.若存在实数φ,使得圆面x 2+y 2≤4恰好覆盖函数y =sin ⎝⎛⎭⎫πk x +φ图象的最高或最低点共三个,则正数k 的取值范围是________.解析:函数y =sin ⎝⎛⎭⎫πk x +φ的图象的最高点或最低点一定在直线y =±1上,由⎩⎪⎨⎪⎧y =±1,x 2+y 2≤4,解得-3≤x ≤3, 由题意可得:T =2ππk =2k ,T ≤23<2T ,解得正数k 的取值范围是⎝⎛⎦⎤32,3.答案:⎝⎛⎦⎤32,3 16.(2018·武汉调研)若函数f (x )=2sin ⎝⎛⎭⎫ωx +π4(ω>0)的图象的对称轴与函数g (x )=cos(2x +φ)⎝⎛⎭⎫|φ|<π2的图象的对称轴完全相同,则φ=________.解析:因为函数f (x )=2sin ⎝⎛⎭⎫ωx +π4(ω>0)的图象的对称轴与函数g (x )=cos(2x +φ)⎝⎛⎭⎫|φ|<π2的图象的对称轴完全相同,故它们的最小正周期相同,即2πω=2π2,所以ω=2,故函数f (x )=2sin ⎝⎛⎭⎫2x +π4. 令2x +π4=k π+π2,k ∈Z ,则x =k π2+π8,k ∈Z ,故函数f (x )的图象的对称轴为x =k π2+π8,k ∈Z .令2x +φ=m π,m ∈Z , 则x =m π2-φ2,m ∈Z ,故函数g (x )的图象的对称轴为x =m π2-φ2,m ∈Z ,故k π2+π8-m π2+φ2=n π2,n ∈Z , 即φ=(m +n -k )π-π4,又|φ|<π2,所以φ=-π4.答案:-π4三、解答题17.(2018·合肥模拟)已知函数f (x )=4sin 3x cos x -2sin x cos x -12cos 4x .(1)求函数f (x )的最小正周期及单调递增区间; (2)求f (x )在区间⎣⎡⎦⎤0,π4上的最大值和最小值. 解析:f (x )=2sin x cos x (2sin 2x -1)-12cos 4x=-sin 2x cos 2x -12cos 4x=-12sin 4x -12cos 4x=-22sin ⎝⎛⎭⎫4x +π4. (1)函数f (x )的最小正周期T =2π4=π2. 令2k π+π2≤4x +π4≤2k π+3π2,k ∈Z ,即k π2+π16≤x ≤k π2+5π16,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π2+π16,k π2+5π16,k ∈Z . (2)因为0≤x ≤π4,所以π4≤4x +π4≤5π4.此时-22≤sin ⎝⎛⎭⎫4x +π4≤1,所以-22≤-22sin ⎝⎛⎭⎫4x +π4≤12, 即-22≤f (x )≤12. 所以f (x )在区间⎣⎡⎦⎤0,π4上的最大值和最小值分别为12,-22. 18.(2018·汕头模拟)已知函数f (x )=cos 2ωx cos φ+sin ωx cos ωx sin φ-12sin ⎝⎛⎭⎫π2+φ(ω>0,0<φ<π)的最小正周期为π,且x =π6是函数f (x )的图象的一条对称轴.(1)求ω,φ的值;(2)将函数y =f (x )图象上的各点向左平移π12个单位长度,得到函数y =g (x )的图象,求函数g (x )在⎣⎡⎦⎤0,5π12上的最值及取最值时对应的x 的值. 解析:(1)由题意得,f (x )=1+cos 2ωx 2cos φ+12sin 2ωx sin φ-12cos φ=12cos 2ωx cos φ+12sin2ωx sin φ=12()cos 2ωx cos φ+sin 2ωx sin φ=12cos(2ωx -φ).又函数f (x )的最小正周期为π,所以2π2ω=π ,所以ω=1,故f (x )=12cos(2x -φ),又x =π6是函数f (x )的图象的一条对称轴,故2×π6-φ=k π(k ∈Z ),因为0<φ<π,所以φ=π3.(2)由(1)知f (x )=12cos ⎝⎛⎭⎫2x -π3,将函数y =f (x )图象上的各点向左平移π12个单位长度,得到函数y =g (x )的图象,故g (x )=12cos ⎝⎛⎭⎫2x -π6. 因为x ∈⎣⎡⎦⎤0,5π12,所以2x -π6∈⎣⎡⎦⎤-π6,2π3,因此当2x -π6=0,即x =π12时,g (x )max =12;当2x -π6=2π3,即x =5π12时,g (x )min =-14.19.(2018·胶州模拟)已知函数f (x )=cos(2π-x ) ·sin ⎝⎛⎭⎫π6-x . (1)求f (x )的最小正周期和单调递增区间;(2)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若f (C )=-14,c =3,求△ABC 的周长的取值范围.解析:f (x )=cos(2π-x )sin ⎝⎛⎭⎫π6-x =cos x ⎝⎛⎭⎫12cos x -32sin x =12cos 2 x -34sin 2x =1+cos 2x 4-34sin 2x =12cos ⎝⎛⎭⎫2x +π3+14. (1)f (x )的最小正周期T =2π2=π.由2k π-π≤2x +π3≤2k π,k ∈Z ,得k π-2π3≤x ≤k π-π6,k ∈Z ,所以f (x )的单调递增区间是⎣⎡⎦⎤k π-2π3,k π-π6,k ∈Z . (2)由f (C )=-14,可得cos ⎝⎛⎭⎫2C +π3=-1,由0<C <π2,得π3<2C +π3<4π3,所以2C +π3=π,解得C =π3.又c =3,根据正弦定理得a sin A =b sin B=3sinπ3=2,所以a =2sin A ,b =2sin B . △ABC 的周长l =a +b +c =2sin A +2sin B +3,因为A +B =2π3,所以l =2sin A +2sin ⎝⎛⎭⎫2π3-A +3=23sin ⎝⎛⎭⎫A +π6+ 3. 因为△ABC 为锐角三角形,所以B =2π3-A <π2,即A >π6,所以π6<A <π2,所以π3<A +π6<2π3,所以32<sin(A +π6)≤1,所以3+3<l ≤33,即△ABC 的周长的取值范围是(3+3,33].。
专题11 三角函数的图像与性质中的易错点一.学习目标1.理解三角函数的定义域、值域和最值、奇偶性、单调性与周期性、对称性.2.会判断简单三角函数的奇偶性,会求简单三角函数的定义域、值域、最值、单调区间及周期. 3.理解三角函数的对称性,并能应用它们解决一些问题. 二.方法总结1.三角函数奇偶性的判断与其他函数奇偶性的判断步骤一致: (1)首先看定义域是否关于原点对称; (2)在满足(1)后,再看f (-x )与f (x )的关系.另外三角函数中的奇函数一般可化为y =A sin ωx 或y =A tan ωx ,偶函数一般可化为y =A cos ωx +b 的形式. 2.三角函数的单调性(1)函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间的确定,其基本思想是把ωx +φ看作一个整体,比如:由2k π-π2≤ωx +φ≤2k π+π2(k ∈Z)解出x 的范围,所得区间即为增区间.若函数y =A sin(ωx +φ)中A >0,ω<0,可用诱导公式将函数变为y =-A sin(-ωx -φ),则y =A sin(-ωx -φ)的增区间为原函数的减区间,减区间为原函数的增区间. 对函数y =A cos(ωx +φ),y =A tan(ωx +φ)等单调性的讨论同上.(2)三角函数单调性的应用主要有比较三角函数值的大小,而比较三角函数值大小的一般步骤:①先判断正负;②利用奇偶性或周期性转化为属于同一单调区间上的两个同名函数;③再利用单调性比较. 3.求三角函数的最值常见类型:(1)y =A sin(ωx +φ)+B 或y =A tan(ωx +φ)+B , (2)y =A (sin x -a )2+B ,(3)y =a (sin x ±cos x )+b sin x cos x (其中A ,B ,a ,b ∈R ,A ≠0,a ≠0). 三.函数图象与性质需要掌握的题型 (一)三角函数图象平移 (二)三角函数的零点 (三)函数的单调性 (四)函数的解析式 (五)三角函数图象综合 (六)三角函数的奇偶性(七)三角函数的对称性(八)三角函数的最值(九)三角函数与数列的综合(十)三角函数的周期性四.典例分析(一)三角函数图象平移例1.为了得到函数的图象,只需将函数图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度【答案】B【分析】根据诱导公式将函数变为正弦函数,再减去得到.【点睛】本题考查的是三角函数的平移问题,首先保证三角函数同名,不是同名通过诱导公式化为同名,在平移中符合左加右减的原则,在写解析式时保证要将x的系数提出来,针对x本身进行加减和伸缩.练习1.为了得到的图像,只需把函数的图像()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】D【解析】逆用两角和的余弦公式,得=,再分析两个函数图象的变换. 【详解】因为,要得到函数,只需将的图象向右平移个单位长度即可.故选D.【点睛】本题考查了三角函数的图象与变换,考查了两角和的余弦公式的应用;解决三角函数图象的变换问题,首先要把变换前后的两个函数化为同名函数.(二)三角函数的零点例2.函数的零点个数为A.1 B.2 C.3 D.4【答案】B【解析】利用两角和与差的三角函数化简函数的解析式,通过函数为0,转化为两个函数的图象交点个数问题.【详解】由已知,令,即,在同一坐标系中画出函数和的图象,如图所示,两个函数图象有两个不同的交点,所以函数的零点个数为2个,故选B.【点睛】本题主要考查了函数与方程的综合应用,其中根据三角函数的恒等变换,把函数的零点问题转化为两个函数的图象的交点问题,在同一坐标系中作出两个函数的图象是解答的关键,着重考查了转化思想和数形结合思想的应用.练习1.设函数为定义域为的奇函数,且,当时,,则函数在区间上的所有零点的和为A.10 B.8C.16 D.20【答案】B【解析】根据函数是定义在R上的奇函数得函数图像关于原点对称,又由可得函数图像关于直线对称,故而得出函数是以4为周期的周期函数,然后利用数形结合便可得解。
三角函数的图象与性质易错点主标题:三角函数的图象与性质易错点副标题:从考点分析三角函数的图象与性质易错点,为学生备考提供简洁有效的备考策略。
关键词:三角函数,正弦函数,余弦函数,图象与性质,易错点难度:2重要程度:4内容:【易错点】1.周期性的判断(1)(教材习题改编)由sin(30°+120°)=sin 30°知,120°是正弦函数y =sin x (x ∈R )的一个周期. (×)(2)函数y =tan ⎝⎛⎭⎪⎫2x +π3的最小正周期为π2. (√) 2.判断奇偶性与对称性(3)函数y =sin ⎝ ⎛⎭⎪⎫2x +3π2是奇函数. (×) (4)函数y =sin x 的对称轴方程为x =2k π+π2(k ∈Z ).(×)3.求三角函数的单调区间(5)函数f (x )=sin(-2x )与f (x )=sin 2x 的单调增区间都是⎣⎢⎡⎦⎥⎤k π-π4,k π+π4(k ∈Z ).(×)(6)函数y =tan x 在整个定义域上是增函数.(×)4.求三角函数的最值(7)存在x ∈R ,使得2sin x =3.(×)(8)(教材习题改编)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为-22. (√) [剖析]1.一点提醒 求函数y =A sin(ωx +φ)的单调区间时,应注意ω的符号,只有当ω>0时,才能把ωx +φ看作一个整体,代入y =sin t 的相应单调区间求解.2.三个防范 一是函数y =sin x 与y =cos x 的对称轴分别是经过其图象的最高点或最低点且平行于y 轴的直线,如y =cos x 的对称轴为x =k π,而不是x =2k π(k ∈Z ).二是对于y =tan x 不能认为其在定义域上为增函数,应在每个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数,如(6). 三是函数y =sin x 与y =cos x 的最大值为1,最小值为-1,不存在一个值使sin x =32,如(7). 导数在研究函数中的应用主标题:导数在研究函数中的应用备考策略副标题:通过考点分析高考命题方向,把握高考规律,为学生备考复习打通快速通道。
1.已知α为锐角,且sin α=45,则cos(π+α)=( )A .-35 B.35C .-45 D.45解析:因为α为锐角,所以cos α=1-sin 2α=35,所以cos(π+α)=-cos α=-35,故选A.答案:A2.已知角α的终边与单位圆x 2+y 2=1交于P ⎝ ⎛⎭⎪⎫12,y 0,则sin ⎝⎛⎭⎪⎫π2+2α=( )A .-12 B .1C.12 D .-323.某函数部分图象如图所示,它的函数解析式可能是( )A .y =sin ⎝ ⎛⎭⎪⎫-56x +3π5B .y =sin ⎝ ⎛⎭⎪⎫65x -2π5C .y =sin ⎝ ⎛⎭⎪⎫65x +3π5D .y =-cos ⎝ ⎛⎭⎪⎫56x +3π5 解析:不妨令该函数解析式为y =A sin(ωx +φ)(ω>0),由图知A =1,T 4=3π4-π3=5π12,于是2πω=5π3,即ω=65,π3是函数的图象递减时经过的零点,于是65×π3+φ=2k π+π,k ∈Z ,所以φ可以是3π5,选C. 答案:C4.若将函数y =3cos ⎝ ⎛⎭⎪⎫2x +π2的图象向右平移π6个单位长度,则平移后图象的一个对称中心是( ) A.⎝ ⎛⎭⎪⎫π6,0 B.⎝ ⎛⎭⎪⎫-π6,0C.⎝⎛⎭⎪⎫π12,0 D.⎝ ⎛⎭⎪⎫-π12,05.设函数f (x )=cos ⎝⎛⎭⎪⎫x +π3,则下列结论错误的是( )A .f (x )的一个周期为-2πB .y =f (x )的图象关于直线x =8π3对称C .f (x +π)的一个零点为x =π6D .f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减 解析:A 项,因为f (x )=cos ⎝⎛⎭⎪⎫x +π3的周期为2k π(k ∈Z ),所以f (x )的一个周期为-2π,A 项正确.B 项,因为f (x )=cos ⎝ ⎛⎭⎪⎫x +π3图象的对称轴为直线x =k π-π3(k ∈Z ),所以y =f (x )的图象关于直线x =8π3对称,B 项正确.C 项,f (x +π)=cos ⎝ ⎛⎭⎪⎫x +4π3.令x +4π3=k π+π2(k ∈Z ),得x =k π-56π,当k =1时,x =π6,所以f (x +π)的一个零点为x =π6,C 项正确.D 项,因为f (x )=c os ⎝ ⎛⎭⎪⎫x +π3的递减区间为2k π-π3,2k π+2π3(k ∈Z ),递增区间为2k π+2π3,2k π+5π3(k ∈Z ),所以⎝ ⎛⎭⎪⎫π2,2π3是减区间,2π3,π是增区间,D 项错误.故选D. 答案:D6.将函数y =3cos x +sin x (x ∈R )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A.π12 B.π6C.π3 D.5π6解析:函数y =3cos x +sin x =2cos ⎝⎛⎭⎪⎫x -π6的图象向左平移m (m >0)个单位长度后,所得图象的函数解析式为y =2cos ⎝ ⎛⎭⎪⎫x +m -π6.因为函数的图象关于y 轴对称,所以m -π6=k π,m =k π+π6(k ∈Z ),所以m 的最小值为π6,故选B.答案:B7.将函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3的图象向右平移2π3个单位长度,再将所得的函数图象上的各点纵坐标不变,横坐标变为原来的2倍,得到函数y =g (x )的图象,则函数y =g (x )的图象与直线x =-π2,x =π3,x 轴围成图形的面积为( ) A.52 B.32 C .1+32 D .1-328.将函数y =cos ⎝ ⎛⎭⎪⎫π6-2x 的图象向右平移π12个单位长度后所得图象的一条对称轴的方程是( )A .x =π6B .x =π4C .x =π3D .x =π12解析:将函数y =cos ⎝ ⎛⎭⎪⎫π6-2x 的图象向右平移π12个单位长度后所得图象的函数解析式为y =cos ⎣⎢⎡⎦⎥⎤π6-2⎝⎛⎭⎪⎫x -π12=cos ⎝ ⎛⎭⎪⎫2π3-2x =cos 2⎝⎛⎭⎪⎫x -π3, 因为函数在函数图象的对称轴处取得最值,经检验x =π6成立,故选A .答案:A9.已知函数f(x)=A sin (ωx +φ)(A>0,ω>0,0<φ<π),其导数f′(x)的图象如图所示,则f ⎝ ⎛⎭⎪⎫π2的值为( )A .2 2B . 2C .-22 D .-24解析:依题意得f′(x)=A ωcos (ωx +φ),结合函数y =f′ (x)的图象可知,T =2πω=4⎝ ⎛⎭⎪⎫3π8-π8=π,ω=2.又A ω=1,因此A =12.因为0<φ<π,3π4<3π4+φ<7π4,且f′⎝⎛⎭⎪⎫3π8=cos ⎝ ⎛⎭⎪⎫3π4+φ=-1,所以3π4+φ=π,φ=π4,f(x)=12sin ⎝ ⎛⎭⎪⎫2x +π4,f ⎝ ⎛⎭⎪⎫π2=12sin ⎝ ⎛⎭⎪⎫π+π4=-12×22=-24,故选D .答案:D10.将函数f(x)=sin (2x +φ)⎝⎛⎭⎪⎫|φ|<π2的图象向左平移π6个单位后的图象关于原点对称,则函数f(x)在⎣⎢⎡⎦⎥⎤0,π2上的最小值为( )A .32 B .12 C .-12D .-3211.已知函数f(x)=3sin 2x +2cos 2x ,下列结论正确的是( )A .函数f(x)的最小正周期为2πB .函数f(x)在区间⎝ ⎛⎭⎪⎫π12,π4上单调递增C .函数f(x)的图象关于直线x =π6对称D .函数f(x)的图象关于⎝ ⎛⎭⎪⎫-π12,0对称解析:由已知,得f(x)=3sin 2x +2cos 2x =3sin 2x +cos 2x +1=2sin ⎝ ⎛⎭⎪⎫2x +π6+1.函数f(x)的最小正周期T =2π2=π,A 错误;当π12<x<π4时,π3<2x +π6<2π3,所以函数f(x)在⎝ ⎛⎭⎪⎫π12,π4上不具有单调性,B 错误;因为f ⎝ ⎛⎭⎪⎫π6=2sin ⎝ ⎛⎭⎪⎫2×π6+π6+1=2sin π2+1=3,即当x =π6时,函数f(x)取得最大值,所以函数f(x)的图象关于直线x =π6对称,C 正确;⎝ ⎛⎭⎪⎫-π12,1是函数f(x)的图象的一个对称中心,D 错误,故选C . 答案:C12.已知函数f(x)=sin ωx -3cos ωx(ω>0),若方程f(x)=-1在(0,π)上有且只有四个实数根,则实数ω的取值范围为( )A .⎝ ⎛⎦⎥⎤136,72 B .⎝ ⎛⎦⎥⎤72,256 C .⎝⎛⎦⎥⎤256,112 D .⎝⎛⎦⎥⎤112,37613.已知tan α=3,则π-αcos ⎝ ⎛⎭⎪⎫α-π2的值为( ) A .-13B .-3 C.13 D .3答案 A 解析π-αcos ⎝⎛⎭⎪⎫α-π2=-cos αsin α=-1tan α=-13. 14.已知角α的终边经过点A (-3,a ),若点A 在抛物线y =-14x 2的准线上,则sin α等于( )A .-32B.32C .-12D.12答案 D解析 由条件,得抛物线的准线方程为y =1,因为点A (-3,a )在抛物线y =-14x 2的准线上,所以a =1,所以点A (-3,1),所以sin α=13+1=12. 15.函数f (x )=A sin ωx (A >0,ω>0)的部分图象如图所示,则f (1)+f (2)+f (3)+…+f (2015)的值为( )A .0B .3 2C .6 2D .- 2答案 A解析 由图可得,A =2,T =8,2πω=8,ω=π4,∴f (x )=2sin π4x ,∴f (1)=2,f (2)=2,f (3)=2,f (4)=0,f (5)=-2,f (6)=-2,f (7)=-2,f (8)=0,而2015=8×251+7,∴f (1)+f (2)+…+f (2015)=0.16.函数y =2sin(πx 6-π3)(0≤x ≤9)的最大值与最小值之差为________.答案 2+ 3 解析 因为0≤x ≤9, 所以-π3≤πx 6-π3≤7π6,因此当πx 6-π3=π2时,函数y =2sin(πx 6-π3)取得最大值,即y max =2×1=2.当πx 6-π3=-π3时,函数y =2sin(πx 6-π3)取得最小值, 即y min =2sin(-π3)=-3,因此y =2sin(πx 6-π3)(0≤x ≤9)的最大值与最小值之差为2+ 3.17.已知函数f (x )=3sin(ωx -π6)(ω>0)和g (x )=3cos(2x +φ)的图象的对称中心完全相同,若x ∈[0,π2],则f (x )的取值范围是________.答案 [-32,3]解析 由两个三角函数图象的对称中心完全相同,可知两函数的周期相同,故ω=2,所以f (x )=3sin(2x -π6),那么当x ∈[0,π2]时,-π6≤2x -π6≤5π6, 所以-12≤sin(2x -π6)≤1,故f (x )∈[-32,3].18.已知α是三角形的内角,若sin α+cos α=15,则tan α=________.答案 -43方法二 由已知得(sin α+cos α)2=125,化简得2sin αcos α=-2425,则可知角α是第二象限角,且(sin α-cos α)2=1-2sin αcos α=4925,由于sin α-cos α>0,所以sin α-cos α=75,将该式与sin α+cos α=15联立,解得⎩⎪⎨⎪⎧sin α=45,cos α=-35.所以tan α=sin αcos α=-43.19.已知函数f (x )=cos ⎝⎛⎭⎪⎫x -π4.(1)若f (α)=35,其中π4<α<3π4,求sin ⎝⎛⎭⎪⎫α-π4的值;(2)设g (x )=f (x )·f ⎝ ⎛⎭⎪⎫x +π2,求函数g (x )在区间⎣⎢⎡⎦⎥⎤-π6,π3上的最大值和最小值.解 (1)因为f (α)=cos ⎝ ⎛⎭⎪⎫α-π4=35,且0<α-π4<π2,所以sin ⎝⎛⎭⎪⎫α-π4=45. (2)g (x )=f (x )·f ⎝ ⎛⎭⎪⎫x +π2=cos ⎝ ⎛⎭⎪⎫π4-x ·cos ⎝ ⎛⎭⎪⎫x +π4 =sin ⎝ ⎛⎭⎪⎫π4+x ·cos ⎝ ⎛⎭⎪⎫x +π4=12cos2x .x ∈⎣⎢⎡⎦⎥⎤-π6,π3时,2x ∈⎣⎢⎡⎦⎥⎤-π3,2π3. 则当x =0时,g (x )的最大值为12;当x =π3时,g (x )的最小值为-14.20.已知a >0,函数f (x )=-2a sin ⎝ ⎛⎭⎪⎫2x +π6+2a +b ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎪⎫x +π2且lg g (x )>0,求g (x )的单调区间.解 (1)∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6. ∴sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1, ∴-2a sin ⎝ ⎛⎭⎪⎫2x +π6∈[-2a ,a ].∴f (x )∈[b,3a +b ],又∵-5≤f (x )≤1, ∴b =-5,3a +b =1,因此a =2,b =-5.(2)由(1)得,f (x )=-4sin ⎝⎛⎭⎪⎫2x +π6-1, g (x )=f ⎝ ⎛⎭⎪⎫x +π2=-4sin ⎝⎛⎭⎪⎫2x +7π6-1=4sin ⎝ ⎛⎭⎪⎫2x +π6-1, 又由lg g (x )>0,得g (x )>1,∴4sin ⎝ ⎛⎭⎪⎫2x +π6-1>1,∴sin ⎝ ⎛⎭⎪⎫2x +π6>12, ∴2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k ∈Z ,∴g (x )的单调增区间为⎝ ⎛⎦⎥⎤k π,k π+π6,k ∈Z .又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z .∴g (x )的单调减区间为⎝⎛⎭⎪⎫k π+π6,k π+π3,k ∈Z . 21.函数f (x )=sin ωx (ω>0)的部分图象如图所示,点A ,B 是最高点,点C 是最低点,若△ABC 是直角三角形,则f (12)=________.答案2222.已知函数f (x )=A sin(ωx +π4)(A >0,ω>0),g (x )=tan x ,它们的最小正周期之积为2π2,f (x )的最大值为2g (17π4).(1)求f (x )的单调递增区间;(2)设h (x )=32f 2(x )+23cos 2x .当x ∈[a ,π3)时,h (x )有最小值为3,求a 的值.解 (1)由题意,得2πω·π=2π2,所以ω=1.又A =2g (17π4)=2tan 174π=2tan π4=2,所以f (x )=2sin(x +π4).令2k π-π2≤x +π4≤2k π+π2(k ∈Z ),得2k π-3π4≤x ≤2k π+π4(k ∈Z ).故f (x )的单调递增区间为[2k π-3π4,2k π+π4](k ∈Z ).(2)因为h (x )=32f 2(x )+23cos 2x=32×4×sin 2(x +π4)+23cos 2x =3(sin x +cos x )2+23cos 2x =3+3sin2x +3(cos2x +1) =3+3+23sin(2x +π6),又h (x )有最小值为3,所以有3+3+23sin(2x +π6)=3,即sin(2x +π6)=-12.因为x ∈[a ,π3),所以2x +π6∈[2a +π6,5π6),所以2a +π6=-π6,即a =-π6.。
专题11 三角函数的图像与性质中的易错点一.学习目标1.理解三角函数的定义域、值域和最值、奇偶性、单调性与周期性、对称性.2.会判断简单三角函数的奇偶性,会求简单三角函数的定义域、值域、最值、单调区间及周期. 3.理解三角函数的对称性,并能应用它们解决一些问题. 二.方法总结1.三角函数奇偶性的判断与其他函数奇偶性的判断步骤一致: (1)首先看定义域是否关于原点对称; (2)在满足(1)后,再看f (-x )与f (x )的关系.另外三角函数中的奇函数一般可化为y =A sin ωx 或y =A tan ωx ,偶函数一般可化为y =A cos ωx +b 的形式. 2.三角函数的单调性(1)函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间的确定,其基本思想是把ωx +φ看作一个整体,比如:由2k π-π2≤ωx +φ≤2k π+π2(k ∈Z)解出x 的范围,所得区间即为增区间.若函数y =A sin(ωx +φ)中A >0,ω<0,可用诱导公式将函数变为y =-A sin(-ωx -φ),则y =A sin(-ωx -φ)的增区间为原函数的减区间,减区间为原函数的增区间. 对函数y =A cos(ωx +φ),y =A tan(ωx +φ)等单调性的讨论同上.(2)三角函数单调性的应用主要有比较三角函数值的大小,而比较三角函数值大小的一般步骤:①先判断正负;②利用奇偶性或周期性转化为属于同一单调区间上的两个同名函数;③再利用单调性比较. 3.求三角函数的最值常见类型:(1)y =A sin(ωx +φ)+B 或y =A tan(ωx +φ)+B , (2)y =A (sin x -a )2+B ,(3)y =a (sin x ±cos x )+b s in x cos x (其中A ,B ,a ,b ∈R ,A ≠0,a ≠0). 三.函数图象与性质需要掌握的题型 (一)三角函数图象平移 (二)三角函数的零点 (三)函数的单调性 (四)函数的解析式 (五)三角函数图象综合 (六)三角函数的奇偶性(七)三角函数的对称性(八)三角函数的最值(九)三角函数与数列的综合(十)三角函数的周期性四.典例分析(一)三角函数图象平移例1.为了得到函数的图象,只需将函数图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度【答案】B【点睛】本题考查的是三角函数的平移问题,首先保证三角函数同名,不是同名通过诱导公式化为同名,在平移中符合左加右减的原则,在写解析式时保证要将x的系数提出来,针对x本身进行加减和伸缩.练习1.为了得到的图像,只需把函数的图像()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】D【解析】【分析】逆用两角和的余弦公式,得=,再分析两个函数图象的变换.【详解】因为,要得到函数,只需将的图象向右平移个单位长度即可.故选D.【点睛】本题考查了三角函数的图象与变换,考查了两角和的余弦公式的应用;解决三角函数图象的变换问题,首先要把变换前后的两个函数化为同名函数.(二)三角函数的零点例2.函数的零点个数为A.1 B.2 C.3 D.4【答案】B【解析】利用两角和与差的三角函数化简函数的解析式,通过函数为0,转化为两个函数的图象交点个数问题.【详解】由已知,令,即,在同一坐标系中画出函数和的图象,如图所示,两个函数图象有两个不同的交点,所以函数的零点个数为2个,故选B.【点睛】本题主要考查了函数与方程的综合应用,其中根据三角函数的恒等变换,把函数的零点问题转化为两个函数的图象的交点问题,在同一坐标系中作出两个函数的图象是解答的关键,着重考查了转化思想和数形结合思想的应用.练习1.设函数为定义域为的奇函数,且,当时,,则函数在区间上的所有零点的和为A.10 B.8 C.16 D.20【答案】B【解析】根据函数是定义在R上的奇函数得函数图像关于原点对称,又由可得函数图像关于直线对称,故而得出函数是以4为周期的周期函数,然后利用数形结合便可得解。
专题11 三角函数及其性质【母题来源一】【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论: ①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④ C .①④D .①③【答案】C【解析】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴Q 为偶函数,故①正确.当ππ2x <<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误. 当0πx ≤≤时,()2sin f x x =,它有两个零点:0,π;当π0x -≤<时,()()sin sin f x x x =--2sin x =-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④正确,故选C .【名师点睛】本题也可画出函数()sin sin f x x x =+的图象(如下图),由图象可得①④正确.【母题来源二】【2018年高考全国Ⅰ理数】已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.【答案】 【解析】()()212cos 2cos 24cos 2cos 24cos 1cos 2f x x x x x x x ⎛⎫'=+=+-=+- ⎪⎝⎭, 所以当1cos 2x <时函数单调递减,当1cos 2x >时函数单调递增,从而得到函数的递减区间为()5ππ2π,2π33k k k ⎡⎤--∈⎢⎥⎣⎦Z ,函数的递增区间为()ππ2π,2π33k k k ⎡⎤-+∈⎢⎥⎣⎦Z ,所以当π2π,3x k k =-∈Z 时,函数()f x 取得最小值,此时sin 22x x =-=-,所以()min2f x ⎛=⨯= ⎝⎭,故答案是. 【名师点睛】该题考查的是有关应用导数研究函数的最小值问题,在求解的过程中,需要明确相关的函数的求导公式,需要明白导数的符号与函数的单调性的关系,确定出函数的单调增区间和单调减区间,进而求得函数的最小值点,从而求得相应的三角函数值,代入求得函数的最小值. 【母题来源三】【2017年高考全国Ⅰ理数】已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2 【答案】D【解析】因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则22π2πππ:sin(2)cos(2)cos(2)3326C y x x x =+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为cos 2y x =,再将曲线向左平移π12个单位长度得到2C ,故选D.【名师点睛】对于三角函数图象变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住ππsin cos(),cos sin()22αααα=-=+;另外,在进行图象变换时,提倡先平移后伸缩,而先伸缩后平移在考试中也经常出现,无论哪种变换,记住每一个变换总是对变量x 而言.【命题意图】(1)能画出y =sin x ,y =cos x ,y = tan x 的图象,了解三角函数的周期性.(2)理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、 最大值和最小值以及与x 轴的交点等). (3)能画出sin()y A x ωϕ=+的图象,了解参数,,A ωϕ对函数图象变化的影响.(4)理解同角三角函数的基本关系式、诱导公式,能运用和与差的三角函数公式、二倍角公式等进行简单的恒等变换. 【命题规律】三角函数的考查重点是三角函数的定义、图象与性质,考查中以图象的变换、函数的单调性、奇偶性、周期性、对称性、最值作为热点,并常与三角恒等变换交汇命题,难度为中档偏下. 常见的命题角度有: (1)三角函数的图象变换; (2)三角函数解析式的确定;(3)三角函数的性质(单调性、值域与最值、奇偶性、周期性、对称性等); (4)函数sin()y A x ωϕ=+的性质与其他知识的综合应用. 【方法总结】(一)函数图象的平移变换解题策略(1)对函数y =sin x ,y =A sin(ωx +φ)或y =A cos(ωx +φ)的图象,无论是先平移再伸缩,还是先伸缩再平移,只要平移|φ|个单位,都是相应的解析式中的x 变为x ±|φ|,而不是ωx 变为ωx ±|φ|. (2)注意平移前后两个函数的名称是否一致,若不一致,应用诱导公式化为同名函数再平移. (二)结合图象及性质求解析式y =A sin(ωx +φ)+B (A >0,ω>0)的方法(1)求A ,B ,已知函数的最大值M 和最小值m ,则,22M m M mA B -+==. (2)求ω,已知函数的周期T ,则2πTω=. (3)求φ,常用方法有:①代入法:把图象上的一个已知点代入(此时,A ,ω,B 已知). ②五点法:确定φ值时,往往以寻找“五点法”中的第一个零点(,0)ϕω-作为突破口,具体如下: “第一点”(即图象上升时与x 轴的交点中距原点最近的交点)为ωx +φ=0;“第二点”(即图象的“峰点”)为ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)为ωx +φ=π;“第四点”(即图象的“谷点”)为ωx +φ=3π2;“第五点”为ωx +φ=2π.(三)求解三角函数的值域(最值)常见到以下几种类型的题目及求解方法(1)形如y =a sin x +b cos x +k 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域); (2)形如y =a sin 2x +b sin x +k 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值); (3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).(四)三角函数单调性问题的常见类型及解题策略(1)已知三角函数解析式求单调区间.①求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;②求形如y =A sin (ωx +φ)或y =A cos (ωx +φ)(其中,ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.(2)已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解. (3)利用三角函数的单调性求值域(或最值).形如y =A sin (ωx +φ)+b 或可化为y =A sin (ωx +φ)+b 的三角函数的值域(或最值)问题常利用三角函数的单调性解决. (五)三角函数的奇偶性、周期性、对称性的处理方法(1)求三角函数的最小正周期,一般先通过恒等变形化为y =A sin(ωx +φ),y =A cos(ωx +φ),y =A tan(ωx +φ)的形式,再分别应用公式T =2||ωπ,T =2||ωπ,T =||ωπ求解. (2)对于函数y =A sin (ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否为函数的对称轴或对称中心时,可通过检验 f (x 0)的值进行判断.(3)若f (x )=A sin (ωx +φ)为偶函数,则φ=k π+2π(k ∈Z ),同时当x =0时,f (x )取得最大或最小值.若f (x )=A sin (ωx +φ)为奇函数,则φ=k π(k ∈Z ),同时当x =0时,f (x )=0. (六)三角函数的图象及性质与三角恒等变换相结合的综合问题(1)利用三角恒等变换及辅助角公式把三角函数关系式转化成y =A sin(ωx +φ)+t 或y =A cos(ωx +φ)+t 的形式.(2)利用公式2π(0)T ωω=>求周期.(3)根据自变量的范围确定ωx +φ的范围,根据相应的正弦曲线或余弦曲线求值域或最值,另外求最值时,根据所给关系式的特点,也可换元转化为二次函数的最值.(4)根据正、余弦函数的单调区间列不等式求函数y =A sin(ωx +φ)+t 或y =A cos(ωx +φ)+t 的单调区间.1.【山西省晋城市2019届高三第三次模拟考试数学试题】函数()|sin |cos 2f x x x =+的值域为 A .91,8⎡⎤⎢⎥⎣⎦B .1,12⎡⎤⎢⎥⎣⎦C .[]0,1D .90,8⎡⎤⎢⎥⎣⎦【答案】D 【解析】由题意得22()|sin |12sin 2|sin ||sin |1f x x x x x =+-=-++21992sin 0,488x ⎛⎫⎡⎤=--+∈ ⎪⎢⎥⎝⎭⎣⎦.故选D.【名师点睛】本题考查三角函数的恒等变换及性质,考查二次函数值域,考查运算求解能力,是中档题. 2.【安徽省定远中学2019届高三全国高考猜题预测卷一数学试题】函数()[]()cos 2π,2πf x x x =∈-的图象与函数()sin g x x =的图象的交点横坐标的和为A .5π3B .2πC .7π6D .π【答案】B【解析】令sin cos2x x =,有2sin 12sin x x =-,所以sin 1x =-或1sin 2x =. 又[]π,2πx ∈-,所以2x π=-或32x π=或π6x =或5π6x =, 所以函数()[]()cos 2π,2πf x x x =∈-的图象与函数()sin g x x =的图象交点的横坐标的和为π3ππ5π2π2266-+++=. 故选B.【名师点睛】本题主要考查三角函数的图象及给值求角,侧重考查数学建模和数学运算的核心素养.求解时,根据两个函数相等,求出所有交点的横坐标,然后求和即可.3.【安徽省合肥市2019届高三第三次教学质量检测数学试题】若函数()()πsin 103f x x ωω⎛⎫=+-> ⎪⎝⎭的最小正周期为2π3,则()f x 图象的一条对称轴为 A .π18x =- B .5π2x =- C .7π18x =D .π2x =【答案】C【解析】函数()f x 的最小正周期为2π2π3T ω==,解得=3ω. ()πsin 313f x x ⎛⎫=+- ⎪⎝⎭,令()ππ3π32x k k +=+∈Z ,解得()ππ318k x k =+∈Z ,取1k =,可得()f x 图象的一条对称轴为7π18x =. 故选C.【名师点睛】本题考查三角函数的周期性和对称轴.对于函数()()sin f x A x B ωϕ=++,最小正周期为2πT ω=,令()ππ2x k k ωϕ+=+∈Z 可得对称轴方程.求解本题时,先由最小正周期求出ω,再令()πππ32x k k ω+=+∈Z 可得对称轴方程,从而可得答案. 4.【广东省潮州市2019届高三第二次模拟考试数学试题】函数2sin()(0,0π)y x ωϕωϕ=+><<的部分图象如图所示,则函数()f x 的单调递增区间为A .πππ,π63k k 轾犏-+犏臌,k ∈Z B .ππ3π,3πk k ⎡⎤-+⎢⎥⎣⎦,k ∈Z C .πππ,π36k k ⎡⎤-+⎢⎥⎣⎦,k ∈Z D .ππ6π,6πk k ⎡⎤-+⎢⎥⎣⎦,k ∈Z 【答案】C【解析】根据函数2sin()(0,0π)y x ωϕωϕ=+><<的部分图象, 可得:3321ππ13441π64π2T ω=⋅=-=, 解得:2ω=,由于点π,26⎛⎫ ⎪⎝⎭在函数图象上,可得:2sin 22π6ϕ⎛⎫⨯+= ⎪⎝⎭, 可得:22π6ππ2k ϕ⨯+=+,k ∈Z , 解得:π2π6k ϕ=+,k ∈Z ,由于:0πϕ<<, 可得:6π=ϕ,即2sin 2π6y x ⎛⎫=+ ⎪⎝⎭,令πππ2π22π262k x k -≤+≤+,k ∈Z 解得:ππππ36k x k -≤≤+,k ∈Z , 可得:函数()f x 的单调递增区间为:πππ,π36k k ⎡⎤-+⎢⎥⎣⎦,k ∈Z . 故选C .【名师点睛】本题主要考查三角函数的单调性、三角函数的图象与性质,属于中档题.求解本题时,利用图象先求出周期,用周期公式求出ω,再利用特殊点求出ϕ,然后根据正弦函数的单调性列不等式求解即可.掌握函数sin()y A x ωϕ=+的单调区间的求法:若0,0A ω>>,把x ωϕ+看作是一个整体,由π2π2k x ωϕ+≤+≤()3π2π2k k +∈Z 求得函数的减区间,ππ2π2π22k x k ωϕ-+≤+≤+()k ∈Z 求得增区间.5.【广东省韶关市2019届高考模拟测试(4月)数学文试题】已知函数π()sin()(0)6f x x ωω=+>的相邻对称轴之间的距离为π2,将函数图象向左平移6π个单位得到函数()g x 的图象,则()g x =A .πsin()3x + B .πsin(2)3x +C .cos2xD .πcos(2)3x +【答案】C【解析】函数π()sin()(0)6f x x ωω=+>的相邻对称轴之间的距离为π2, 则π22T =, 解得:πT =, 所以2ππω=,解得2ω=,将函数π()sin(2)6f x x =+的图象向左平移6π个单位, 得到ππππ()sin[2()]sin 2cos 26636g x x x x ⎛⎫=++=++=⎪⎝⎭的图象, 故选C .【名师点睛】本题考查的知识要点:三角函数关系式的平移变换和伸缩变换的应用,正弦型函数性质的应用,主要考查学生的运算能力和转换能力,属于基础题型.求解时,首先利用函数的图象求出函数的关系式,进一步利用图象的平移变换的应用求出结果.6.【河北省廊坊市高三年级期中联合调研考试】已知函数ππ()cos(2))133f x x x =+++,则下列判断错误的是A .()f x 的最小正周期为πB .()f x 的图象关于点0π,4⎛⎫-⎪⎝⎭对称 C .()f x 的值域为[]1,3-D .()f x 的图象关于直线π2x =对称【答案】B【解析】因为ππππ()cos(2))12sin 212cos 213363f x x x x x ⎛⎫=+++=+++=+ ⎪⎝⎭, 所以其最小正周期为2π2πT ==,A 正确; 因为1cos21x -≤≤,所以[]()2cos211,3f x x =+∈-,C 正确; 由2()πx k k =∈Z 得π()2k x k =∈Z ,即函数()f x 的对称轴为π()2k x k =∈Z ,D 正确; 由π2π()2x k k =+∈Z 得ππ()42k x k =+∈Z ,即函数()f x 的对称中心为ππ,1()42k k ⎛⎫+∈ ⎪⎝⎭Z ,所以B 错误. 故选B.【名师点睛】本题主要考查三角函数的性质,熟记余弦函数的性质即可,属于常考题型.求解时,先将函数ππ()cos(2))133f x x x =+++化为()2cos 21f x x =+,再由三角函数的性质,逐项判断,即可得出结果.7.【河南省八市重点高中联盟“领军考试”2019届高三压轴数学试题】已知函数()()()sin 0f x x ωϕω=+>在区间7π2π,123⎛⎫⎪⎝⎭上单调,且π()14f =,30π4f ⎛⎫= ⎪⎝⎭,则ω的最大值为 A .7 B .9 C .11D .13【答案】B【解析】由题意,函数()sin()(0)f x x ωϕω=+>在区间7π2π,123⎛⎫⎪⎝⎭上单调, 则273121ππ2π2T -=≤,解得π6T ≥,所以2ππ6ω≥,即12ω≤, 又由π3π()1,()044f f ==,则3ππ4442T k T -=+,即π21212π244k k T ω++==⋅, 解得21,k k ω=+∈Z ,当5k =时,此时11ω=,则()sin(11)f x x ϕ=+, 又由π()14f =,即π11π()sin()144f ϕ=+=,解得π4ϕ=-,即()πsin(11)4f x x =-,此时函数()f x 在区间7π2π,123⎛⎫⎪⎝⎭上不单调,不满足题意. 当4k =时,此时9ω=,则()sin(9)f x x ϕ=+, 又由π()14f =,即π9π()sin()144f ϕ=+=,解得π4ϕ=,即()πsin(9)4f x x =+,此时函数()f x 在区间7π2π,123⎛⎫⎪⎝⎭上是单调函数,满足题意, 所以ω的最大值为9,故选B.【名师点睛】本题主要考查了三角函数的图象与性质的应用,其中解答中熟记三角函数的图象与性质,合理列出关于周期的不等关系式是解答的关键,着重考查了分析问题和解答问题的能力,属于难题.求解本题时,根据函数()f x 在区间7π2π,123⎛⎫⎪⎝⎭上单调,得273121ππ2π2T -=≤,解得12ω≤,又由已知中π3π()1,()044f f ==,得3ππ4442T kT -=+,得到21,k k ω=+∈Z ,代入验证,即可求解. 8.【山东省栖霞市2019届高三高考模拟卷数学理)试题】将函数π()2sin 26f x x ⎛⎫=+⎪⎝⎭的图象向右平移π6个单位长度,再把图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到函数()g x 的图象,则下列说法正确的是A .函数()g x 1B .函数()g x 的最小正周期为πC .函数()g x 的图象关于直线π3x =对称 D .函数()g x 在区间π2,6π3⎡⎤⎢⎥⎣⎦上单调递增 【答案】D【解析】将函数()f x 的图象向右平移π6个单位长度得:πππ()2sin 22sin 2666h x x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,再把图象上所有点的横坐标伸长到原来的2倍得:()π2sin 6g x x ⎛⎫=-⎪⎝⎭,()g x 的最大值为2,可知A 错误; ()g x 的最小正周期为2π,可知B 错误;π3x =时,ππ66x -=,则π3x =不是()g x 的图象的对称轴,可知C 错误;当2,63ππx ⎡⎤∈⎢⎥⎣⎦时,ππ0,62x ⎡⎤-∈⎢⎥⎣⎦,此时()g x 单调递增,可知D 正确. 本题正确选项为D.【名师点睛】本题考查三角函数图象平移变换和伸缩变换、正弦型函数的单调性、对称性、值域和最小正周期的求解问题,关键是能够明确图象变换的基本原则,同时采用整体对应的方式来判断正弦型函数的性质.求解时,根据平移变换和伸缩变换的原则可求得()g x 的解析式,依次判断()g x 的最值、最小正周期、对称轴和单调性,可求得正确结果.9.【湖南省岳阳市第一中学2019届高三第一次模拟(5月)数学试题】设函数π()sin 6f x x ⎛⎫=-⎪⎝⎭,若对于任意5ππ,62α⎡⎤∈--⎢⎥⎣⎦,在区间[]0,m 上总存在唯一确定的β,使得()()0f f αβ+=,则m 的最小值为A .π6 B .π2C .7π6D .π【答案】B【解析】当5ππ,62α⎡⎤∈--⎢⎥⎣⎦时,有π2π,63πα⎡⎤-∈--⎢⎥⎣⎦,所以()[2f α∈-.在区间[]0,m 上总存在唯一确定的β,使得()()0f f αβ+=,所以存在唯一确定的β,使得()()f f βα=-∈. []πππ0,,[,]666m m ββ∈-∈--,所以ππ2ππ5π[,),[,)63326m m -∈∈. 故选B.【名师点睛】本题主要考查了三角函数的图象和性质,考查了函数与方程的思想,正确理解两变量的关系是解题的关键,属于中档题.求解时,先求()3[,0]f α∈-,再由存在唯一确定的β,使得()()3[0,]f f βα=-∈,得ππ2π[,)633m -∈,从而得解. 10.【江西省抚州市临川第一中学2019届高三下学期考前模拟考试数学试题】已知函数()sin()f x x ωϕ=+(0,0π)ωϕ><<的图象经过两点2π(0,),(,0)24A B ,()f x 在π(0,)4内有且只有两个最值点,且最大值点大于最小值点,则()f x = A .πsin 34x ⎛⎫+⎪⎝⎭ B .3πsin 54x ⎛⎫+⎪⎝⎭ C .πsin 74x ⎛⎫+ ⎪⎝⎭D .3πsin 94x ⎛⎫+⎪⎝⎭【答案】D【解析】根据题意可以画出函数()f x 的图象大致如下:因为2(0)sin 2f ϕ==3π2π()4k k ϕ=+∈Z , 又因为0πϕ<<,所以3π4ϕ=,所以3π()sin()4f x x ω=+, 因为ππ3π()sin()0444f ω=+=,由图可知,π3ππ2π44k ω+=+,解得18,k k ω=+∈Z , 又因为2ππ4T ω=<,可得8ω>,所以当1k =时,9ω=, 所以3π()sin(9)4f x x =+,故选D.【名师点睛】本题主要考查了正弦型函数的图象与性质,属于中档题.这类型题的关键在于结合图象,以及各个参数的几何意义,利用特殊点代入求解.求解本题时,由题意画出函数()f x 的图象,然后结合图象以及题目的条件,利用特殊点代入,结合参数范围,即可求出函数的解析式.11.【福建省龙岩市(漳州市)2019届高三5月月考数学试题】已知函数21()sin cos 2f x x x x =+,则下列结论正确的是 A .()f x 的最大值为1 B .()f x 的最小正周期为2π C .()y f x =的图象关于直线π3x =对称 D .()y f x =的图象关于点7π,012⎛⎫⎪⎝⎭对称 【答案】C【解析】函数21()sin cos 2f x x x x =++=1cos 212222x x -+=sin (2x π6-)+1.对于A :根据f (x )=sin (2x π6-)+1可知最大值为2,则A 不对; 对于B :f (x )=sin (2x π6-)+1的最小正周期为T =π,则B 不对; 对于C :令2x π6-=ππππ,223k k x k ,Z +\=+?,故图象关于直线π3x =对称,则C 正确; 对于D :令2x π6-=πππ,212k k x k ,Z \=+?,故()y f x =的图象关于点7π,112⎛⎫ ⎪⎝⎭对称,则D 不对. 故选C .【名师点睛】本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.求解时,利用二倍角公式和辅助角公式化简得f (x )的解析式,再利用三角函数函数性质考查各选项即可.12.【湖北省黄冈市2019届高三2月联考数学试题】已知函数()ππ2sin cos 22f x x x ⎛⎫⎛⎫=-⋅- ⎪ ⎪⎝⎭⎝⎭的图象与直线()00ax y a -=>恰有三个公共点,这三个点的横坐标从小到大依次为123,,x x x ,则()123123tan x x x x x x +-=+-A .−2B .2C .−1D .1【答案】D【解析】由题意得,()sin 2f x x =-,则()2cos2f x x '=-,易知直线()00ax y a -=>过定点()0,0,如图,由对称性可知,直线与三角函数图象切于另外两个点,∴1320,0x x x +==,则切线方程过点()()()1133,sin 2,0,0,,sin 2x x x x --, ∴333sin 202cos 20x x x ---=-,即333sin 22cos 2x x x =,则33tan 22x x =,∴()()123133123133tan tan tan 212x x x x x x x x x x x x +---===+---. 故选D.【名师点睛】本题考查函数的零点,导数的综合应用.在研究函数零点时,有一种方法是把函数的零点转化为方程的解,再把方程的解转化为函数图象的交点,特别是利用分离参数法转化为动直线与函数图象交点问题,这样就可利用导数研究新函数的单调性与极值,从而得出函数的变化趋势,得出结论.对于本题,根据题意得到()sin 2f x x =-,()2cos2f x x '=-,画出函数图象,可知切线方程过点()()()1133,sin 2,0,0,,sin 2x x x x --,由切线的几何意义得到:333sin 202cos 20x x x ---=-,进而得到结果.13.【福建省厦门市厦门外国语学校2019届高三最后一模数学试题】已知函数()3cos f x x x ωω=+(>0)ω的零点构成一个公差为π2的等差数列,把函数()f x 的图象沿x 轴向左平移π6个单位,得到函数()g x 的图象,关于函数()g x ,下列说法正确的是 A .在[,]42ππ上是增函数 B .其图象关于π4x =-对称C .函数()g x 是奇函数D .在区间π2π[,]63上的值域为[−2,1] 【答案】D【解析】()cos f x x x ωω=+可变形为π()2sin()6f x x ω=+,因为()y f x =的零点构成一个公差为π2的等差数列,所以()y f x =的周期为π, 故2ππω=,解得2ω=,所以π()2sin(2)6f x x =+,函数()f x 的图象沿x 轴向左平移π6个单位后得到()()22sin[()]sin()cos(22)222x g f x x x x ++===++=πππ666π,选项A :222,k x k k -+≤≤∈πππZ ,解得:k x k k 2-+≤≤∈πππ,Z , 即函数()y g x =的增区间为π[π,π],2k k k -+∈Z ,显然π[,][π,π]422k k ππ⊄-+,故选项A 错误; 选项B :令2π,x k k =∈Z ,解得:k x k 2=∈π,Z ,即函数()y g x =的对称轴为k x k 2=∈π,Z ,不论k 取何值,对称轴都取不到π4x =,所以选项B 错误; 选项C :()y g x =的定义域为R ,因为2cos02(00)g ==≠,所以函数()y g x =不是奇函数,故选项C 错误; 选项D :当π2π[,]63x ∈时,故42[,]33x ∈ππ,根据余弦函数图象可得,2cos(2[)2(),1]x g x ∈-=,故选项D 正确. 故本题应选D.【名师点睛】本题考查了三角函数的图象与性质,考查了图象平移的规则,整体法思想是解决本题的思想方法.根据()y f x =的零点构成一个公差为π2的等差数列可得函数()y f x =的周期,从而得出函数()y f x =的解析式,沿x 轴向左平移π6个单位,便可得到函数()g x 的解析式,由()y g x =的解析式逐项判断选项的正确与否即可.14.【湖南省师范大学附属中学2019届高三下学期模拟(三)数学试题】若函数()2sin()(0,f x x ωϕϕ=+>0π)ϕ<<的图象经过点π,26⎛⎫⎪⎝⎭,且相邻两条对称轴间的距离为π2,则π()4f 的值为______.【解析】因为相邻两条对称轴的距离为π2,所以2ππω=,2ω∴=, 所以()2sin(2)f x x ϕ=+,因为函数的图象经过点π,26⎛⎫⎪⎝⎭,所以πsin 13ϕ⎛⎫+= ⎪⎝⎭,0πϕ<<Q ,π6∴=ϕ,所以π()2sin 26f x x ⎛⎫=+ ⎪⎝⎭,所以πππ2sin 426f ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭.【名师点睛】本题考查了正弦型函数的图象与性质的应用问题,熟记性质准确计算是关键,是基础题.求解时,根据函数f (x )的图象与性质求出T 、ω和φ的值,写出f (x )的解析式,求出f (π4)的值.。
专题11 三角函数的图像与性质中的易错点一.学习目标1.理解三角函数的定义域、值域和最值、奇偶性、单调性与周期性、对称性.2.会判断简单三角函数的奇偶性,会求简单三角函数的定义域、值域、最值、单调区间及周期. 3.理解三角函数的对称性,并能应用它们解决一些问题. 二.方法总结1.三角函数奇偶性的判断与其他函数奇偶性的判断步骤一致: (1)首先看定义域是否关于原点对称; (2)在满足(1)后,再看f (-x )与f (x )的关系.另外三角函数中的奇函数一般可化为y =A sin ωx 或y =A tan ωx ,偶函数一般可化为y =A cos ωx +b 的形式. 2.三角函数的单调性(1)函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间的确定,其基本思想是把ωx +φ看作一个整体,比如:由2k π-π2≤ωx +φ≤2k π+π2(k ∈Z)解出x 的范围,所得区间即为增区间.若函数y =A sin(ωx +φ)中A >0,ω<0,可用诱导公式将函数变为y =-A sin(-ωx -φ),则y =A sin(-ωx -φ)的增区间为原函数的减区间,减区间为原函数的增区间. 对函数y =A cos(ωx +φ),y =A tan(ωx +φ)等单调性的讨论同上.(2)三角函数单调性的应用主要有比较三角函数值的大小,而比较三角函数值大小的一般步骤:①先判断正负;②利用奇偶性或周期性转化为属于同一单调区间上的两个同名函数;③再利用单调性比较. 3.求三角函数的最值常见类型:(1)y =A sin(ωx +φ)+B 或y =A tan(ωx +φ)+B , (2)y =A (sin x -a )2+B ,(3)y =a (sin x ±cos x )+b sin x cos x (其中A ,B ,a ,b ∈R ,A ≠0,a ≠0). 三.函数图象与性质需要掌握的题型 (一)三角函数图象平移 (二)三角函数的零点 (三)函数的单调性 (四)函数的解析式 (五)三角函数图象综合 (六)三角函数的奇偶性(七)三角函数的对称性(八)三角函数的最值(九)三角函数与数列的综合(十)三角函数的周期性四.典例分析(一)三角函数图象平移例1.为了得到函数的图象,只需将函数图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度【答案】B【分析】根据诱导公式将函数变为正弦函数,再减去得到.【点睛】本题考查的是三角函数的平移问题,首先保证三角函数同名,不是同名通过诱导公式化为同名,在平移中符合左加右减的原则,在写解析式时保证要将x的系数提出来,针对x本身进行加减和伸缩.练习1.为了得到的图像,只需把函数的图像()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】D【解析】逆用两角和的余弦公式,得=,再分析两个函数图象的变换. 【详解】因为,要得到函数,只需将的图象向右平移个单位长度即可.故选D.【点睛】本题考查了三角函数的图象与变换,考查了两角和的余弦公式的应用;解决三角函数图象的变换问题,首先要把变换前后的两个函数化为同名函数.(二)三角函数的零点例2.函数的零点个数为A.1 B.2 C.3 D.4【答案】B【解析】利用两角和与差的三角函数化简函数的解析式,通过函数为0,转化为两个函数的图象交点个数问题.【详解】由已知,令,即,在同一坐标系中画出函数和的图象,如图所示,两个函数图象有两个不同的交点,所以函数的零点个数为2个,故选B.【点睛】本题主要考查了函数与方程的综合应用,其中根据三角函数的恒等变换,把函数的零点问题转化为两个函数的图象的交点问题,在同一坐标系中作出两个函数的图象是解答的关键,着重考查了转化思想和数形结合思想的应用.练习1.设函数为定义域为的奇函数,且,当时,,则函数在区间上的所有零点的和为A.10 B.8C.16 D.20【答案】B【解析】根据函数是定义在R上的奇函数得函数图像关于原点对称,又由可得函数图像关于直线对称,故而得出函数是以4为周期的周期函数,然后利用数形结合便可得解。
专题11 三角函数的图像与性质中的易错点一.学习目标1.理解三角函数的定义域、值域和最值、奇偶性、单调性与周期性、对称性.2.会判断简单三角函数的奇偶性,会求简单三角函数的定义域、值域、最值、单调区间及周期. 3.理解三角函数的对称性,并能应用它们解决一些问题. 二.方法总结1.三角函数奇偶性的判断与其他函数奇偶性的判断步骤一致: (1)首先看定义域是否关于原点对称; (2)在满足(1)后,再看f (-x )与f (x )的关系.另外三角函数中的奇函数一般可化为y =A sin ωx 或y =A tan ωx ,偶函数一般可化为y =A cos ωx +b 的形式. 2.三角函数的单调性(1)函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间的确定,其基本思想是把ωx +φ看作一个整体,比如:由2k π-π2≤ωx +φ≤2k π+π2(k ∈Z)解出x 的范围,所得区间即为增区间.若函数y =A sin(ωx +φ)中A >0,ω<0,可用诱导公式将函数变为y =-A sin(-ωx -φ),则y =A sin(-ωx -φ)的增区间为原函数的减区间,减区间为原函数的增区间. 对函数y =A cos(ωx +φ),y =A tan(ωx +φ)等单调性的讨论同上.(2)三角函数单调性的应用主要有比较三角函数值的大小,而比较三角函数值大小的一般步骤:①先判断正负;②利用奇偶性或周期性转化为属于同一单调区间上的两个同名函数;③再利用单调性比较. 3.求三角函数的最值常见类型:(1)y =A sin(ωx +φ)+B 或y =A tan(ωx +φ)+B , (2)y =A (sin x -a )2+B ,(3)y =a (sin x ±cos x )+b sin x cos x (其中A ,B ,a ,b ∈R ,A ≠0,a ≠0). 三.函数图象与性质需要掌握的题型 (一)三角函数图象平移 (二)三角函数的零点 (三)函数的单调性 (四)函数的解析式 (五)三角函数图象综合 (六)三角函数的奇偶性(七)三角函数的对称性(八)三角函数的最值(九)三角函数与数列的综合(十)三角函数的周期性四.典例分析(一)三角函数图象平移例1.为了得到函数的图象,只需将函数图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度【答案】B【分析】根据诱导公式将函数变为正弦函数,再减去得到.【点睛】本题考查的是三角函数的平移问题,首先保证三角函数同名,不是同名通过诱导公式化为同名,在平移中符合左加右减的原则,在写解析式时保证要将x的系数提出来,针对x本身进行加减和伸缩.练习1.为了得到的图像,只需把函数的图像()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】D【解析】逆用两角和的余弦公式,得=,再分析两个函数图象的变换. 【详解】因为,要得到函数,只需将的图象向右平移个单位长度即可.故选D.【点睛】本题考查了三角函数的图象与变换,考查了两角和的余弦公式的应用;解决三角函数图象的变换问题,首先要把变换前后的两个函数化为同名函数.(二)三角函数的零点例2.函数的零点个数为A.1 B.2 C.3 D.4【答案】B【解析】利用两角和与差的三角函数化简函数的解析式,通过函数为0,转化为两个函数的图象交点个数问题.【详解】由已知,令,即,在同一坐标系中画出函数和的图象,如图所示,两个函数图象有两个不同的交点,所以函数的零点个数为2个,故选B.【点睛】本题主要考查了函数与方程的综合应用,其中根据三角函数的恒等变换,把函数的零点问题转化为两个函数的图象的交点问题,在同一坐标系中作出两个函数的图象是解答的关键,着重考查了转化思想和数形结合思想的应用.练习1.设函数为定义域为的奇函数,且,当时,,则函数在区间上的所有零点的和为A.10 B.8C.16 D.20【答案】B【解析】根据函数是定义在R上的奇函数得函数图像关于原点对称,又由可得函数图像关于直线对称,故而得出函数是以4为周期的周期函数,然后利用数形结合便可得解。
【详解】因为函数为定义域为的奇函数,所以,又因为,所以,可得,即函数是周期为4的周期函数,且图像关于直线对称。
故在区间上的零点,即方程的根,分别画出与的函数图像,因为两个函数图像都关于直线对称,因此方程的零点关于直线对称,由图像可知交点个数为8个,分别设交点的横坐标从左至右依次为,则,所以所有零点和为8,故选B。
练习2.设,则函数A.有极值B.有零点C.是奇函数D.是增函数【答案】Df(x)无极值和无零点,且不为奇函数.故答案为:D练习3.已知,若函数在上有两个不同零点,则_______.【答案】【解析】通过两角和的正弦公式得到函数的解析式,再通过换元结合正弦函数的图像得到两根之和,进而得到结果.【详解】已知=,令,函数在上有两个不同零点,即函数和y=m两个图像有两个不同的交点,做出函数y=sint,和y=m的图像,通过观察得到进而得到=故答案为:.【点睛】本题考查函数方程的转化思想,函数零点问题的解法,考查三角函数的恒等变换,同角基本关系式的运用,属于中档题.对于函数的零点问题通常转化为两个函数图像的交点问题或者方程的解的问题. (三)函数的单调性例3.若函数y=f(x)对任意x∈(-,)满足f'(x)cosx-f(x)sinx>0,则下列不等式成立的是()A.f(-)<f(-)B.f(-)>f(-)C.f(-)>f(-)D.f(-)<f(-)【答案】B【解析】分析:根据所给式子,构造函数,利用函数的单调性即可得到正确答案。
详解:因为,所以 令,所以为单调递增函数因为 所以,即化简得所以选B点睛:点睛:本题考查了函数与导函数的综合应用,主要是根据所给式子的特征构造函数,利用函数的单调性解不等式,属于中档题。
练习1.定义在R 上的函数()f x ,满足,且, ()f x 在 []3,2--上是减函数,如果A 、B 是一个锐角三角形的两个内角,则( ) A . B . C . D .【答案】A【解析】函数满足,则函数是周期为2的函数,函数满足,则函数关于直线2x =对称,结合周期性可知函数关于y 轴对称,()f x 在 []3,2--上是减函数,则函数在区间[]1,0-上是减函数,结合对称性可得函数在区间[]0,1上是增函数,△ABC 是锐角三角形,则2A B π+>,即,正弦函数在区间0,2π⎛⎫⎪⎝⎭上单调递增,则,即sin cos A B >,而,据此可得:.本题选择A 选项.练习2.函数在下列哪个区间上单调递减( )A .0,4π⎛⎫⎪⎝⎭B .,62ππ⎡⎤⎢⎥⎣⎦C .D .5,26ππ⎡⎤⎢⎥⎣⎦ 【答案】C【解析】函数中,有,有: 1cos22x <.令.当0,4x π⎛⎫∈ ⎪⎝⎭时, 20,2x π⎛⎫∈ ⎪⎝⎭,不满足1cos22x <,A 不正确; 当,62x ππ⎡⎤∈⎢⎥⎣⎦时, 2,π3x π⎡⎤∈⎢⎥⎣⎦, 23x π=时, 1cos22x =,不成立;当,42x ππ⎡⎤∈⎢⎥⎣⎦时, 2,π2x π⎡⎤∈⎢⎥⎣⎦, ()g x 单调递增,又外层函数单调递减,所以原函数单调递增; 当时,, 523x π=时, 1cos22x =,不成立. 故选C. 点睛:形如的函数为()y g x =, ()y f x =的复合函数, ()y g x =为内层函数, ()y f x =为外层函数.当内层函数()y g x =单增,外层函数()y f x =单增时,函数也单增; 当内层函数()y g x =单增,外层函数()y f x =单减时,函数也单减; 当内层函数()y g x =单减,外层函数()y f x =单增时,函数也单减; 当内层函数()y g x =单减,外层函数()y f x =单减时,函数也单增.简称为“同增异减”. (四)函数的解析式例4.已知f(x)=3cos(ωx+),x∈R,又f(x1)=–3,f(x2)=0,且|x1–x2|的最小值是,则正数ω的值为A.B.C.D.【答案】C【解析】由题意,得,所以,解得ω=,故选C.练习1.已知函数的图象关于点30 4π(,)对称.且()f x在区间2 03π(,)上单调,则ω的值为( )A.2 B.103C.23D.38【答案】C【解析】由题意,又由图象关于点30 4π(,)对称,则,所以,即,又因为2Twπ=,且函数()f x在23π(,)上单调,所以23wππ≥,所以32w≤,令0k=,所以,故选C.(五)三角函数图象综合例5.函数在[-π,π]上的图象大致为()A .B .C .D .【答案】D【解析】由题易得函数f (x )是奇函数,所以其图象关于原点对称,排除选项B 、C ,当0πx << 时,f (x )>0,排除选项A.故选D.练习1.函数的图像大致是( )A .B .C .D .【答案】A点睛:识图常用的方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题. 练习2.函数在,22ππ⎛⎫-⎪⎝⎭上的图像大致为( )【答案】C【解析】试题分析:因为函数()f x 的定义域为,22ππ⎛⎫-⎪⎝⎭,关于原点对称,且,所以函数()f x 的图像关于原点对称,排除A 、B 选项,在同一直角坐标系中,作出函数2y x =, tan y x =在,22ππ⎛⎫-⎪⎝⎭的图像,由图可知故在0x >时,靠近y 轴的部分满足2tan x x >,比较选项C 、D 可得答案C 正确.(六)三角函数的奇偶性例6.已知函数f (x )=sin(2x +α)在x =时有极大值,且f (x -β)为奇函数,则α,β的一组可能值依次为( )A .B .C .D .【答案】D【解析】依题意得2×+α=2k 1π+,即α=2k 1π+,k 1∈Z ,A ,B 均不正确.由f (x -β)是奇函数得f (-x -β)=-f (x -β),即f (-x -β)+f (x -β)=0,函数f (x )的图象关于点(-β,0)对称,f (-β)=0,sin(-2β+α)=0,sin(2β-α)=0,2β-α=k 2π,k 2∈Z ,结合选项C ,D 取α=得β=+,k 2∈Z ,故选D.练习1.设函数的最小正周期为π,且,则( ) A .()f x 在0,2π⎛⎫⎪⎝⎭单调递减 B .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 C .()f x 在0,2π⎛⎫⎪⎝⎭单调递增 D .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 【答案】A【解析】试题分析:由2T ππω==得2ω=,,又,则4πϕ=,即.当0,2x π⎛⎫∈ ⎪⎝⎭时, ()20,x π∈, ()f x 递减,故选A .(七)三角函数的对称性例7.函数f (x )=2cos(ωx +φ)(ω≠0)对任意x 都有,则等于( )A .2或0B .-2或2C .0D .-2或0 【答案】B 【解析】由f=f得x =是函数f (x )的一条对称轴,所以f =±2,故选B.练习1.已知函数对任意x 都有则6f π⎛⎫⎪⎝⎭等于( ) A .2 B .0 C .2-或2 D .2- 【答案】C【解析】因为函数对任意x 都有所以()f x 关于直线x 6π=对称.则6f π⎛⎫⎪⎝⎭为的最大值或最小值,即26f π⎛⎫=-⎪⎝⎭或2. 故选C.(八)三角函数的最值例8.已知函数f(x)=Asin(ωx +φ)(A ,ω,φ均为正的常数)的最小正周期为π,当23x π=时,函数f(x)取得最小值,则下列结论正确的是( ) A .f(2)<f(-2)<f(0) B .f(0)<f(2)<f(-2) C .f(-2)<f(0)<f(2) D .f(2)<f(0)<f(-2) 【答案】A 【解析】因为函数的最小正周期为π,所以2ω=,又当2π3x =时,函数()f x 取得最小值,则2π3x =是经过函数()f x 最小值的一条对称轴,是经过函数()f x 最大值的一条对称轴,因为,所以,且,所以,即;故选A.点睛:本题考查三角函数的性质;比较三角函数值的大小时,往往将角转化到同一个单调区间上,而本题中将2,2,0-难以转化到同一个单调区间上,而是利用对称性和开口方向进行比较.练习1.已知函数在区间2,23ππ⎡⎤-⎢⎥⎣⎦上是增函数,且在区间[]0,π上恰好取得一次最大值,则ω的取值范围是( )A .(]0,1 B .30,4⎛⎤ ⎥⎝⎦C .[)1,+∞ D .13,24⎡⎤⎢⎥⎣⎦【答案】D【解析】,又函数()f x 在区间2,23ππ⎡⎤-⎢⎥⎣⎦上是增函数,且在区间[]0,π上恰好取得一次最大值,∴,解得:13ω24≤≤ 故选:D 练习2.已知函数,若存在实数0x ,使得对任意的实数x ,都有()0f x ≤()f x ≤恒成立,则ω的最小值为( )A .12016 B .14032 C .12016π D .14032π【答案】B【解析】,所以周期T πω=,存在实数0x ,使得对任意的实数x ,都有()0f x ≤()f x ≤恒成立,则,解得: 14032ω≥,故选B. (九)三角函数与数列的综合例9.若,则中值为0的有( )个A .200B .201C .402D .403 【答案】C练习1.函数,若对任意10,4x π⎡⎤∈⎢⎥⎣⎦,存在20,4x π⎡⎤∈⎢⎥⎣⎦,使得成立,则实数m 的取值范围是( )A .41,3⎛⎫ ⎪⎝⎭ B .2,13⎛⎤ ⎥⎝⎦ C .2,13⎡⎤⎢⎥⎣⎦ D .41,3⎡⎤⎢⎥⎣⎦【答案】D【解析】∵当0,4x π⎡⎤∈⎢⎥⎣⎦时,,∴f (x )∈[1,2],对于(m >0),当0,4x π⎡⎤∈⎢⎥⎣⎦时, ,∵对任意10,4x π⎡⎤∈⎢⎥⎣⎦,存在20,4x π⎡⎤∈⎢⎥⎣⎦,使得成立,∴解得实数m 的取值范围是41,3⎡⎤⎢⎥⎣⎦.故选:D.点睛:函数中的方程有解问题:(1)若为一元方程,通常有两个方法:要么画函数的图象,研究图象与x 轴的交点即可;要么将方程整理成两个函数相等,画两个函数的图象求解即可;(2)若为二元方程,通常是转成研究方程左右两边的函数的值域的包含关系即可. 练习2.函数()的图象与轴正半轴交点的横坐标构成一个公差为的等差数列,若要得到函数的图象,只要将的图象( )个单位A .向左平移B .向右平移C .向左平移D .向右平移【答案】D【解析】试题分析:正弦函数图象与轴相邻交点横坐标相差为半个周期,即,又因为,所以,则=,所以只要将函数的图象向右平移个单位就能得到的图象,故选A.考点:1、三角函数的图象与性质;2、三角函数图象的平移变换.(十)三角函数的周期性例10.函数的最小正周期为()A.B.C.D.【答案】C【解析】化简,利用周期公式可得结果.【详解】因为函数,所以最小正周期为,故选C.【点睛】本题主要考查同角三角函数的关系、二倍角的正弦公式,以及正弦函数的周期公式,属于中档题. 函数的最小正周期为.练习1.给出以下命题:①若均为第一象限角,且,且;②若函数的最小正周期是,则;③函数是奇函数;④函数的周期是;⑤函数的值域是[0,2]其中正确命题的个数为()A.3 B.2 C.1 D.0【答案】D【解析】①若均为第一象限角,且,如,,但是,因此不正确.②若函数的最小正周期是,则,解得因此不正确.③由函数,可知,而由,得到可知此函数的定义域关于原点不对称,因此不是奇函数,故不正确;④若函数的周期是,由周期定义知,故函数的周期不是,故不正确.⑤=,当时,,可知函数的值域为故不正确;综上可知:①②③④⑤都不正确.故选:D.练习2.(2018年全国卷Ⅲ文)函数的最小正周期为A.B.C.D.【答案】C【解析】将函数进行化简即可详解:由已知得的最小正周期故选C.练习3.下列函数的周期为的是( )①;②;③;④.A.①④B.①③④C.②③④D.①②④【答案】D【解析】利用,的周期不是,可排除选项;利用,排除,从而可得结果.【详解】设,则,,,不是的周期,③不合题意,排除,设,则,故是的周期,②符合题意,排除,故选D.【点睛】用特例代替题设所给的一般性条件,得出特殊结论,然后对各个选项进行检验,从而做出正确的判断,这种方法叫做特殊法. 若结果为定值,则可采用此法. 特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性. 练习4.函数是()A.最小正周期为的奇函数B.最小正周期为的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数【答案】D点睛:引题主要考查三角函数的奇偶性、周期性等性质,以及三角函数诱导公式的应用等有关方面的知识与技能,属于中低档题型,也是常考考点.在此类问题中,函数解析式相对特殊,直接法求解不容易算,采用三角函数的性质去判断,反而会使问题简单化,以达到四两拔千斤的效果.。