初中数学课堂设计PPT课件
- 格式:ppt
- 大小:284.00 KB
- 文档页数:29
人教版 数学 八年级 上册导入新知我们知道,因式分解与整式乘法是反方向的变形,我们学习了因式分解的两种方法:提取公因式法、运用平方差公式法.现在,大家自然会想,还有哪些乘法公式可以用来分解因式呢?素养目标3. 能综合运用提公因式、完全平方公式分解因式这两种方法进行求值和证明.2. 能较熟练地运用完全平方公式分解因式.1. 理解完全平方公式的特点.1.因式分解:把一个多项式转化为几个整式的积的形式.2.我们已经学过哪些因式分解的方法?提公因式法平方差公式a 2–b 2=(a+b )(a–b )用完全平方公式分解因式知识点3.完全平方公式(a ±b )2=a 2±2ab +b 2回顾旧知你能把下面4个图形拼成一个正方形并求出你拼成的图形的面积吗?同学们拼出图形为:a a b b a b a b ab a ²b ²ab这个大正方形的面积可以怎么求?a2+2ab+b2(a+b)2=ba²abab b²(a+b)2 a2+2ab+b2=将上面的等式倒过来看,能得到:a 2+2ab+b 2a 2–2ab+b 2我们把a ²+2ab+b ²和a ²–2ab+b ²这样的式子叫做完全平方式.观察这两个多项式:(1)每个多项式有几项?(3)中间项和第一项,第三项有什么关系?(2)每个多项式的第一项和第三项有什么特征?三项.这两项都是数或式的平方,并且符号相同.是第一项和第三项底数的积的±2倍.完全平方式的特点:1.必须是三项式(或可以看成三项的);2.有两个同号的数或式的平方;3.中间有两底数之积的±2倍.222b ab a +±完全平方式:简记口诀:首平方,尾平方,首尾两倍在中央.凡具备这些特点的三项式,就是完全平方式,将它写成完全平方形式,便实现了因式分解.2a b +b 2±=(a ± b )²a 2首2+尾2±2×首×尾(首±尾)2 两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.3.a ²+4ab +4b ²=( )²+2· ( ) ·( )+( )²=( )² 2.m ²–6m +9=( )² – 2· ( ) ·( )+( )² =( )² 1. x ²+4x +4= ( )² +2·( )·( )+( )² =( )²x 2x + 2 a a 2b a + 2b 2b 对照 a ²±2ab +b ²=(a ±b )²,填空:m m – 33x 2m 3试一试下列各式是不是完全平方式?(1)a 2–4a +4; (2)1+4a ²;(3)4b 2+4b –1; (4)a 2+ab +b2; (5)x 2+x +0.25.是只有两项;不是4b ²与–1的符号不统一;不是不是是ab 不是a 与b 的积的2倍.说一说例1 分解因式:(1)16x 2+24x+9; (2)–x 2+4xy –4y 2.分析:(1)中, 16x 2=(4x )2, 9=3²,24x =2·4x ·3,所以16x 2+24x +9是一个完全平方式,即16x 2 + 24x +9= (4x )2+2·4x ·3+ 32.(2)中首项有负号,一般先利用添括号法则,将其变形为–(x 2–4xy +4y 2),然后再利用公式分解因式.素养考点 1利用完全平方公式分解因式解: (1)16x 2+ 24x +9= (4x + 3)2;= (4x )2 + 2·4x ·3 + 32(2)–x 2+ 4xy –4y 2 =–(x 2–4xy +4y 2) =–(x –2y )2.把下列多项式因式分解.(1)x2–12xy+36y2; (2)16a4+24a2b2+9b4;解:(1)x2–12xy+36y2=x2–2·x·6y+(6y)2=(x–6y)2;(2)16a4+24a2b2+9b4=(4a2)2+2·4a2·3b2+(3b2)2 =(4a2+3b2)2;(3)–2xy–x2–y2; (4)4–12(x–y)+9(x–y)2.解:(3)–2xy–x2–y2= –(x2+2xy+y2)= –(x+y)2;(4)4–12(x–y)+9(x–y)2=22–2×2×3(x–y)+[3(x–y)]2 =[2–3(x–y)]2=(2–3x+3y)2.素养考点 2利用完全平方公式求字母的值B例2 如果x2–6x+N是一个完全平方式,那么N是( ) A . 11 B. 9 C. –11 D. –9解析:根据完全平方式的特征,中间项–6x=2x×(–3),故可知N=(–3)2=9.方法点拨本题要熟练掌握完全平方公式的结构特征,根据参数所在位置,结合公式,找出参数与已知项之间的数量关系,从而求出参数的值.计算过程中,要注意积的2倍的符号,避免漏解.如果x 2–mx +16是一个完全平方式,那么m 的值为________.解析:∵16=(±4)2,故–m =2×(±4),m =±8.±8巩固练习例3 把下列各式分解因式:(1)3ax 2+6axy +3ay 2 ; (2)(a +b )2–12(a +b )+36.解: (1)原式=3a (x 2+2xy +y 2) =3a (x +y )2;分析:(1)中有公因式3a ,应先提出公因式,再进一步分解因式;(2)中将a +b 看成一个整体,设a +b =m ,则原式化为m 2–12m +36. (2)原式=(a +b )2–2·(a+b ) ·6+62 =(a+b –6)2.素养考点 3利用完全平方公式进行较复杂的因式分解利用公式把某些具有特殊形式(如平方差式,完全平方式等)的多项式分解因式,这种分解因式的方法叫做公式法.因式分解:(1)–3a 2x 2+24a 2x –48a 2;(2)(a 2+4)2–16a 2.=(a 2+4+4a )(a 2+4–4a )解:(1)原式=–3a 2(x 2–8x +16)=–3a 2(x –4)2;(2)原式=(a 2+4)2–(4a )2=(a +2)2(a –2)2.有公因式要先提公因式.要检查每一个多项式的因式,看能否继续分解.巩固练习例4 把下列完全平方式分解因式: (1)1002–2×100×99+99²; (2)342+34×32+162. 解:(1)原式=(100–99)²(2)原式=(34+16)2本题利用完全平方公式分解因式,可以简化计算.=1.=2500.素养考点 4利用完全平方公式进行简便运算探究新知计算: 7652×17–2352 ×17.解:7652×17–2352 ×17=17 ×(7652 –2352)=17 ×(765+235)(765 –235) =17 ×1 000 ×530=9010000.巩固练习素养考点 5利用完全平方公式和非负性求字母的值例5 已知:a2+b2+2a–4b+5=0,求2a2+4b–3的值.提示:从已知条件可以看出,a2+b2+2a–4b+5与完全平方式有很大的相似性(颜色相同的项),因此可通过“凑”成完全平方式的方法,将已知条件转化成非负数之和等于0的形式,从而利用非负数的性质来求解.解:由已知可得(a 2+2a +1)+(b 2–4b +4)=0 即(a +1)2+(b –2)2=0 ∴ 2a 2+4b –3=2×(–1)2+4×2–3=71020a b +=⎧∴⎨-=⎩12a b =-⎧∴⎨=⎩方法总结:遇到多项式的值等于0、求另一个多项式的值,常常通过变形为完全平方公式和(非负数的和)的形式,然后利用非负数性质来解答.已知x 2–4x +y 2–10y +29=0,求x 2y 2+2xy +1的值.=112=121.解:∵x 2–4x +y 2–10y +29=0,∴(x –2)2+(y –5)2=0.∵(x –2)2≥0,(y –5)2≥0,∴x –2=0,y –5=0,∴x =2,y =5,∴x 2y 2+2xy +1=(xy +1)2 几个非负数的和为0,则这几个非负数都为0.巩固练习1. 因式分解:a 2–2ab +b 2= .2. 若a +b =2,ab =–3,则代数式a 3b +2a 2b 2+ab 3的值为 .解析:∵a +b =2,ab = –3,∴a 3b +2a 2b 2+ab 3=ab (a 2+2ab +b 2), =ab (a +b )2,= –3×4= –12.(a –b )2–12连接中考1.下列四个多项式中,能因式分解的是() A .a 2+1 B .a 2–6a +9C .x 2+5yD .x 2–5y 2.把多项式4x 2y –4xy 2–x 3分解因式的结果是( )A .4xy (x –y )–x 3B .–x (x –2y )2C .x (4xy –4y 2–x 2)D .–x (–4xy +4y 2+x 2)3.若m =2n +1,则m 2–4mn +4n 2的值是________.B B 14.若关于x 的多项式x 2–8x +m 2是完全平方式,则m 的值为_________ .±4基础巩固题5. 把下列多项式因式分解.(1)x2–12x+36; (2)4(2a+b)2–4(2a+b)+1;(3) y2+2y+1–x2;解:(1)原式=x2–2·x·6+62=(x–6)2;(2)原式=[2(2a+b)]² – 2·2(2a+b)·1+1²=(4a+2b– 1)2;(3)原式=(y+1)² –x²=(y+1+x)(y+1–x).2(20142013)=-1.=22(2014)220142013(2013)=-⨯⨯+(2)原式22(2)2014201440262013.-⨯+1.计算:(1) 38.92–2×38.9×48.9+48.92.解:(1)原式=(38.9–48.9)2=100.能力提升题2. 分解因式:(1)4x 2+4x +1;(2)小聪和小明的解答过程如下:他们做对了吗?若错误,请你帮忙纠正过来.x 2–2x +3.13(2)原式= (x 2–6x +9)= (x –3)21313解: (1)原式=(2x )2+2•2x •1+1=(2x +1)2小聪: 小明:××(1)已知a –b =3,求a (a –2b )+b 2的值;(2)已知ab =2,a +b =5,求a 3b +2a 2b 2+ab 3的值.原式=2×52=50.解:(1)原式=a 2–2ab +b 2=(a –b )2.当a –b =3时,原式=32=9.(2)原式=ab (a 2+2ab +b 2)=ab (a +b )2. 当ab =2,a +b =5时,拓广探索题课堂检测完全平方公式分解因式公式a 2±2ab +b 2=(a ±b )2特点(1)要求多项式有三项.(2)其中两项同号,且都可以写成某数或式的平方,另一项则是这两数或式的乘积的2倍,符号可正可负.课堂小结课后作业作业内容教材作业从课后习题中选取自主安排配套练习册练习谢谢观看 Thank You。
NEPQR12北师大版 数学 八年级 上册在同一平面内,两点之间,线段最短从行政楼A 点走到教学楼B 点怎样走最近?教学楼行政楼BA你能说出这样走的理由吗?导入新知素养目标3.培养学生的空间想象力,并增强数学知识的应用意识.2. 运用勾股定理及其逆定理解决简单的实际问题.1. 灵活会用勾股定理求解立体图形上两点之间的最短距离问题.以小组为单位,研究蚂蚁在圆柱体的A 点沿侧面爬行到B 点的问题.讨论 1.蚂蚁怎样沿圆柱体侧面从A 点爬行到B 点?2.有最短路径吗?若有,哪条最短?你是怎样找到的?BA我要从A 点沿侧面爬行到B 点,怎么爬呢?大家快帮我想想呀!知识点 1BAdABA'ABBAO想一想蚂蚁走哪一条路线最近?A'蚂蚁A→B的路线若已知圆柱体高为12 cm ,底面周长为18 cm ,则:BArO12侧面展开图1218÷2AB小结:立体图形中求两点间的最短距离,一般把立体图形展开成平面图形,连接两点,根据两点之间线段最短确定最短路线.A'A'AB 2=122+(18÷2)2 所以AB =15.例1 有一个圆柱形油罐,要以A 点环绕油罐建梯子,正好建在A 点的正上方点B 处,问梯子最短需多少米?(已知油罐的底面半径是2m ,高AB 是5m ,π取3)ABABA'B'解:油罐的展开图如图,则AB '为梯子的最短距离. 因为AA '=2×3×2=12, A 'B '=5m ,所以AB '=13m . 即梯子最短需13米.素养考点 1利用勾股定理解决圆柱体的最短路线问题数学思想:立体图形平面图形转化展开如图所示,一个圆柱体高20cm ,底面半径为5cm ,在圆柱体下底面的A 点处有一只蜘蛛,它想吃到上底面与A 点相对的B 点处的一只已被粘住的苍蝇,这只蜘蛛从A 点出发,沿着圆柱体的侧面爬到B 点,最短路程是多少?(π取3)变式训练解:如图所示,将圆柱侧面沿AC 剪开并展平,连接AB ,则AB 的长即为蜘蛛爬行的最短路程.根据题意得AC =20 cm ,BC =12×2×π×5=15(cm ).在△ABC 中,∠ACB =90°,由勾股定理得AB 2=BC 2+AC 2=152+202=252,所以AB =25 cm ,最短路程是25cm .B牛奶盒A例2 学习了最短问题,小明灵机一动,拿出了牛奶盒,把小蚂蚁放在了点A 处,并在点B 处放上了点儿火腿肠粒,你能帮小蚂蚁找到完成任务的最短路程吗?6cm8cm 10cm素养考点 2利用勾股定理解决长方体的最短路线问题长方体爬行路径A BFEH GA BCDE FGH前(后)上(下)A BCDE FGHB CGFE H A BCDE FGH右(左)上(下)前(后)右(左)B CAE F G分析BB 18AB 2610B 3AB 12=102 +(6+8)2=296AB 22= 82 +(10+6)2=320AB 32= 62 +(10+8)2=360因为360>320>296所以AB 1 最短.A B点A和点B分别是棱长为10cm的正方体盒子上相对的两点,一只蚂蚁在盒子表面由A处向B处爬行,所走最短路程的平方是多少?前上A BAB左上AB前右变式训练ABC解:如图所示在Rt△ABC中,利用勾股定理可得,AB2=AC2+BC2=20 2+102=500101010所以AB2=500.李叔叔想要检测雕塑底座正面的AD 边和BC 边是否分别垂直于底边AB ,但他随身只带了卷尺.(1)你能替他想办法完成任务吗?解:连接对角线AC ,只要分别量出AB 、BC 、AC 的长度即可.AB 2+BC 2=AC 2△ABC 为直角三角形知识点2(2)量得AD长是30cm,AB长是40 cm,BD长是50 cm. AD边垂直于AB边吗?解:AD2+AB2=302+402=502=BD2,得∠DAB=90°,AD边垂直于AB边.(3)若随身只有一个长度为20 cm的刻度尺,能有办法检验AD边是否垂直于AB边吗?解:在AD上取点M,使AM=9,在AB上取点N使AN=12,测量MN是否是15,是,就是垂直;不是,就是不垂直.例 如图,是一农民建房时挖地基的平面图,按标准应为长方形,他在挖完后测量了一下,发现AB =DC =8m ,AD =BC =6m ,AC =9m ,请你运用所学知识帮他检验一下挖的是否合格?解:因为AB =DC =8m ,AD =BC =6m , 所以AB 2+BC 2=82+62=64+36=100. 又因为AC 2=92=81,所以AB 2+BC 2≠AC 2,∠ABC ≠90°, 所以该农民挖的不合格.素养考点 1利用勾股定理的逆定理解答测量问题有一个高为1.5米,半径是1米的圆柱形油桶,在靠近边壁的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5米,问这根铁棒最长是多少米?解:图形可简化为左下图,设伸入油桶中的长度为 x 米,即AB =x 米,而AC =2米,BC =1.5米, 有x 2=1.52+22 ,x =2.5故,最长是2.5+0.5=3(米)答:这根铁棒的最长3米,最短2米.故,最短是1.5+0.5=2(米)当最短时:x =1.5ACB最短是多少米?变式训练巩固练习如图是一个滑梯示意图,若将滑道AC 水平放置,则刚好与AB 一样长.已知滑梯的高度CE=3m ,CD =1m ,试求滑道AC 的长.故滑道AC 的长度为5m .解:设滑道AC 的长度为x m ,则AB 的长也为x m ,AE 的长度为(x -1)m .在Rt △ACE 中,∠AEC =90°,由勾股定理得AE 2+CE 2=AC 2,即(x -1)2+32=x 2,解得x =5.例知识点 3探究新知甲、乙两位探险者到沙漠进行探险,某日早晨8:00甲先出发,他以6km/h 的速度向正东行走,1小时后乙出发,他以5km/h 的速度向正北行走.上午10:00,甲、乙两人相距多远?解:如图:已知A 是甲、乙的出发点,10:00甲到达B 点,乙到达C 点.则:AB =2×6=12(千米),AC =1×5=5(千米).在Rt △ABC 中,所以BC =13(千米)即甲乙两人相距13千米.BC 2=AC 2+AB 2 =52+122=169=132巩固练习解:连接BD .在Rt △ABD 中,由勾股定理得 BD 2=AB 2+AD 2,所以BD =5cm .又因为CD =12cm ,BC =13cm ,所以BC 2=CD 2+BD 2,所以△BDC 是直角三角形.所以S 四边形ABCD =S Rt △BCD -S Rt △ABD =12BD •CD -12AB •AD =12 ×(5×12-3×4)=24 (cm 2).CBA D 例 如图,四边形ABCD 中,AB ⊥AD ,已知AD =3cm ,AB =4cm ,CD =12cm ,BC =13cm ,求四边形ABCD 的面积.素养考点 1利用勾股定理的逆定理解答面积问题探究新知如图,在四边形ABCD 中,AC ⊥DC ,△ADC 的面积为30 cm 2,DC =12 cm ,AB =3cm ,BC =4cm ,求△ABC 的面积.解:因为S △ACD =30 cm 2,DC =12 cm. 所以AC =5 cm.又因为AB 2+BC 2=32+42=52=AC 2,所以△ABC 是直角三角形, ∠B 是直角. 所以D C BA 变式训练S △ACD =12CD •AC =12×12× AC =30( cm 2 )S △ABC =12AB •BC =12×3× 4=6( cm 2 )巩固练习如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为____cm(杯壁厚度不计).解析:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离, A′B=A′2+B2=162+122=故答案为20.2020(cm)连接中考基础巩固题1.五根小木棒,其长度分别为7,15,20,24,25,现将他D们摆成两个直角三角形,其中摆放方法正确的是( )A. B.C. D.2.如图是医院、公园和超市的平面示意图,超市在医院的南偏东25°的方向,且到医院的距离为300 m ,公园到医院的距离为400 m ,若公园到超市的距离为500 m ,则公园在医院的 ( )A.北偏东75°的方向上B.北偏东65°的方向上C.北偏东55°的方向上D.无法确定B 基础巩固题3.如图,某探险队的A 组由驻地O 点出发,以12km/h 的速度前进,同时,B 组也由驻地O 出发,以9km/h 的速度向另一个方向前进,2h 后同时停下来,这时A ,B 两组相距30km .此时,A ,B 两组行进的方向成直角吗?请说明理由.解:因为出发2小时,A 组行了12×2=24(km ), B 组行了9×2=18(km ),又因为A ,B 两组相距30km ,且有242+182=302,所以A ,B 两组行进的方向成直角.基础巩固题AO B4.在城市街路上速度不得超过70千米/时,一辆小汽车某一时刻行驶在路边车速检测仪的北偏东30°距离30米处,过了2秒后行驶了50米,此时小汽车与车速检测仪间的距离为40米. 问:2秒后小汽车在车速检测仪的哪个方向?这辆小汽车超速了吗?车速检测仪小汽车30米30°北60°解:小汽车在车速检测仪的南偏东60°方向或北偏西60°方向.25米/秒=90千米/时>70千米/时所以小汽车超速了.2秒后50米40米基础巩固题如图,四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.分析:连接AC,把四边形分成两个三角形.先用勾股定理求出AC的长度,再利用勾股定理的逆定理判断△ACD是直角三角形.A DB C341312能力提升题解:连接AC .在Rt △ABC 中,AC =A 2+B 2=32+42=5,在△ACD 中,AC 2+CD 2=52+122=169=AD 2,所以△ACD 是直角三角形,且∠ACD =90°.所以S 四边形ABCD =S Rt △ABC +S Rt △ACD =6+30=36.能力提升题A DBC341312如图,在△ABC中,AB:BC:CA=3:4:5且周长为36cm,点P从点A开始沿AB边向B点以每秒2cm的速度移动,点Q从点C沿CB边向点B以每秒1cm的速度移动,如果同时出发,则过3s时,求PQ的长.拓广探索题PC BAQ解:设AB 为3x cm ,BC 为4x cm ,AC 为5x cm ,因为周长为36cm ,即AB +BC +AC =36cm ,所以AB =9cm ,BC =12cm ,AC =15cm.因为AB 2+BC 2=AC 2,所以△ABC 是直角三角形,过3秒时,BP =9-3×2=3(cm ),BQ =12-1×3=9(cm ),在Rt △PBQ 中,由勾股定理得PQ =32+92=310 (cm ).拓广探索题所以3x +4x +5x =36,解得x =3.PC BAQ勾股定理及逆定理的应用应用最短路径问题方法认真审题,画出符合题意的图形,熟练运用勾股定理及其逆定理来解决问题解决不规则图形面积问题测量问题课堂小结作业内容教材作业从课后习题中选取自主安排配套练习册练习课后作业谢谢观看 Thank You。
北师大版 数学 八年级 上册同学们,在我们美丽的地球王国上,原始森林,参天古树带给我们神秘的遐想;绿树成荫,微风习习,给我们以美的享受.你知道吗?在古老的数学王国,有一种树木它很奇妙,生长速度大的惊人,它是什么呢?下面让我们带着这个疑问一同到数学王国去欣赏吧!A B勾股树导入新知素养目标3.学生初步运用勾股定理进行简单的计算和实际的应用.2.在探索过程中,学生经历了“观察-猜想-归纳”的教学过程,将形与数密切联系起来.1.通过数格子的方法探索勾股定理;学生理解勾股定理反映的是直角三角形三边之间的数量关系.在纸上画若干个直角边为整数的直角三角形,分别测量它们的三条边长,并填入下表.看看三边长的平方之间有怎样的关系?与同伴进行交流.知识点做一做abca 2,b 2,c 2之间关系问题1你能发现下图中三个正方形面积之间有怎样的关系?CAB图1(图中每个小方格代表一个单位面积)ABC(图中每个小方格代表一个单位面积)正方形A中含有个小方格,即A的面积是个单位面积.同理:正方形B的面积是个单位面积.999思考1用什么办法能求出图1中A,B的面积?数格子图1分割成若干个直角边为整数的三角形(单位面积)思考2 怎样求出C 的面积?ABC(图中每个小方格代表一个单位面积)图1S 正方形C = 4×12×3×3 =18练一练 通过对图1的学习,求出图2正方形A ,B ,C 中面积各是多少?ABC ABC(图中每个小方格代表一个单位面积)图 1图 2解:正方形A 的面积是4个单位面积,正方形B 的面积是4个单位面积,正方形C 的面积是8个单位面积.(1)观察图3、图4:(2)填表(每个小正方形的面积为单位1):A的面积B的面积C的面积图3图44 916 9?ABCCBA图3图4做一做(3)你是怎样得到正方形C的面积的?与同伴交流.图3ABCCBA图4“补”“割”“拼”分割为四个直角三角形和一个小正方形补成大正方形,用大正方形的面积减去四个直角三角形的面积将几个小块拼成一个正方形,如图中两块红色(或绿色)可拼成一个小正方形(4)分析填表数据AB CCBA图4图3A的面积B的面积C的面积图3图44 916 91325问题2通过以上观察分析,你能发现三个正方形A,B,C的面积之间有什么关系吗?S A + S B = S C结论:以直角三角形两直角边为边长的小正方形的面积的和, 等于以斜边为边长的正方形的面积.做一做如果直角三角形的两直角边分别为1.6个单位长度和2.4个单位长度,上面猜想的数2.4量关系还成立吗?说明你的理由. 1.6问题4你能发现直角三角形三边长度之间存在什么关系吗?a2+ b2= c2勾股定理如果直角三角形两直角边分别为a 、b ,斜边为c ,那么即 直角三角形两直角边的平方和等于斜边的平方.abc表示为:Rt △ABC 中,∠C =90°, 则a 2 + b 2 = c 2.在西方又称毕达哥拉斯定理a 2 +b 2 =c 2勾较短的直角边称为 ,股较长的直角边称为 ,直角三角形中弦斜边称为 .勾2 + 股2 = 弦2股勾弦在中国古代,人们把弯曲成直角的手臂的上半部分称为“勾”,下半部分称为“股”.趣味小常识2002年在北京召开了第24届国际数学家大会,它是最高水平的全球性数学科学学术会议,被誉为数学界的“奥运会”,这就是本届大会会徽的图案.素养考点 1利用勾股定理求直角三角形的边长方法点拨:已知直角三角形的两边求第三边,关键是先明确所求的边是直角边还是斜边,再应用勾股定理.例1 如果直角三角形两直角边长分别为 BC =5厘米,AC =12厘米,求斜边AB 的长度. ab c A C B 解:在Rt △ABC 中根据勾股定理,AC²+BC²=AB²,AC =12,BC =5所以12²+5²=AB²,所以AB ²=12²+5²=169,所以AB =13厘米.答:斜边AB 的长度为13厘米.变式训练求下列图形中未知边的长度:所以x =8.解:由勾股定理得:62+x 2=102 ,所以x 2=64,巩固练习1.寻求图形面积之间的关系素养考点 2利用勾股定理求面积问题方法点拨:以直角三角形三边为基础向外作正方形,等腰三角形或半圆,都能形成简单的勾股图,对于勾股图都有相同的结论,即S 1=S 2+S 3(S 1是以斜边为基础向外作的图形的面积,S 2和S 3分别是以直角边基础向外所作图形的面积.例2 如图,以Rt △ABC 的三边为边,分别向外作正方形,它们的面积分别为S 1、S 2、S 3,若S 1+S 2+S 3=16,则S 1的值为( )A .7B .8C .9D .10探究新知B例3 如图,在△ABC 中,AB =AC =13,BC =10,求△ABC 的面积.方法点拨:当题目中没有直角三角形时,常作垂线(或作高)构造直角三角形,然后利用勾股定理求得线段的长,进而求面积.2.求非直角三角形的面积解:作AD ⊥BC 于D ,在等腰△ABC 中,因为AB =AC =13,BC =10,所以BD =CD =5,所以AD 2=AB 2-BD 2 =132-52 =144,AD =12所以S △ABC =12 BC•AD = 12×10×12=60.探究新知如图,△ABC 中,∠ACB =90°,以它的各边为边向外作三个正方形,面积分别为S 1,S 2,S 3,已知S 1=6,S 2=8,则S 3= .14变式训练巩固练习连接中考1. 在直角三角形中,若勾为3,股为4,则弦为( )A.5 B.6 C.7 D.82.如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为 .3A基础巩固题ABC 1.判断题(1)△ABC 的两边AB =5,AC =12,则BC =13. ( )(2)△ABC 的a =6,b =8,则c =10. ( )2.在△ABC 中, ∠C =90°,AC =6,CB =8,则△ABC 面积为_____,斜边为上的高为______.⨯⨯24 4.8基础巩固题15 cm17 cm 64 cm²3.阴影部分是一个正方形,则此正方形的面积为 .基础巩固题4.求出图中直角三角形第三边的长度.4312xx 1517所以x =8 .解:由勾股定理得:152+x 2=172 ,所以x 2=64 ,所以x =13 .解:由勾股定理得:x 2= 32 +42+152 ,所以x 2=169 ,基础巩固题5.已知∠ACB =90°,CD ⊥AB ,AC =3,BC =4. 求CD 的长.AD BC 解:因为∠ACB =90°,AC =3,BC =4,所以AB 2=AC 2+BC 2=25,即AB =5.根据三角形面积公式, AC ×BC = AB ×CD.1212所以CD = .152能力提升题如图所示,直角三边形三边上的半圆面积从小到大依次记为S 1、S 2、S 3,则S 1、S 2、S 3的关系是( )A.S 1+S 2=S 3B. S 12+S 22=S 32C. S 1+S 2>S 3D. S 1+S 2<S3A拓广探索题如图,已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第2个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第3个等腰Rt△ADE,…,依此类推,则第2018个等腰直角三角形的(2)2018斜边长是___________.勾股定理的探索如果直角三角形两直角边长分别为a,b,斜边长为 c ,那么a2+b2=c2利用勾股定理进行计算课堂小结作业内容教材作业从课后习题中选取自主安排配套练习册练习课后作业谢谢观看 Thank You。
人教版 数学 八年级 上册问题:如图有一池塘.要测池塘两端A、B的距离,可无法直接到达,因此这两点的距离无法直接量出.你能想出办法来吗?导入新知ABCE D在平地上取一个可直接到达A 和B 的点C ,连接AC 并延长至D 使CD=CA 连接BC 并延长至E 使CE=CB 连结ED ,那么量出DE 的长,就是A 、B 的距离.为什么?导入新知3. 了解“SSA”不能作为两个三角形全等的条件.1. 探索并正确理解三角形全等的判定定理“SAS ”.2. 会用“SAS”判定定理证明两个三角形全等并能应用其解决实际问题.素养目标1.回顾三角形全等的判定方法 1三边对应相等的两个三角形全等(可以简写为“边边边”或“SSS”).在△ABC 和△ DEF 中∴ △ABC ≌△ DEF.(SSS )AB=DE ,BC=EF ,CA=FD ,2.符号语言表达:ABCDE F知识点 1三角形全等的判定——“边角边”定理当两个三角形满足六个条件中的3个时,有四种情况:三角×三边√两边一角 ?两角一边【思考】除了SSS 外,还有其他情况吗?能判定全等吗?已知一个三角形的两条边和一个角,那么这两条边与这一个角的位置上有几种可能性呢?AB CAB C“两边及夹角”“两边和其中一边的对角”它们能判定两个三角形全等吗?尺规作图画出一个△A′B′C′,使A′B′=AB ,A′C′=AC ,∠A′=∠A (即使两边和它们的夹角对应相等). 把画好的△A′B′C′剪下,放到△ABC 上,它们全等吗?ABC两边及其夹角能否判定两个三角形全等?做一做ABCA ′DEB ′C ′作法:(1)画∠DA'E=∠A ;(2)在射线A'D 上截取A'B'=AB,在射线A'E 上截取A'C'=AC ;(3)连接B'C '.思考:① △A′ B′ C′ 与 △ABC 全等吗?如何验证?②这两个三角形全等是满足哪三个条件?在△ABC 和△ DEF 中,∴ △ABC ≌△ DEF (SAS ).u 文字语言:两边和它们的夹角分别相等的两个三角形全等. (简写成“边角边”或“SAS ”). “边角边”判定方法u 几何语言:AB = DE ,∠A =∠D ,AC =AF ,ABCDEF必须是两边“夹角”例1 如果AB=CB ,∠ ABD= ∠ CBD ,那么 △ ABD 和△ CBD 全等吗?分析:△ ABD ≌△ CBD .边:角:边:AB=CB (已知),∠ABD= ∠CBD (已知),AB C D (SAS)BD=BD (公共边),证明:在△ABD 和△ CBD 中,AB=CB (已知),∠ABD= ∠CBD (已知),∴ △ ABD ≌△CBD ( SAS).BD=BD (公共边),利用“边角边”定理证明三角形全等探究新知素养考点 1已知:如图, AB=DB ,CB=EB ,∠1=∠2,求证:∠A=∠D .证明:∵ ∠1=∠2(已知), ∴∠1+∠DBC = ∠2+ ∠DBC (等式的性质),即∠ABC =∠DBE. 在△ABC 和△DBE 中, AB =DB (已知),∠ABC =∠DBE (已证), CB =EB (已知),∴△ABC ≌△DBE (SAS ).∴ ∠A=∠D (全等三角形的对应角相等).1A 2C B D E 巩固练习例2 如图,有一池塘,要测池塘两端A 、B 的距离,可先在平地上取一个可以直接到达A 和B 的点C ,连接AC 并延长到点D ,使CD =CA ,连接BC 并延长到点E ,使CE =CB .连接DE ,那么量出DE 的长就是A 、B 的距离,为什么?A C ·E DB 证明:在△ABC 和△DEC 中,∴△ABC ≌△DEC (SAS ).∴AB =DE .(全等三角形的对应边相等)AC = DC (已知),∠ACB =∠DCE (对顶角相等),CB=EC (已知),探究新知利用全等三角形测距离素养考点 2如图,两车从南北方向的路段AB 的A 端出发,分别向东、向西行进相同的距离,到达C ,D 两地.此时C ,D 到B 的距离相等吗?为什么?提示:相等.根据边角边定理,△BAD ≌△BAC ,∴BD = BC.巩固练习如图,把一长一短的两根木棍的一端固定在一起,摆出△ABC .固定住长木棍,转动短木棍,得到△ABD .这个实验说明了什么?B AC D △ABC 和△ABD 满足AB =AB ,AC =AD ,∠B=∠B ,但△ABC 与△ABD 不全等.SSA 能否判定两个三角形全等?想一想画△ABC 和△ABD ,使∠A =∠A =30°, AB =AB=5 cm ,BC =BD = 3 cm .观察所得的两个三角形是否全等?A BMCD有 两边和其中一边的对角分别相等的两个三角形不一定全等.结论画一画例3 下列条件中,不能证明△ABC ≌△DEF 的是( )A .AB =DE ,∠B =∠E ,BC =EFB .AB =DE ,∠A =∠D ,AC =DFC .BC =EF ,∠B =∠E ,AC =DFD .BC =EF ,∠C =∠F ,AC =DF解析:要判断能不能使△ABC ≌△DEF ,应看所给出的条件是不是两边和这两边的夹角,只有选项C 的条件不符合,故选C.C易错点拨:判断三角形全等时,注意两边与其中一边的对角相等的两个三角形不一定全等.只有两边及夹角对应相等时,才能判定三角形全等.素养考点 3三角形全等条件的识别如图,AB=CD,AB∥CD,E,F是BD上两点且BE =DF,则图中全等的三角形有 ( )A.1对B.2对C.3对D.4对C巩固练习1.如图,已知AB=AD ,AC=AE ,∠BAE=∠DAC . 求证:∠C=∠E .解:∵∠BAE=∠DAC ,∴∠BAE–∠CAE=∠DAC–∠CAE ,即∠BAC=∠DAE ,在△ABC 和△ADE 中,∵ ,∴△ABC ≌△ADE (SAS ),∴∠C=∠E .AB=AD ∠BAC=∠DAE AC=AE2.如图,已知线段AC ,BD 相交于点E ,AE=DE ,BE=CE .(1)求证:△ABE ≌△DCE ;(2)当AB =5时,求CD 的长.(1)证明:在△AEB 和△DEC 中,AE=DE ∠AEB=∠DEC BE=EC ,∴△AEB ≌△DEC (SAS ).(2)解:∵△AEB ≌△DEC ,∴AB=CD , ∵AB =5, ∴CD=5.1.在下列图中找出全等三角形进行连线.Ⅰر30º8 c m9c m Ⅵر30º8c m 8 c mⅣⅣ8 c m5 cmⅡ30ºر8c m5 c mⅤ30º8c m ر5 c mⅧ8 c m5c mر30º8c m9 cmⅦⅢر30º8c m 8 c mⅢ基础巩固题2.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则需要增D加的条件是( )A.∠A=∠DB.∠E=∠CC.∠A=∠CD.∠ABD=∠EBC证明:∵AC 平分∠BAD ,∴∠BAC =∠DAC ,在△ABC 和△ADC 中, ∴△ABC ≌△ADC (SAS ).AD=AB ∠BAC=∠DAC AC=AC (已知),(公共边),(已证),3.如图,已知AC平分∠BAD , AB=AD . 求证:△ABC ≌△ADC .已知:如图,AB=AC , BD=CD ,E 为AD 上一点.求证: BE=CE .证明:∴ ∠BAD=∠CAD ,在△ABD 和△ACD 中,AB=AC BD=CD AD=AD (已知),(公共边),(已知),∴ BE =CE .在△ABE 和△ACE 中,AB=AC ∠BAD=∠CAD AE =AE (已知),(公共边),(已证),∴△ABD ≌△ACD (SSS ).∴△ABE ≌△ACE (SAS ).能力提升题AB C D E如图,已知CA=CB , AD=BD , M ,N 分别是CA ,CB 的中点,求证:DM=DN .在△ABD 与△CBD 中证明:CA=CB , (已知)AD=BD , (已知)CD=CD ,(公共边)∴△ACD ≌△BCD (SSS )连接CD ,如图所示;∴∠A=∠B 又∵M ,N 分别是CA ,CB 的中点,∴ AM=BN拓广探索题在△AMD 与△BND 中AM=BN ,(已证)∠A=∠B ,(已证)AD=BD ,(已知)∴△AMD ≌△BND.(SAS )∴DM =DN.边角边内容有两边及夹角对应相等的两个三角形全等(简写成 “SAS”)应用为证明线段和角相等提供了新的证法注意1.已知两边,必须找“夹角”2.已知一角和这角的一夹边,必须找这角的另一夹边课堂小结课后作业作业内容教材作业从课后习题中选取自主安排配套练习册练习谢谢观看 Thank You。
人教版 数学 七年级 上册1.什么叫单项式?2.单项式的系数是,次数是.3. 2a 和3b 都是单项式,那2a +3b 又是什么呢?235ab c -35-4知识回顾导入新知素养目标3. 会用整式解决简单的实际问题.2. 会用整式表示简单的数量关系,并根据整式中字母的值求多项式的值.1. 理解多项式、多项式的项和次数、整式的概念.1. 温度由t ℃下降5℃后是℃;2. 买一个篮球需要x 元,买一个排球需要y 元,买一个足球需要z 元,买3个篮球、5个排球、2个足球共需要 元.(3x +5y +2z )(t -5)列式表示下列数量知识点多项式的有关概念3x +5y +2z x 2+2x +18t -5212ab r -π下列各式是单项式吗?这些式子有什么共同特点?与单项式有什么关系?21π2ab r -单项式单项式+上述几个式子都是两个或者多个单项式相加的形式.每一个单项式都包含其前边的符号.探究:1. 几个单项式的和叫做多项式.2. 在多项式中,每个单项式叫做多项式的项.3. 不含字母的项叫做常数项.4. 多项式里次数最高项的次数就是多项式的次数.5. 单项式与多项式统称为整式.3358x x ++例如:常数项次数项叫做三次三项式1.多项式x 2+y -z 是单项式___,___,___的和,它是___次___项式. 2.多项式3m 3-2m -5+m 2 的常数项是____,二次项是_____,一次项的系数是_____.x 2y -z 二三-5m 2﹣2做一做1.多项式的各项应包括它前面的符号.3.要确定一个多项式的次数,先要确定此多项式中各项(单项式)的次数,然后找次数最高的.4.一个多项式的最高次项可以不唯一.23331x y xy x 4-++-2.多项式没有系数的概念,但其每一项均有系数,每一项的系数也包括前面的符号.归纳总结例1 下列整式中哪些是多项式?是多项式的指出其项和次数:4222232341,,1,,32,,273331,2.m n a b x y x t x y xy x x y π+-+-+--+解:+-221x y -++-234331x y xy x 2x y+,,-221x y 2343,,3,,1x y xy x --2x y ,142素养考点 1多项式有关概念的识别一个多项式的次数是3,则这个多项式的各项次数() A .都等于3 B. 都小于3C.都不小于3D.都不大于3D巩固练习例2 已知-5x m +104x m +1-4x m y 2是关于x 、y 的六次多项式,求m 的值,并写出该多项式.解:由题意得m +2=6,所以m =4.归纳总结:解题的关键是弄清多项式次数是多项式中次数最高的项的次数. 然后根据题意,列出方程,求出m 的值.分析:该多项式最高次项为-4x m y 2,其次数为m +2,故m +2=6.所以该多项式为-5x 4+104x 5-4x 4y 2.素养考点 2利用多项式的有关概念确定字母的值探究新知若关于x 的多项式-5x 3-mx 2+(n -1)x -1不含二次项和一次项,求m 、n 的值.分析:多项式不含哪一项,则哪一项的系数为0.解:由题意得m =0,n -1=0,所以n =1.把m ,n 当作已知常数看待,属于系数部分。
人教版 数学 八年级 上册导入新知为了把校园建设成为花园式的学校,经研究决定将原有的长为a米,宽为b米的足球场向宿舍楼方向加长m米,向厕所方向加宽n米,扩建成为美化校园绿草地.你是学校的小主人,你能帮助学校计算出扩展后绿地的面积吗?a mbn2. 能够运用多项式与多项式的乘法运算法则进行计算.1. 理解并掌握多项式与多项式的乘法运算法则.素养目标1.如何进行单项式与多项式乘法的运算?(2)再把所得的积相加.(1)将单项式分别乘以多项式的各项.2.进行单项式与多项式乘法运算时,要注意什么?(1)不能漏乘:即单项式要乘多项式的每一项.(2)去括号时注意符号的变化.知识点多项式乘多项式的法则回顾旧知某地区在退耕还林期间,有一块原长m米,宽为a米的长方形林区,若长增加了n米,宽增加了b米,请你计算这块林区现在的面积.ambnma na mb nb a m b n 你能用不同的形式表示所拼图的面积吗?这块林区现在长为(m+n )米,宽为(a+b )米.(m+n )(a+b )m (a+b )+n (a+b )ma+mb+na+nb 方法一:方法二:方法三:由于(m+n)(a+b)和(ma+mb+na+nb)表示同一块地的面积,故有:(m+n)(a+b)=ma+ mb+ na+ nb如何进行多项式与多项式相乘的运算?(m+n)X=mX+nX若X=a+b,如何计算?实际上,把(a+b)看成一个整体,有:(m+n)(a+b)= m(a+b)+n(a+b)= ma+mb+na+nb多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.1234(a +b )(m +n )=a m 1234+a n +b m +b n u “多乘多” 顺口溜:多乘多,来计算,多项式各项都见面,乘后结果要相加,化简、排列才算完.多项式乘以多项式例1 计算:(1)(3x+1)(x+2);(2)(x–8y)(x–y);解: (1) 原式=3x·x+2·3x+1·x+1×2 =3x2+6x+x+2(2) 原式=x·x–xy–8xy+8y2结果中有同类项的要合并同类项.=3x2+7x+2;计算时要注意符号问题.=x2–9xy+8y2;素养考点 1用多项式乘以多项式法则进行计算(3) 原式=x ·x 2–x·xy +xy 2+x 2y –xy 2+y ·y 2 =x 3–x 2y +xy 2+x 2y –xy2+y 3 = x 3+y 3.漏乘;(2)符号问题;(3)最后结果应化成最简形式.计算时不能漏乘.(3) (x +y )(x 2–xy +y 2).快速训练:(1) (2x +1)(x +3); (2) (m +2n )(m +3n ): (3) ( a – 1)2 ; (4) (a +3b )(a –3b ). (5) (x +2)(x +3); (6) (x –4)(x +1)(7) (y+4)(y –2); (8) (y –5)(y –3)a 2–9b 2巩固练习2x 2+7x +3m 2+5mn +6n 2a 2–2a +1x 2+5x +6x 2–3x –4y 2+2y –8y 2–8y +15探究新知素养考点 2用多项式乘以多项式法则进行化简求值例2 先化简,再求值:(a–2b)(a2+2ab+4b2)–a(a–5b)(a+3b),其中a=–1,b=1.解:原式=a3–8b3–(a2–5ab)(a+3b)=a3–8b3–a3–3a2b+5a2b+15ab2=–8b3+2a2b+15ab2.当a=–1,b=1时,原式=–8+2–15=–21.先化简,再求值.(x –y )(x –2y ) – (2x –3y )(x +2y ),其中 .x = –2,y =−12解:(x –y )(x –2y ) – (2x –3y )(x +2y )=x 2–2xy –xy +2y 2–(2x 2+4xy –3xy –6y 2)=x 2–2xy –xy +2y 2–2x 2–xy +6y 2= –x 2–4xy +8y 2当x = –2,y = 时, 原式= –6−12巩固练习例3 已知ax 2+bx +1(a ≠0)与3x –2的积不含x 2项,也不含x 项,求系数a 、b 的值.解:(ax 2+bx +1)(3x –2)=3ax 3–2ax 2+3bx 2–2bx +3x –2,∵积不含x 2的项,也不含x 的项,230,230,a b b -+=⎧⎨-+=⎩∴9,43.2∴a b ⎧=⎪⎪⎨⎪=⎪⎩探究新知方法总结:解决此类问题首先要利用多项式乘法法则计算出展开式,合并同类项后,再根据不含某一项,可得这一项系数等于零,再列出方程(组)解答.选择题.(1)计算m 2–(m +1)(m –5)的结果正确的是( )A.–4m –5B.4m +5C.m 2–4m +5D.m 2+4m –5(2)(1+x )(2x 2+ax +1)的结果中x 2项的系数为–2,则a 的值为( )A.–2B.1C.–4D.以上都不对B C巩固练习1. 计算(a–2)(a+3)的结果是( )BA.a2–6 B.a2+a–6 C.a2+6 D.a2–a+62. 在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD–AB=2时,S2–S1的值为( )A.2a B.2b C.2a–2b D.–2bB2. 如果(x +a )(x +b )的结果中不含x 的一次项,那么a 、b 满足( )A .a =b B .a =0 C .a =–b D .b =0C1. 计算(x –1)(x –2)的结果为( ) A .x 2+3x –2 B .x 2–3x –2C .x 2+3x +2D .x 2–3x +2 D基础巩固题3. 已知ab =a +b +1,则(a –1)(b –1)=_____.221(23)(2)(1);x x x ----()4. 判别下列解法是否正确,若不正确,请说出理由.解:原式2246(1)(1)x x x x =-+---22246(21)x x x x =-+--+2224621x x x x =-+-+-225;x x =-+3x -漏乘22(23)(2)(1);x x x ----()解:原式)1(6342222--+--=x x x x 167222+-+-=x x x 277.x x =-+(1)(1)x x --2(21)x x --+运算法则混淆5. 计算:(1)(x −3y )(x +7y ); (2)(2x + 5y )(3x −2y ).解: (1) (x−3y )(x+7y )+7xy −3yx −=x 2 +4xy–21y 2; 21y 2(2) (2x +5 y )(3x −2y )==x 22x •3x −2x • 2y +5 y • 3x −5y •2y =6x 2−4xy + 15xy −10y 2=6x 2 +11xy−10y 2.6.化简求值:(4x +3y )(4x –3y )+(2x +y )(3x –5y ),其中x =1,y = –2.解:原式=2222161212961035x xy xy y x xy xy y -+-+-+-2222714x xy y=--当x =1,y = –2时,原式=22×1–7×1×(–2)–14×(–2)2=22+14 –56=–20.能力提升题解方程与不等式:①(x–3)(x–2)+18=(x+9)(x+1);②(3x+6)(3x–6)<9(x–2)(x+3).解:①原式去括号,得:x2–5x+6+18=x2+10x+9,移项合并,得:15x=15,解得:x=1;②原式去括号,得:9x2–36<9x2+9x–54,移项合并,得:9x>18,解得:x>2.小东找来一张挂历画包数学课本.已知课本长a厘米,宽b厘米,厚c厘米,小东想将课本封面与封底的每一边都包进去m厘米,那么小东应在挂历画上裁下一块多大面积的长方形?八年级(上)姓名:____________数学cba拓广探索题abc m b m面积:(2m +2b +c )(2m +a )解:(2m+2b+c)(2m+a)= 4m2+2ma+4bm+2ab+2cm+ca.答:小东应在挂历画上裁下一块(4m2+2ma+4bm+2ab+2cm+ca)平方厘米的长方形.多项式乘多项式运算法则多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.(a+b)(m+n)=am+an+bm+bn注意不要漏乘;正确确定各项符号;结果要最简.实质上是转化为单项式乘多项式的运算.(x–1)2在一般情况下不等于x2–12.课堂小结课后作业作业内容教材作业从课后习题中选取自主安排配套练习册练习谢谢观看 Thank You。
人教版 数学 八年级 上册1.幂的运算性质有哪几条?同底数幂的乘法法则:a m ·a n =a m+n ( m 、n 都是正整数).幂的乘方法则:(a m )n =a mn ( m 、n 都是正整数).积的乘方法则:(ab )n =a n b n ( m 、n 都是正整数).2.计算:(1)x 2 · x 3 · x 4= ; (2)(x 3)6= ; (3)(–2a 4b 2)3= ;(4) (a 2)3 · a 4= ;(5) .x 9x 18–8a 12b 6a 105553--=35⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ 1导入新知回顾旧知1. 掌握单项式与单项式、单项式与多项式相乘的运算法则.2. 能够灵活地进行单项式与单项式、单项式与多项式相乘的运算.素养目标知识点1单项式与单项式相乘光的速度约是3×105km/s,太阳光照射到地球上需要的时间大约是5×102s,你知道地球与太阳的距离约是多少吗?地球与太阳的距离约是(3×105)×(5×102)km.(3×105)×(5×102)=(3×5)×(105×102)=15×107.乘法交换律、结合律 同底数幂的乘法这样书写规范吗?不规范,应为1.5×108. 怎样计算(3×105)×(5 ×102)?计算过程中用到了哪些运算律及运算性质?想一想如果将上式中的数字改为字母,比如ac5 ·bc2,怎样计算这个式子?ac5 · bc2 =(a ·b) ·(c5·c2) (乘法交换律、结合律) =abc5+2(同底数幂的乘法)=abc7.根据以上计算,想一想如何计算单项式乘以单项式?单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.单项式与单项式的乘法法则例1 计算:(1)(–5a 2b )(–3a ); (2)(2x )3(–5xy 2).解:(1) (–5a 2b )(–3a )= [(–5)×(–3)](a 2•a )b= 15a 3b ;(2) (2x )3(–5xy 2) =8x 3(–5xy 2) =[8×(–5)](x 3•x )y 2 = –40x 4y 2.单项式与单项式相乘有理数的乘法与同底数幂的乘法乘法交换律和结合律转化单项式相乘的结果仍是单项式.素养考点 1单项式乘以单项式法则的应用方法点拨1. 在计算时,应先确定积的符号,积的系数等于各因式系数的积;2. 注意按顺序运算;3. 不要漏掉只在一个单项式里含有的字母因式;4. 此性质对三个及以上单项式相乘仍然适用.下面各题的计算结果对不对?如果不对,应当怎样改正?(1)3a 3 ·2a 2=6a 6 ( ) 改正: .(2) 2x 2 ·3x 2=6x 4 ( )改正: .(3)3x 2 ·4x 2=12x 2 ( ) 改正: .(4) 5y 3·3y 5=15y 15 ( ) 改正: .3a 3 ·2a 2=6a 5 3x 2 ·4x 2=12x 4 5y 3·3y 5=15y 8 ×××巩固练习计算:(1) 3x 2 ·5x 3 ; (2)4y ·(–2xy 2); (3) (–3x )2 ·4x 2 ; (4)(–2a )3(–3a )2.解:(1)原式=(3×5)(x 2·x 3)=15x 5; (2)原式=[4×(–2)](y·y 2) ·x = –8xy 3; (3) 原式=9x 2·4x 2 =(9×4)(x 2·x 2)=36x 4; (4)原式= –8a 3·9a 2 =[(–8)×9](a 3·a 2)= –72a 5单独因式x 别漏乘、漏写有乘方运算,先算乘方,再算单项式相乘.巩固练习例2 已知–2x 3m +1y 2n 与7x n –6y –3–m 的积与x 4y 是同类项,求m 2+n 的值.解:∵–2x 3m +1y 2n 与7x n –6y –3–m 的积与x 4y 是同类项,231,3164,--=⎧∴⎨++-=⎩n m m n ∴m 2+n =7.解得:3,2,n m =⎧⎨=⎩方法总结:单项式乘以单项式就是把它们的系数和同底数幂分别相乘,结合同类项的定义,列出二元一次方程组求出参数的值,然后代入求值即可.素养考点 2利用单项式乘法的法则求字母的值探究新知942132)2()(41yx xy y x n m ⋅=⋅+解得:∴m 、n 的值分别是m =1,n =2.已知 求 的值.,942132)2()(41y x xy y x n m ⋅=⋅+n m 、解:9422322y x y x n m m ⋅=+++2322249144m m n x y x y x y +⋅=⋅224,3229.m m n +=⎧∴⎨++=⎩1,2.m n =⎧⎨=⎩巩固练习单项式与多项式相乘如图,试求出三块草坪的总面积是多少?如果把它看成三个小长方形,那么它们的面积可分别表示为_____、_____、_____. p p abpcpa pc pb 知识点 2p p abpccbap如果把它看成一个大长方形,那么它的长为________,面积可表示为_________.p (a+b+c )(a+b+c )如果把它看成三个小长方形,那么它们的面积可分别表示为_____、_____、_____.如果把它看成一个大长方形,那么它的面积可表示为_________.cbappa pc pb p (a+b+c )pa+pb+pcp (a+b+c )pa+pb+pcp (a+b+c )p (a + b+ c )p b +p c p a +根据乘法的分配律单项式与多项式相乘,就是用单项式乘多项式的每一项,再把所得的积相加.1. 依据是乘法分配律.2. 积的项数与多项式的项数相同.注意Pbp apc单项式乘以多项式的法则例1 计算:(1)(–4x )·(2x 2+3x –1); 解:(1)(–4x )·(2x 2+3x –1)==–8x 3–12x 2+4x ;(–4x )·(2x 2)(–4x )·3x (–4x )·(–1)++22122.32()⎛⎫-⋅ ⎪⎝⎭ab ab ab 2211(2)322ab ab ab ab =⋅+-⋅(2)原式23221.3a b a b =-单项式与多项式相乘单项式与单项式相乘乘法分配律转化素养考点 1利用单项式乘以多项式的法则进行运算方法总结:1.用单项式去乘多项式的每一项,结果是一个多项式,项数与因式中多项式的项数相同.2.含有混合运算的应注意运算顺序,有同类项必须合并同类项,从而得到最简结果.①②③下列各题的解法是否正确,如果错了,指出错在什么地方,并改正过来.()--a b ab c a b ⎛⎫⨯= ⎪⎝⎭223311242()--a b ab c a b=2233313()----a a a a a a+=+22432321363×a b c 3312×-a b a b c 23333--a a a+432363×漏了单独字母漏乘1符号没有变化巩固练习例2 先化简,再求值:3a (2a 2–4a +3)–2a 2(3a +4), 其中a =–2.当a =–2时,解:3a (2a 2–4a +3)–2a 2(3a +4)=6a 3–12a 2+9a –6a 3–8a 2=–20a 2+9a .原式=–20×(–2)2+9×(–2) = –20×4–9×2 =–98.方法总结:按运算法则进行化简,然后代入求值,特别注意的是代入“负数”要用括号括起来.素养考点 2单项式乘以多项式的化简求值问题探究新知先化简再求值:()().-+--+-=x x x x x x x x 223211525,其中4324325x x x x x x x-+-+-+=x 125,当时511255⨯=5x=巩固练习解:原式=原式=例3 如果(–3x )2(x 2–2nx +2)的展开式中不含x 3项,求n 的值.方法总结:在整式乘法的混合运算中,要注意运算顺序.注意当要求多项式中不含有哪一项时,则表示这一项的系数为0.解:(–3x )2(x 2–2nx +2)=9x 2(x 2–2nx +2)=9x 4–18nx 3+18x 2.∵展开式中不含x 3项,∴n =0.素养考点 3单项式乘以多项式的化简求字母的值探究新知如果(x +a )x –2(x +a )的结果中不含x 项,那么a 的值为( ) A.2 B.–2 C.0.5 D.–0.5解析:(x +a )x –2(x +a )=x 2+ax –2x –2a =x 2+(a –2)x–2a ∵ x 2+(a –2)x –2a 中不含x 项, ∴ a –2=0,即a =2.A巩固练习1. 计算:(2a )•(ab )=( )A .2ab B .2a 2b C .3abD .3a 2b2. 计算:x •(–2x 2)3= .B –4x 7连接中考1.计算 3a 2·2a 3的结果是( )A.5a 5B.6a 5C.5a 6D.6a 6 2.计算(–9a 2b 3)·8ab 2的结果是( )A.–72a 2b 5B.72a 2b 5C.–72a 3b 5D.72a 3b 53.若(a m b n )·(a 2b )=a 5b 3 那么m +n =( )A.8 B.7 C.6 D.5B C D 基础巩固题(1)4(a –b +1)=___________________;4a –4b +4(2)3x (2x –y 2)=___________________;6x 2–3xy 2(3)(2x –5y +6z )(–3x ) =___________________;–6x 2+15xy –18xz (4)(–2a 2)2(–a –2b +c )=___________________.–4a 5–8a 4b +4a 4c 4.计算:5. 计算:–2x2·(xy+y2)–5x(x2y–xy2).解:原式=( –2x2) ·xy+(–2x2) ·y2+(–5x) ·x2y+(–5x) ·(–xy2) = –2x3y+(–2x2y2)+(–5x3y)+5x2y2= –7x3 y+3x2y2.6. 解方程:8x(5–x)=34–2x(4x–3).解:原式去括号,得:40x–8x2=34–8x2+6x,移项,得: 40x–6x=34,合并同类项,得:34x=34,解得:x=1.住宅用地人民广场商业用地3a3a +2b2a–b4a如图,一块长方形地用来建造住宅、广场、商厦,求这块地的面积.解:4a [(3a +2b )+(2a –b )] =4a (5a +b ) =4a ·5a +4a·b = 20a 2+4ab .答:这块地的面积为20a 2+4ab .能力提升题课堂检测拓广探索题某同学在计算一个多项式乘以–3x2时,算成了加上–3x2,得到的答案是x2–2x+1,那么正确的计算结果是多少?解:设这个多项式为A,则A+(–3x2)=x2–2x+1,∴A=4x2–2x+1.∴A·(–3x2)=(4x2–2x+1)(–3x2)=–12x4+6x3–3x2.单项式与单项式、多项式相乘单项式乘单项式实质上是转化为同底数幂的运算单项式乘多项式实质上是转化为单项式×单项式四点注意(1)计算时,要注意符号问题,多项式中每一项都包括它前面的符号,单项式分别与多项式的每一项相乘时,同号相乘得正,异号相乘得负(2)不要出现漏乘现象(3)运算要有顺序:先乘方,再乘除,最后加减(4)对于混合运算,注意最后应合并同类项课堂小结课后作业作业内容教材作业从课后习题中选取自主安排配套练习册练习谢谢观看 Thank You。