基于Multisim的相位鉴频电路的仿真分析
- 格式:doc
- 大小:1.16 MB
- 文档页数:15
Multisim 电路仿真Multisim 12.0提供了多种电路仿真引擎,包含Xspice、VHDL和Verilog等。
电路仿真分析的一般流程为:(1)设计仿真电路图;(2)设置分析参数;(3)设置输出变量的处理方式;(4)设置分析项目;(5)自定义分析选项开始/终止仿真分析,可以单击仿真运行开关按钮,或者执行主菜单的Simulate|Run命令。
暂停/继续仿真分析,可以单击仿真运行开关按钮,或者执行主菜单的Simulate|Pause命令。
1. Multisim 12.0的仿真参数设置在使用Multisim12.0进行仿真分析时,需要对各类仿真参数进行设置,包含仿真基本参数(仿真计算步长、时间、初始条件等)的设置;仿真分析参数(分析条件、分析范围、输出结点等)设置;仿真输出显示参数(数据格式、显示栅格、读数标尺等)设置。
1)仿真基本参数的设置仿真基本参数的设置,可以通过执行Simulate|Interactive Simulation Settings 命令,打开交互式仿真设置对话框,如图2-1所示,通过修改或者重设其中的参数,可以完成仿真基本参数的设置。
图3-1 仿真基本参数设置对话框2)仿真输出显示参数的设置仿真输出参数的设置,是通过执行View|Grapher命令,打开Grapher View 仿真图形记录器,对话框如图3-2所示。
图3-2 Grapher View仿真图形记录器2. Multisim 12.0的仿真分析Multisim12.0提供了多种仿真分析方法,如图3-3所示,主要包含:直流工作点分析(DC Operation Point Analysis),交流分析(AC Analysis),单频交流分析( Single Frequency AC Analysis),瞬态分析( Transient Analysis),傅立叶分析( Fourier Analysis),噪声分析(Noise Analysis),噪声系数分析( Noise Figure Analysis),失真分析( Distortion Analysis),直流扫描分析( DC Sweep Analysis),灵敏度分析( Sensitivity Analysis),参数扫描分析( Parameter Sweep Analysis),温度扫描分析(Temperature Sweep Analysis),极点-零点分析( Pole-Zero Analysis)),传递函数分析(Transfer Function Analysis),最坏情况分析( Worst case Analysis),蒙特卡罗分析(Monte Carlo Analysis),批处理分析(Batched Analysis)和用户自定义分析(User Defined Analysis)等。
基于Multisim的斜率鉴频器仿真摘要本文针对传统单回路斜率鉴频器存在容易失真,鉴频输出中有明显波纹的问题;本文通过改变LC并联谐振电路的谐振电阻,谐振频率,降低调频信号输入频率,实现了信号的良好鉴频,利用Multisim软件对斜率鉴频器进行实验仿真。
实验结果表明:本文方法可以有效地克服鉴频器失真的问题,得到了较好的鉴频效果。
关键词斜率鉴频器;失真;谐振电阻;谐振频率1 斜率鉴频原理鉴频器反映了输出信号幅度和输入信号频率的对应关系,常用的鉴频器主要四种,斜率鉴频器,相位鉴频器,脉冲计数式鉴频器和锁相环鉴频器。
相对于其它三种鉴频器,斜率鉴频器的电路比较简单,并且可以通过单回路或双回路谐振电路来控制鉴频失真,扩展鉴频器的线性鉴频范围。
单回路斜率鉴频的频率—幅度网络只有一个LC并联谐振回路,鉴频特性曲线并不是理想的线性关系,为了实现不失真鉴频,要求输入信号频率的变换范围尽量小,双回路斜率鉴频器由于两个对称的LC并联谐振回路,其鉴频曲线比单回路斜率鉴频器的线性要好,并且线性鉴频范围要大,但是双回路斜率鉴频器的鉴频特性不仅与两个LC并联谐振回路的谐振曲线有关,还与两个LC并联谐振回路的固有频率的配置有关,只有谐振回路的两个固有频率配置合适,双回路斜率鉴频器的鉴频特性曲线在中心频率附近才有较好的线性特性[1]。
斜率鉴频把幅度随频率的变化关系反映到调频—调幅信号中,将等幅的调频信号变换成幅度与频率成正比的信号,即将频率的变化转换到幅度上,然后通过包络检波器进行检波,完成解调功能[2]。
因为在线性解调范围内,解调信号电压与调频信号瞬时频率之间的比值和频幅转换网络特性曲线的斜率成正比,在斜率鉴频电路中,频幅转换网络通常采用LC并联回路或LC互感耦合回路,检波电路经常采用差分检波电路或二极管包络检波电路。
斜率鉴频器的实现模型如图1。
调频调幅信号解调输出调频信号包络检波器频率-幅度线性变换网络2 其他常用鉴频方法2.1 相位鉴频相位鉴频器由线性变换网络和相位检波器两部分组成,相位鉴频器又称鉴相器,其功能是检出两个输入信号之间的相位差,并将相位差的变化线性地转化成输出电压的变化[3]。
multisim仿真相位裕度
相位裕度(Phase Margin)是控制系统中一个重要的稳定性指标,用于评估反馈系统对于频率变化的敏感性。
在电路设计和仿真中,Multisim作为一款强大的电子电路设计与仿真软件,可以帮助工程师们分析和优化系统的相位裕度,确保系统的稳定性和可靠性。
在Multisim中进行相位裕度的仿真分析,通常涉及以下几个步骤:
电路搭建:首先,在Multisim中搭建待分析的电路模型。
这可以是一个简单的反馈电路,也可以是一个复杂的控制系统。
设置仿真参数:接下来,设置仿真的频率范围和其他相关参数。
这些参数的选择取决于电路的实际应用和工作环境。
运行仿真:在设置了仿真参数后,运行仿真以获取电路的频率响应数据。
Multisim会计算出电路在不同频率下的幅值增益和相位变化。
分析相位裕度:从仿真结果中提取相位信息,计算出相位裕度。
相位裕度通常定义为在增益为1(即0 dB)时,相位从-180°(即-π弧度)变化到0°所需的额外相位延迟。
相位裕度越大,系统对频率变化的敏感性越小,稳定性越高。
优化与调整:如果相位裕度不满足设计要求,可以通过调整电路参数或改变电路结构来优化相位裕度。
例如,增加滤波器、调整反馈网络等。
验证优化结果:在进行了优化调整后,重新运行仿真以验证优化效果。
确保相位裕度满足设计要求,并检查其他性能指标是否也有所改善。
通过以上步骤,可以在Multisim中有效地仿真和分析相位裕度,为电路设计和优化提供有力的支持。
相位裕度的仿真分析不仅有助于确保系统的稳定性,还可以帮助工程师们在实际应用中预测和避免潜在的问题。
Multisim模拟电路仿真实验电路仿真是电子工程领域中重要的实验方法,它通过计算机软件模拟电路的工作原理和性能,可以在电路设计阶段进行测试和验证。
其中,Multisim作为常用的电路设计与仿真工具,具有强大的功能和用户友好的界面,被广泛应用于电子工程教学和实践中。
本文将对Multisim模拟电路仿真实验进行探讨和介绍,包括电路仿真的基本原理、Multisim的使用方法以及实验设计与实施等方面。
通过本文的阅读,读者将能够了解到Multisim模拟电路仿真实验的基本概念和操作方法,掌握电路仿真实验的设计和实施技巧。
一、Multisim模拟电路仿真的基本原理Multisim模拟电路仿真实验基于电路分析和计算机仿真技术,通过建立电路模型和参数设置,使用数值计算方法求解电路的节点电压、电流以及功率等相关参数,从而模拟电路的工作情况。
Multisim模拟电路仿真的基本原理包括以下几个方面:1. 电路模型建立:首先,需要根据电路的实际连接和元件参数建立相应的电路模型。
Multisim提供了丰富的元件库和连接方式,可以通过简单的拖拽操作和参数设置来搭建电路模型。
2. 参数设置:在建立电路模型的基础上,需要为每个元件设置合适的参数值。
例如,电阻器的阻值、电容器的容值、电源的电压等。
这些参数值将直接影响到电路的仿真结果。
3. 仿真方法选择:Multisim提供了多种仿真方法,如直流分析、交流分析、暂态分析等。
根据不同的仿真目的和需求,选择适当的仿真方法来进行仿真计算。
4. 仿真结果分析:仿真计算完成后,Multisim会给出电路的仿真结果,包括节点电压、电流、功率等参数。
通过分析这些仿真结果,可以评估电路的性能和工作情况。
二、Multisim的使用方法Multisim作为一款功能强大的电路设计与仿真工具,具有直观的操作界面和丰富的功能模块,使得电路仿真实验变得简单而高效。
以下是Multisim的使用方法的基本流程:1. 新建电路文件:启动Multisim软件,点击“新建”按钮创建一个新的电路文件。
毕业设计题目:基于Multisim的相位鉴频电路的仿真分析学生姓名: **学生学号: *******系别:电气信息工程学院专业:通信工程届别: 2014届指导教师: **电气信息工程学院制2013年5月摘要鉴频是调频的逆过程,广泛采用的鉴频电路是相位鉴频器。
其鉴频原理是:先将调频波经过一个线性移相网络变换成调频调相波,然后再与原调频波一起加到一个相位检波器进行鉴频。
因此实现鉴频的核心部件是相位检波器。
相位检波又分为叠加型相位检波和乘积型相位检波,利用模拟乘法器的相乘原理可实现乘积型相位检波。
调频波的特点是振幅保持不变,而瞬时频率随调制信号的大小线形变化,调制信号代表所要传送的信息,我们在分析或实验时,常以低频正弦波为代表。
鉴频的目的就是从调频波中检出低频调制信号,即完成频率—电压的变换作用。
能完成这种作用的电路被称为鉴频器。
相位鉴频器是利用双耦合回路的相位-频率特性将调频波变成调幅调频波,通过振幅检波器实现鉴频的一种鉴频器。
它常用于频偏在几百KHz以下的调频无线接收设备中。
常用的相位鉴频器根据其耦合方式可分为互感耦合和电容耦合两种鉴频器。
调相波的解调电路,是从调相波中取出原调制信号,即输出电压与输入信号的瞬时相位偏移成正比,又称为鉴相器。
对于调频波的解调电路来说,是从调频波中取出原调制信号,即输出电压与输入信号的瞬时频率偏移成正比,又称为鉴频器。
与调幅接收机一样,调频接收机的组成也大多采用超外差式的。
在超外差式的调频接收机中,鉴频通常在中频频率上进行。
在调频信号的产生、传输和通过调频接收机前端电路的过程中,不可避免地引入干扰和噪声,它们对FM信号的影响,主要表现为调频信号出现了不希望有的寄生调幅和寄生调频。
要消除由寄生调幅所引起的鉴频器的输出噪声,通常在末级中放和鉴频器之间设置限幅器。
就功能而言,鉴频器是将输入调频波进行特定的波形变换,使变换后的波形包含反映瞬时频率变化的平均分量,然后通过低通滤波器取出所需解调电压。
1 绪论由于集成电路制造技术的发展日新月异,电子电路的设计日趋复杂。
为了能在设计电路实现之前,了解环境因素对电路的影响,我们可以利用电脑辅助软件进行电路模拟与分析设计,并进行输入与输出信号响应的验证,可以有效地节省产品开发的时间与成本。
因此,本文利用了multisim软件进行了电路仿真。
1.1 课题背景倒计时系统从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。
目前,倒计时系统的功能越来越强,且有多种专门的大规模集成电路可供选择。
学会制作倒计时系统,可以进一步的了解各种中小规模集成电路的作用并掌握实用方法和各种组合逻辑电路与时序电路的原理与使用方法。
1.2 Multisim软件的应用EDA技术是现代电子工业中不可缺少的一项技术,是电类专业学生就业的基本条件之一。
Multisim软件把实验过程涉及到的电路、仪器以及实验结果等一起展现在使用者面前,在使用过程中就像在实验室中进行,电路参数调整方便,绝不束缚思维想象和电路创新。
Multisim软件可以用于几乎包含电类专业的所有学科的仿真教学,例如:电工基础、电路、低频电路、高频电路、脉冲与数字电路、电视机电路、音响电路、电子测量电路、射频电路、机电电路、模拟电子技术课程设计、数字电路课程设计以及综合课程设计等。
Multisim软件仿真元器件多,大约一万六千多个,其中包含各种信号源库、基本元件库、晶体二极管库、晶体三极管库、运放库、TTL器件库、CMOS器件库、单元逻辑器件库及可编程逻辑器件库、数字模拟混合库、指示元件库、杂散元器件库、数学控制模型库、机电元件库。
仿真仪器仪表使用方便,约束条件少。
在仿真中步骤如下:①根据原理图放置元器件;②连接导线;③单击仿真开关进行仿真;④利用虚拟仪器仪表观察仿真结果[1]。
1.3 倒计时显示系统的应用倒计时显示系统的计时装置广泛用于大型活动场所,成为人们日常生活中不可缺少的显示设备。
其中倒计时数字系统分为两部分,一部分是实现时、分、秒计时的功能的作用,另外一部分是实现日期的倒计,起到倒计时显示功能的作用。
课程设计报告题目:基于Multisim的相位鉴频电路的仿真分析学生姓名: ** 学生学号: ******* 系别:电气信息工程学院专业:通信工程届别: 2014届指导教师: **电气信息工程学院制2013年5月摘要鉴频是调频的逆过程,广泛采用的鉴频电路是相位鉴频器。
其鉴频原理是:先将调频波经过一个线性移相网络变换成调频调相波,然后再与原调频波一起加到一个相位检波器进行鉴频。
因此实现鉴频的核心部件是相位检波器。
相位检波又分为叠加型相位检波和乘积型相位检波,利用模拟乘法器的相乘原理可实现乘积型相位检波。
调频波的特点是振幅保持不变,而瞬时频率随调制信号的大小线形变化,调制信号代表所要传送的信息,我们在分析或实验时,常以低频正弦波为代表。
鉴频的目的就是从调频波中检出低频调制信号,即完成频率—电压的变换作用。
能完成这种作用的电路被称为鉴频器。
相位鉴频器是利用双耦合回路的相位-频率特性将调频波变成调幅调频波,通过振幅检波器实现鉴频的一种鉴频器。
它常用于频偏在几百KHz以下的调频无线接收设备中。
常用的相位鉴频器根据其耦合方式可分为互感耦合和电容耦合两种鉴频器。
调相波的解调电路,是从调相波中取出原调制信号,即输出电压与输入信号的瞬时相位偏移成正比,又称为鉴相器。
对于调频波的解调电路来说,是从调频波中取出原调制信号,即输出电压与输入信号的瞬时频率偏移成正比,又称为鉴频器。
与调幅接收机一样,调频接收机的组成也大多采用超外差式的。
在超外差式的调频接收机中,鉴频通常在中频频率上进行。
在调频信号的产生、传输和通过调频接收机前端电路的过程中,不可避免地引入干扰和噪声,它们对FM信号的影响,主要表现为调频信号出现了不希望有的寄生调幅和寄生调频。
要消除由寄生调幅所引起的鉴频器的输出噪声,通常在末级中放和鉴频器之间设置限幅器。
就功能而言,鉴频器是将输入调频波进行特定的波形变换,使变换后的波形包含反映瞬时频率变化的平均分量,然后通过低通滤波器取出所需解调电压。
一、设计目的通过高频电子线路课程设计,使学生加强对高频电子技术电路的理解,学会查寻资料、方案比较,以及设计计算等环节。
进一步提高分析解决实际问题的能力,创造一个动脑动手、独立开展电路实验的机会,锻炼分析、解决高频电子电路问题的实际本领,真正实现由课本知识向实际能力的转化;通过典型电路的设计与制作,加深对基本原理的了解,增强学生的实践能力。
二、设计要求(1)载波频率:1MHz(2)调制信号:35kHz(3)电源电压:直流12V(4)内容和要求各单元电路如:输入回路、变频级、中放级、检波级、低放级、功率输出级。
和AGC电路的设计与参数的计算组成,掌握串、并联谐振回路级耦合回路的测量方法。
解调的基本原理,测试与测量的方法。
利用Multisim开发软件完成电路设计及仿真。
通过实际电路方案的分析比较,设计计算﹑元件选取﹑安装调试等环节,初步掌握简单实用电路的分析方法和工程设计方法。
掌握常用仪表的正确使用方法,学会简单电路的实验调试和指标的测试方法。
了解与课程有关的电子电路以及元器件工程技术规范,能按课程设计任务书的技术要求,编写设计说明,能正确反映设计和实验成果,能正确绘制电路图。
三、相位鉴频设计1、鉴频电路从调频波中"检出"原来调制信号的过程称为调频波的解调,又叫鉴频。
实现鉴频的电路称为鉴频器,也叫频率检波器。
鉴频器使输出电压和输入信号频率相对应的电路。
用于调频信号的解调,常见的有斜率鉴频器、相位鉴频器、比例鉴频器等,对这类电路的要求主要是非线性失真小,噪声门限低。
角调波的解调就是从角调波中恢复出原调制信号的过程。
相位检波器(鉴相器):调相波的解调电路称为相位检波器或鉴相器。
2、鉴频器的主要参数(1) 鉴频特性(曲线):是指鉴频器的输出电压u0与输入电压瞬时频率f 或频偏Δf 之间的关系曲线。
理想鉴频特性曲线应是一条直线,但实际上往往有弯曲,呈S 形,如下图所示。
(2)鉴频器的主要参数1)鉴频器的中心频率f0鉴频器的中心频率f0对应于鉴频特性曲线原点处的频率。
通常,由于鉴频器中心与中频频率相同。
2)鉴频带宽Bm鉴频带宽Bm:是指鉴频器能够不失真地解调所允许输入信号频率变化的最大范围。
3)鉴频器的线性度鉴频器的线性度:是指鉴频特性曲线在鉴频带宽内的线性特性。
4)鉴频跨导SD鉴频跨导SD :是指鉴频器在载频处的斜率,它表示单位频偏所能产生的解(a )(b )调输出电压。
鉴频跨导又叫做鉴频灵敏度。
用公式表示为:跨导也可以理解为将输入频率转换为输出电压的能力或效率,因此又称为鉴频效率3、鉴频方法(1) 直接鉴频法:是直接从调频信号的频率中提取原来调制信号的方法。
主要有脉冲计数鉴频法。
(2) 间接鉴频法:就是先对调频信号进行变换或处理,再从变换后的信号中提取原调制信 号的鉴频方法。
又可分为振幅鉴频法、相位鉴频法两大类。
4、二极管包络检波器的原理分析将调频、调幅波检波,解调出原调制信号的为二极管包络检波器,电路图如下图所示。
二极管包络检波器是利用二极管的单向导电性和检波器的负载L R C 的充放电过程实现检波,所以L R C 时间常数的选择很重要,L R C 时间常数过大会产生惰性失真;L R C 常数太小,高频分量会滤不干净。
综合考虑要求满足:amax 2a L 011M ΩM C R f -≤≤式中。
a m 为调制度,0f 为载波频率,max Ω为调制信号角频率的最大值。
coo D f f f du du S dfd f=∆===∆二极管包络检波电路此电路中检波器用于大信号状态,输入信号电压要大于0.5V ,通常在1V 左右。
检波过程就是信号源通过二极管给电容充电与电容对电阻R 放电的交替重复过程图中回路B 和C 的连接点与检波电容中点一起接地,由于接地点的改变,输出信号o U 从检波电阻的中点输出,此时o U 不再由两检波器输出电压之差决定,而由两检波器电流1I 和2I 之差决定,为了得到电流之差,所以图中把下面的二极管反接过来,这也为空载时构成了检波直流通路。
5、相位鉴频电路相位鉴频器将输入的调频波UFM 做变换,变换成调相调频波UPM/FM,在与调频波UFM 叠加,在电路参数与信号参数匹配的情况下,得到幅度与调制信号呈线性关系的调幅调相调频波,最后经包络检波,解调出调制信号。
鉴相器是用来比较两个同频输入电压U 1(t ) 和U 2(t) 的相位,而输出电压 U 0(t) 是两个输入电压相位差的函数, 即)]()([)(21t t f t u o ϕϕ-=鉴相器的实现方法: 乘积型鉴相器叠加型鉴相器互感耦合相位鉴频器电路图:电路结构和基本原理由二个部分组成:移相网络:互感为M 的初、次级双调谐耦合回路组成的移相网络。
FM 波U1经移相 网络生成FM-PM 波U2,并使|U1|=|U2|.另外,U1经耦合电容C0在扼流圈L3上产生的电压.U3=U1,平衡式鉴相器:上下检波器的输入端高频电压为:u d1=u 1+1/2u 2 u d2=u 1-1/2u 2 两个检波器的输出电压为 u o =u o1-u o2uo+-鉴频特性曲线四、鉴频电路的仿真1、Multisim 10仿真软件的介绍随着电子技术和计算机技术的发展,电子产品已与计算机紧密相连,电子产品的智能化日益完善,电路的集成度越来越高,而产品的更新周期却越来越短。
Multisim 10是加拿大 Interactive Image Technologies 公司 2001 年推出的 Multisim 最新版本。
可以设计、测试和演示各种电子电路,包括电工电路、模拟电路、数字电路、射频电路及部分微机接口电路等。
可以对被仿真的电路中的元器件设置各种故障,如开路、短路和不同程度的漏电等,从而观察不同故障o(f 0)∆ f (t )∆f (f )U ot(a )(b )f 0Uf(或2 )∆f f a ①②ff 0(c )tU o情况下的电路。
它有丰富的元件库,为用户提供元器件模型的扩充和技术;虚拟测试仪器仪表种类齐全,其操作方法与实际仪器十分相似;具有较为详细的电路分析功能,可以完成电路的瞬态分析和稳态分析、时域和频域分析、器件的线性和非线性分析、电路的噪声分析和失真分析、离散傅里叶分析、电路零极点分析、交直流灵敏度分析等 18 种电路分析方法,基本上能满足一般电子电路的分析设计的要求;提供了多种输入输出接口,Multisim2001 可以与国内外流行的印刷电路板设计自动化软件Protel及电路仿真软件Pspice之间的文件接口,也能通过Windows 电路图送往文字处理系统中进行编辑排版,同时还支持VHDL和Verilog HDL语言的电路仿真与设计。
Multisim 10 把所有的元件分成13类库,再加上放置分层模块、总线、登录网站共同组成元件工具栏。
Multisim 10提供了18种仪表,仪表工具栏通常位于电路窗口的右边,也可以用鼠标将其拖至菜单的下方,呈水平状。
Multisim 10具有以下特点:(1)Multisim 10是一个电路原理设计、电路功能测试的虚拟仿真软件。
其元器件库提供数千种电路元器件供实验选用,同时也可以新建或扩充已有的元器件库,而且建库所需的元器件参数可以从生产厂商的产品使用手册中查到,因此可以很方便地在工程设计中使用。
(2)Multisim 10 的虚拟测试仪器仪表种类齐全,有一般实验用的通用仪器,如万用表、信号发生器、双通道示波器、直流电源;还有一般实验室少有或没有的仪器,如波特图示仪、字信号发生器、逻辑分析仪、逻辑转换器、失真度测量仪、频谱分析仪和网络分析仪等。
(3) Multisim 10 具有较详细的电路分析功能,可以完成电路的瞬态和稳态分析、时域和频域分析、器件的线性和非线性分析、电路的噪声和失真分析、离散傅里叶分析、电路零极点分析、交直流灵敏度分析等,以帮助设计人员分析电路的性能。
(4) Multisim10.0可以设计、测试和演示各种电子电路,包括电工电路、模拟电路、数字电路、射频电路及部分微机接口电路等。
可以对被仿真的电路中的元器件设置各种故障,如开路、短路和不同程度的漏电等,从而观察不同故障情况下的电路工作状况。
在进行仿真的过程中还可以存储测试点的所有数据,列出被仿真电路的所有元器件清单,以及存储测试仪器的工作状态、显示波形和具体数据。
Multisim10是一个电路原理设计、电路功能测试的虚拟仿真软件。
它用软件的方法模拟电子线路元器件和仪器仪表,实现了“软件即元器件”和“软件即仪器”。
Multisim10是一个电路原理设计、电路功能测试的虚拟仿真软件,该软件为电子工程师提供了一个电路设计与仿真平台,不仅与国际著名的模拟电路仿真软件spice兼容,而且具有较强的 VHDL和 Verilog设计与仿真功能。