三角函数的图像与性质
- 格式:ppt
- 大小:1.96 MB
- 文档页数:45
三角函数的图像与性质三角函数是数学中的重要概念,它们在几何、物理、工程等领域都有广泛的应用。
本文将探讨三角函数的图像与性质,并通过图像展示它们的特点。
一、正弦函数(sine function)正弦函数是最基本的三角函数之一,常用符号为sin(x)。
它的图像是一条连续的曲线,表现出周期性的波动。
正弦函数的性质如下:1. 周期性:正弦函数的周期为2π,即在每个2π的区间内,函数的值会重复。
2. 对称性:正弦函数是奇函数,即满足sin(-x)=-sin(x)。
这意味着它的图像关于原点对称。
3. 取值范围:正弦函数的值域在[-1, 1]之间,即函数的值不会超过这个范围。
二、余弦函数(cosine function)余弦函数是另一个常见的三角函数,常用符号为cos(x)。
它的图像也是一条连续的曲线,与正弦函数的图像非常相似。
余弦函数的性质如下:1. 周期性:余弦函数的周期也是2π,与正弦函数相同。
2. 对称性:余弦函数是偶函数,即满足cos(-x)=cos(x)。
这意味着它的图像关于y轴对称。
3. 取值范围:余弦函数的值域也在[-1, 1]之间,与正弦函数相同。
三、正切函数(tangent function)正切函数是三角函数中的另一个重要概念,常用符号为tan(x)。
正切函数的图像也是一条连续的曲线,但与正弦和余弦函数有所不同。
正切函数的性质如下:1. 周期性:正切函数的周期为π,即在每个π的区间内,函数的值会重复。
2. 奇点:正切函数在π/2和-π/2处有奇点,即函数在这些点上无定义。
3. 取值范围:正切函数的值域为整个实数轴,即它可以取到任意的实数值。
四、其他三角函数除了正弦、余弦和正切函数,还有许多衍生的三角函数,如余切函数、正割函数和余割函数等。
它们的图像和性质与前面介绍的三角函数类似,只是在计算和应用中有一些特殊的情况。
五、图像展示为了更好地理解三角函数的图像与性质,下面是一些图像展示:(插入正弦函数、余弦函数和正切函数的图像)从图中可以清楚地看出正弦函数和余弦函数的周期性和对称性,以及正切函数的特殊性。
三角函数的图像和性质三角函数是数学中的一类特殊函数,以其图像的周期性和性质的多样性而被广泛研究和应用。
本文将介绍三角函数的图像特点和基本性质。
一、正弦函数的图像和性质正弦函数是最基本的三角函数之一,用sin(x)表示。
其图像为周期性曲线,其周期为2π。
在一个周期内,正弦函数的值在[-1,1]之间变化。
图像在x轴上的零点是正弦函数的特殊点,记为x=kπ,其中k为整数。
正弦函数的图像在x=kπ时经过极大值或极小值。
正弦函数的性质:1. 周期性:sin(x+2π)=sin(x),即正弦函数在过一周期后会重复。
2. 奇偶性:sin(-x)=-sin(x),即正弦函数关于原点对称。
3. 对称性:sin(π-x)=sin(x),即正弦函数关于y轴对称。
二、余弦函数的图像和性质余弦函数是另一个常见的三角函数,用cos(x)表示。
余弦函数的图像也是周期性曲线,其周期同样为2π。
在一个周期内,余弦函数的值同样在[-1,1]之间变化。
与正弦函数不同的是,余弦函数的图像在x=kπ时经过极大值或极小值。
余弦函数的性质:1. 周期性:cos(x+2π)=cos(x),即余弦函数在过一周期后会重复。
2. 奇偶性:cos(-x)=cos(x),即余弦函数关于y轴对称。
3. 对称性:cos(π-x)=-cos(x),即余弦函数关于原点对称。
三、正切函数的图像和性质正切函数是三角函数中另一个常见的函数,用tan(x)表示。
正切函数的图像为周期性曲线,其周期为π。
正切函数的图像在x=kπ+π/2时会出现无穷大的间断点,即tan(x)在这些点是无界的。
正切函数的性质:1. 周期性:tan(x+π)=tan(x),即正切函数在过一个周期后会重复。
2. 奇偶性:tan(-x)=-tan(x),即正切函数关于原点对称。
四、其他三角函数除了正弦函数、余弦函数和正切函数,还有其他与它们密切相关的三角函数。
1. 反正弦函数:用arcsin(x)表示,表示一个角的正弦值等于x,返回值在[-π/2, π/2]之间。
三角函数图像与性质
三角函数是基本的初等函数之一,它以角度为自变量,以任意角度的终边与单位圆或其比值的交点坐标为因变量。
接下来看看常见三角函数的图像和性质。
三角函数的图像
三角函数的性质
1.正弦函数
在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A 的正弦,记作sinA,即sinA=∠A的对边/斜边。
正弦值在[2kπ-π/2,2kπ+π/2](k∈Z)随角度增大(减小)而增大(减小),在[2kπ+π/2,2kπ+3π/2](k∈Z)随角度增大(减小)而减小(增大)。
图像:波形曲线
值域:[-1,1]
定义域:R
2.余弦函数
在Rt△ABC(直角三角形)中,∠C=90°(如图所示),∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为
cosa=AC/AB。
余弦函数:f(x)=cosx(x∈R)。
余弦值在[2kπ-π,2kπ](k∈Z)随角度增大(减小)而增大(减小),在[2kπ,2kπ+π](k∈Z)随角度增大(减小)而减小(增大)。
图像:波形曲线
值域:[-1,1]
定义域:R
3.正切函数
在Rt△ABC(直角三角形)中,∠C=90°,AB是∠C的对边c,BC是∠A的对边a,AC是∠B的对边b,正切函数就是
tanB=b/a,即tanB=AC/BC。
正切值在[kπ-π/2,kπ+π/2](k∈Z)随角度增大(减小)而增大(减小)。
图像:右图平面直角坐标系反映
定义域:{x|x≠(π/2)+kπ,k∈Z}
值域:实数集R。
三角函数的图像与性质(正弦、余弦、正切)【知识点1】函数y =sin x ,y =cos x ,y =tan x 的图象性质题型1:定义域例1:求下列函数的定义域(1)xx y cos 2cos 1+=; (2)x y 2sin = 2lg(4)x -题型2:值域 例2:求下列函数值域 (1))3π2,6π(,sin 2-∈=x x y (2)y=2sin(2x-3π),x 5,46ππ⎡⎤∈⎢⎥⎣⎦(3) )3π,2π(),3π2cos(2-∈+=x x y(4)函数1)6π21cos(2++-=x y 的最大值以及此时x 的取值集合题型3:周期例3:求下列函数的周期: (1)f(x)=2sin2x (2)y=cos(123x π-) (3)y=tan(2x 4π-) (4)y=sin x 例4: 若函数()2sin(2)3f x kx π=+的最小正周期T 满足12T <<,则自然数k 的值为______.例5:若)10(sin 2)(<<=ϖϖx x f 在区间[0,]3π上的最大值是2,则ϖ=________.例6:使x y ωsin =(ω>0)在区间[0,1]至少出现2次最大值,则ω的最小值为【 】A .π25B .π45C .πD .π23例7:设函数f(x)=2sin(25x ππ+),若对于任意的x R ∈,都有f(1x )2()()f x f x ≤≤成立,则12x x -的最小值是A.4B.2C.1D.12题型4:奇偶性 例8:函数y =sin (x +2π)(x ∈[-2π,2π])是【 】A.增函数B.减函数C.偶函数D.奇函数例9:判断下列函数的奇偶性 (1)y=xsin(x π+) (2)y=cos 1sin x x+例10:已知函数f(x)=x 3cosx+1,若f(a)=11,则f(-a)=________ 题型5:单调性例11:函数y =21log sin(2x +4π)的单调递减区间是【 】 A.(k π-4π,k π](k ∈Z ) B.(k π-8π,k π+8π](k ∈Z ) C.(k π-83π,k π+8π](k ∈ D.(k π+8π,k π+83π](k ∈Z )例12:.求1cos()3412logx y π+=的单调区间例13:求下列函数的单调增区间(1))3π21cos(-=x y ; (2) ]0,π[),6π2sin(2-∈+=x x y ;(3))23πsin(2x y -=例14:(1)求函数y=2sin(2x-3π)的单调递减区间。
三角函数的图像与性质一.正弦函数和余弦函数的图象:y=sinx打 3口正弦函数y = sin x 和余弦函数y = cos x 图象的作图方法:五点法:先取横坐标分别为0,-,兀,3-,2兀的2 2五点,再用光滑的曲线把这五点连接起来,就得到正弦曲线和余弦曲线在一个周期内的图象。
二、正弦函数y = sin x (x G R )、 余弦函数 y = cos x (x G R )的性质:(1)定义域:都是R 。
(2)值域:1、都是[-1,1],2、y = sin x ,当 x = 2 k -+-(k G Z )时,y 取最大值 1;当 x = 2 k -+ 3-( k G Z )时,y 取最小值一1; 2 2 3、y = cos x ,当 x = 2k - (k G Z )时,y 取最大值 1,当 x = 2k -+-(k G Z )时,y 取最小值一1。
例:(1)若函数y = a - b sin(3x + -)的最大值为3,最小值为-L 则a = , b =622——(答:a = —, b = 1或 b = —1 );22.函数y=-2sinx+10取最小值时,自变量x 的集合是课堂练习:1、函数y = sin x - sin x 的值域是2.已知f (x )的定义域为[0, 1],求f (c os x )的定义域;(3)周期性:①y = sin x 、y = cos x 的最小正周期都是2兀;2兀②f (x ) = A sin (3x +。
和f (x ) = A cos (3x +中)的最小正周期都是T = ——。
13| 兀x例:(1)若 f (x ) = sin 一,则 f (1)+ f (2) + f (3) + .・・ + f (2003)=—(答:0); ^3⑵.下列函数中,最小正周期为兀的是()(4)奇偶性与对称性:1、正弦函数y —sin x (x E R ) 7是奇函数,对称中心是(k 兀,0)(k E z ),对称轴是直线x — k K+-(k E Z );2 2、余弦函数y — cos x (x E R )是偶函数,对称中心是(k K +-,0 ](k E Z ),对称轴是直线x — k R (k E Z ) I 2)(正(余)弦型函数的对称轴为过最高点或最低点且垂直于x 轴的直线,对称中心为图象与x 轴的交点)。