基于颗粒尺度的离散颗粒传热模型
- 格式:pdf
- 大小:360.73 KB
- 文档页数:7
《基于离散相模型的凹壁面切向射流非均相颗粒行为分析》一、引言在多相流的研究中,非均相颗粒行为分析是一个重要的研究方向。
特别是在涉及凹壁面切向射流的场景中,颗粒的运动行为将直接影响到流体的流动特性以及相关物理和化学过程。
为了更深入地了解这一现象,本文基于离散相模型(Discrete Phase Model, DPM)对凹壁面切向射流非均相颗粒行为进行了分析。
离散相模型在处理颗粒流动方面具有独特的优势,可以精确地模拟颗粒的轨迹、速度和分布等参数。
二、理论基础与模型介绍2.1 离散相模型(DPM)离散相模型是一种计算流体动力学(CFD)中常用的模型,用于模拟颗粒在流体中的运动行为。
该模型将颗粒视为离散的实体,通过计算每个颗粒的受力情况,如曳力、重力、电场力等,进而预测其运动轨迹。
2.2 凹壁面切向射流凹壁面切向射流指的是流体在凹形壁面的切线方向上进行的射流过程。
这种射流过程将导致颗粒在凹壁面的附近发生复杂的运动行为,如反弹、滑移等。
这些行为将直接影响到流体的流动特性和颗粒的分布情况。
三、凹壁面切向射流非均相颗粒行为分析3.1 颗粒轨迹分析在凹壁面切向射流的场景中,颗粒的轨迹受到多种因素的影响,如流体速度、颗粒大小、形状以及凹壁面的形状等。
通过DPM模型,我们可以模拟出颗粒在射流过程中的运动轨迹,并分析这些轨迹的变化规律。
3.2 颗粒速度与分布分析颗粒的速度和分布是衡量非均相颗粒行为的重要参数。
在凹壁面切向射流的场景中,颗粒的速度和分布将受到射流速度、凹壁面的形状以及颗粒之间的相互作用等因素的影响。
通过DPM 模型,我们可以模拟出这些影响因素对颗粒速度和分布的影响规律。
3.3 颗粒在凹壁面的行为分析在凹壁面附近,颗粒的行为将受到壁面的影响而发生改变。
例如,颗粒可能会在壁面上发生反弹、滑移等现象。
通过DPM 模型,我们可以模拟出这些现象的发生过程,并分析这些现象对流体的流动特性和颗粒的分布情况的影响。
四、实验结果与讨论通过对DPM模型进行仿真实验,我们得到了以下结果:在凹壁面切向射流的场景中,颗粒的轨迹受到多种因素的影响;颗粒的速度和分布在射流过程中会发生变化;颗粒在凹壁面附近的行为将影响到流体的流动特性和颗粒的分布情况。
第 54 卷第 4 期2023 年 4 月中南大学学报(自然科学版)Journal of Central South University (Science and Technology)V ol.54 No.4Apr. 2023离散颗粒抑制热喷流红外辐射的大涡模拟胡峰1,孙文静1, 2,张靖周1,单勇1(1. 南京航空航天大学 能源与动力学院,江苏 南京,210016;2. 中国航天科工飞航技术研究院 北京动力机械研究所,北京,100074)摘要:为了探究气溶胶离散颗粒对飞行器排气喷管热喷流3~5 μm 波段的红外辐射的抑制效果,设计地面状态下气溶胶颗粒投射的仿真环境,采用大涡模拟和颗粒离散相模型对含气溶胶颗粒的飞行器排气喷管尾部气固两相剪切流进行数值模拟研究,系统地分析颗粒的质量流量、粒径和喷射速度对离散颗粒空间分布形态以及热喷流红外辐射抑制的影响规律。
研究结果表明:颗粒的质量流量和粒径对于红外抑制效率的影响较为明显,增加颗粒质量流量对颗粒的空间分布形态影响较小,但能够显著提升红外抑制效率;当颗粒粒径大于1.0 μm 时,颗粒空间分布均匀,红外抑制效率最高;颗粒的喷射速度对于颗粒的空间分布以及红外抑制效率的影响较小。
关键词:红外抑制;高速剪切流;大涡模拟;气溶胶颗粒分布;气固相互作用中图分类号:V231.1 文献标志码:A 开放科学(资源服务)标识码(OSID)文章编号:1672-7207(2023)04-1576-16Large eddy simulation of discrete particles suppressing infraredradiation from thermal jetsHU Feng 1, SUN Wenjing 1, 2, ZHANG Jingzhou 1, SHAN Yong 1(1. College of Energy and Power, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;2. Beijing Power Machinery Institute, China Aerospace Institute of Science and Technology, Beijing 100074, China)Abstract: To investigate the effect of aerosol discrete particles on the infrared radiation suppression in the 3~5 μm band of thermal jets of aircraft exhaust nozzles, the simulation environment of aerosol particle projection under ground conditions was designed. The large eddy simulation(LES) and particle discrete phase model(DPM) were used to numerically simulate the gas-solid two-phase shear flow at the tail of the aircraft exhaust nozzle containing aerosol particles, and the effect law of particle mass flow, size and jet speed on the spatial distribution of discreteparticles and the suppression of infrared radiation of thermal jets was systematically analyzed. The results show收稿日期: 2022 −05 −14; 修回日期: 2022 −07 −23基金项目(Foundation item):中国博士后科学基金特别资助(站前)项目(2020TQ0143);江苏省自然科学基金青年基金资助项目(BK20200448) (Project(2020TQ0143) supported by the Postdoctoral Science Foundation of China; Project(BK20200448) supported by the Youth Fund of Jiangsu Natural Science Foundation)通信作者:孙文静,博士,讲师,从事气固两相湍流、湍流燃烧、流动强化传热研究;E-mail :**************.cnDOI: 10.11817/j.issn.1672-7207.2023.04.033引用格式: 胡峰, 孙文静, 张靖周, 等. 离散颗粒抑制热喷流红外辐射的大涡模拟[J]. 中南大学学报(自然科学版), 2023, 54(4): 1576−1591.Citation: HU Feng, SUN Wenjing, ZHANG Jingzhou, et al. Large eddy simulation of discrete particles suppressing infrared radiation from thermal jets[J]. Journal of Central South University(Science and Technology), 2023, 54(4): 1576−1591.第 4 期胡峰,等:离散颗粒抑制热喷流红外辐射的大涡模拟that the effect of particle mass flow and size on infrared radiation suppression rate is obvious. With the increase of particle mass flow, its effect on the spatial distribution of particles is small, but the infrared suppression efficiency is significantly improved. When the particle diameter is 1.0 μm, the particle space distribution is uniform and the highest infrared suppression rate is achieved. However, the particle injection speed has less effect on the spatial distribution of particles and infrared radiation suppression efficiency.Key words: infrared suppressing; high-speed shear flow; large eddy simulation; aerosol particle distribution; gas-solid interactions气溶胶红外隐身技术是一种主动型应急红外对抗技术,该技术利用附加的机载引气装置,将细微颗粒喷射在发动机热喷流周围形成气溶胶云,借此对排气喷管热内腔和热喷流的强红外辐射进行遮蔽和散射。
基于离散单元法的颗粒物质静动力学行为研究颗粒物质是地球上存在最多且与人们的生活密不可分的物质类型之一,其表现出的复杂静动态力学行为,使其成为目前科学研究的热点和难点问题之一。
颗粒系统内粒子的离散性和粒子间作用的非线性耗散性,使得颗粒物质的许多宏观特性都与系统内部的微观力学行为有着密切联系,因此要揭示颗粒系统物质系统表现的宏观静动态性质的机理,就必须对颗粒物质系统内部粒子的组构特征、接触力网的分布特征以及颗粒的运动特征进行深入的分析。
本文基于颗粒离散单元模型,对颗粒物质系统常见的几种宏观的静动力学现象进行了数值模拟,通过分析微观尺度下颗粒间的力学行为,研究并揭示了细观参数和外部激励对颗粒系统在宏观尺度下的静动态行为的影响。
主要工作如下:首先,研究了静态颗粒堆体中常见的“压力凹陷”现象。
介绍了数值模拟中团颗粒表征不同长宽比颗粒的方法以及采用固定点源法生成颗粒堆体的过程。
采用移动平均的统计方法,得到了堆体底部垂向压力凹陷现象以及底部水平切向力的倒“S”型分布特征。
在此基础上详细分析了堆体内颗粒方向、接触方向以及接触力分布的各向异性特征。
数值结果表明:在堆体内部易形成能够屏蔽上部颗粒部分重力的拱结构,导致堆体底部产生压力凹陷现象。
长宽比较大的颗粒组成的堆体易形成倾角比较大的拱结构,并且拱结构力链上的接触力也比较大,拱结构相对坚固,更容易使堆体底部产生明显的压力凹陷现象。
其次,通过采用不同接触模型进行双轴压缩数值试验,探讨了细观参数对颗粒样本宏观结果的影响。
给出了用于数值模拟中的颗粒样本的生成方法以及应力应变边界条件的实现过程。
在此基础上研究了传统离散单元法、改进离散单元法以及团颗粒方法中常用细观参数对宏观性质的影响,并统计和分析了接触方向以及接触力大小的分布特征。
数值结果表明:在颗粒间摩擦系数较小时,偏应力-轴应变曲线呈现出理想的弹塑性关系,摩擦系数较大时表现出软化现象;样本的内摩擦角与形状参数近似于线性关系;类长条形颗粒的偏应力峰值、变形模量以及剪缩和剪胀效应相对其它形状颗粒较大;内摩擦角与摩擦系数均服从幂数关系,形状参数会使内摩擦角显著增大,类长条形颗粒的内摩擦角较圆形颗粒显著提高。
流化床颗粒接收器内流动与传热特性数值模拟研究太阳能作为一种清洁可再生能源未来很有可能代替传统的化石燃料,太阳能热利用技术应运而生,其中聚光太阳能发电技术近年来得到迅速发展,提供了一种可再生能源转换系统。
接收器是聚光太阳能发电系统的关键部分,决定着整个系统的热电转换效率。
目前对于接收器的研究主要集中于如何通过改进接收器结构来改善传热介质的流动特性,从而获得高温介质,提高接收器热电转换效率。
本文对流化床颗粒接收器内颗粒流动特性进行相关性的研究,采用数值模拟方法分别研究了稀疏和稠密颗粒相在流化床接收器内的流动和传热特性。
基于欧拉-拉格朗日方法对太阳能流化床颗粒接收器中的气固两相流动进行建模,分别采用离散颗粒模型(Discrete Phase Model,DPM)和稠密离散颗粒模型(Dense Discrete Phase Model,DDPM)对接收器中稀疏和稠密颗粒进行描述,在稠密颗粒流中考虑了颗粒碰撞,模型中通过离散单元模型(Discrete Element Model,DEM)进行封闭。
辐射源相和接收器内辐射场的相互作用通过Solar Load 模型和离散坐标模型(Discrete Ordinate,DO)描述。
基于DPM方法对内循环流化床内稀疏颗粒流动和传热过程进行数值模拟,分析了稀疏颗粒在接收器内的宏观运动以及颗粒运动特性对温度场的影响,对比分析了不同气体质量流量下的颗粒运动和传热特性。
得出在气体进口流量增大时,颗粒和气体在接收器内的再循环特性增强,传热效果也增强。
传热介质的热传递系数和颗粒的吸收系数随颗粒体积分数增加而增加。
基于DDPM-DEM方法对双腔式内循环流化床接收器内的稠密颗粒运动和传热过程进行数值模拟,模型中考虑了颗粒的流动、碰撞和传热作用。
分析了稠密颗粒在该接收器内的流动特性,以及稠密颗粒循环流对传热效果的影响。
得出稠密颗粒内循环流动可以增强接收器列颗粒与气体之间的热传递效果,同时接收器内的温度分布也更加的均匀,颗粒温度和气体温度得到很大提高,分别达到1400K和1200K。
颗粒流动力学中的离散元法与多尺度模拟颗粒流动力学是研究颗粒物质在流体中的运动行为的一门学科。
离散元法(DEM)和多尺度模拟是在颗粒流动力学中常用的两种数值模拟方法。
本文将对这两种方法进行介绍和比较。
离散元法是一种基于颗粒间相互作用力的模拟方法。
它将颗粒视为离散的个体,并考虑颗粒之间的相互作用力。
通过计算颗粒间的碰撞和相互作用力,可以模拟颗粒在流体中的运动行为。
离散元法适用于颗粒数量较少、颗粒尺寸较大的情况。
它可以模拟颗粒的运动轨迹、速度、位移等参数,并可以考虑颗粒间的碰撞、摩擦、粘聚等复杂相互作用。
离散元法在颗粒流动力学研究中得到了广泛应用,例如在颗粒物料输送、颗粒填充和颗粒堆积等领域。
多尺度模拟是一种将颗粒流动力学问题分解为不同尺度的模拟方法。
它将颗粒流动问题划分为宏观尺度和微观尺度两个层次,分别进行模拟。
在宏观尺度上,多尺度模拟采用连续介质力学方法,将颗粒流动问题视为流体力学问题进行模拟。
在微观尺度上,多尺度模拟采用离散元法或分子动力学方法,模拟颗粒间的相互作用力和粒子的运动行为。
通过将宏观尺度和微观尺度的模拟结果进行耦合,可以得到更准确的颗粒流动行为。
多尺度模拟适用于颗粒数量较多、颗粒尺寸较小的情况。
它可以模拟颗粒的分布、浓度、速度场等参数,并可以考虑颗粒间的相互作用、流体力学效应等因素。
多尺度模拟在颗粒流动力学研究中具有重要的应用价值,例如在颗粒混合、颗粒分散和颗粒输送等领域。
离散元法和多尺度模拟在颗粒流动力学中各有优势和适用范围。
离散元法适用于颗粒数量较少、颗粒尺寸较大的情况,可以考虑颗粒间的复杂相互作用。
多尺度模拟适用于颗粒数量较多、颗粒尺寸较小的情况,可以考虑颗粒间的流体力学效应。
在实际应用中,选择合适的数值模拟方法需要考虑问题的尺度、颗粒特性和求解精度等因素。
如果问题涉及到颗粒间的碰撞、摩擦等复杂相互作用,离散元法是一个较好的选择。
如果问题涉及到颗粒间的流体力学效应、颗粒分散等因素,多尺度模拟是一个较好的选择。
摘要*流化床在工业上的广泛应用使得稠密气固两相流动成为多相流研究领域的一个重要方向。
国内外已经进行了大量的实验和理论研究,但是由于气固流动的复杂性和流动机理尚未清楚的认识,故以实验为主的传统方法受到了很大限制。
近年来随着计算机技术的飞速发展,气固两相流动数值模拟正成为研究稠密气固两相流动的重要手段。
针对稠密气固两相流的数值模拟技术可以分为两大类:即欧拉—欧拉颗粒拟流体模型和欧拉—拉格朗日离散颗粒模型。
本文采用欧拉—拉格朗日离散单元法在颗粒水平上建立了一套描述流化床内气固流动、传热和燃烧的数学模型,并设计了模拟流化床内流动与燃烧的数值模拟程序。
首先本文对单孔射流流化床内的气固流动进行了数值模拟,得到了床层压降曲线和不同射流速度下的床层高度、气泡产生频率和气泡在床层内的上升速度,反映出流化床内的气固流动存在拟序结构。
另外,模拟得到了床内的气固流动速度,揭示出单孔射流流化床内存在强烈的颗粒返混和内循环现象。
并对颗粒参数改变对气泡特性的影响作了敏感性分析。
然后,在颗粒水平对流化床内的煤燃烧和传热特性进行了数值模拟,得到了床内的温度场、各燃烧组分的浓度场、颗粒升温曲线和四种颗粒传热量曲线,模拟表明了流化床内的气固流动和燃烧特性存在强烈的空间和时间非均匀性。
并对颗粒参数改变对燃烧与传热特性的影响作了敏感性分析。
最后对全文工作进行了总结和展望。
关键词:流化床气固两相流动离散单元法煤燃烧传热特性*本文受国家自然科学基金《循环流化床锅炉颗粒团燃烧行为研究》资助,项目批准号:5007615AbstractThe wide application of fluidized bed in industry made the hydrodynamic of dense gas-solid two-phase flow become an important research field of multiphase flow. A great deal of experiments and theoretical studies have been carried out all over the world. But due to the complicated effect factors and not yet clarifying the mechanism of two-phase flow, so the traditional experimental method is limited on certain extent. With the rapid development of computer technology, the computer numerical simulation of dense gas-solid two-phase flow has become an important research means.At present, the methods used to simulate dense gas-solid two-phase flow can be divided into two categories: Eulerian-Eulerian approach and Eulerian- Lagrangian discrete particles approach. In this paper, Eulerian-Lagrangian approach is used to establish a serial of models to simulate the gas-solid flow, heat transfer and coal combustion in fluidized bed at particle level. And a CFD-DEM numerical code has been developed.Firstly, the single spouted fluidized bed was simulated and acquired the pressure drop line. The height of solid bed, the generating frequency of bubble and the ascending velocity of bubble at different spouted gas velocity were also obtained. And the quasi-ordering structure in fluidized bed was observed. Besides, the distribution of gas and particle velocities was obtained. The velocity distribution indicated that there is phenomenon of intensive particle back-mixing and internal recycle. A sensitivity analysis was carried out on effects to bubble characteristics due to different particle parameters.Afterwards, the heat transfer and coal combustion properties in fluidized beds was simulated at particle level and obtained the distribution of gas temperature and gas species. The simulation indicated the intensive heterogeneity of the gas-solid flow and coal combustion in fluidized bed. The heating rate of particles and four different particle heat exchange modes were studied. And the sensitivity analysis was carried out on effects to combustion and heat transfer properties due to different particle parameters.Finally, the work of this paper and the further research were summarized. Keywords: fluidized bed gas-solid flow discrete element method coal combustion heat transfer characteristics独创性声明本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。