第七讲卡方检验和方差分析
- 格式:ppt
- 大小:455.00 KB
- 文档页数:26
方差分析简述方差分析也是统计检验的一种。
由英国著名统计学家:R.A.FISHER推导出来的,也叫F检验。
190240290340分组正常钙组中剂量钙(1.0%)高剂量钙(1.5%)1X 2X 3X X(2) 计算检验统计量可根据表7-5的公式来计算出离均差平方和、自由度、均方和F值。
从已知正态总体N(10,52)进行随机抽样,共抽取了k=10组样本,每组样本的样本含量n i=20,可算出各组的均数和标准差,得表7-7的结果。
如果采用t检验作两两比较,其比较次数为(1)10(101)45 222k k km⎛⎫--====⎪⎝⎭从理论上讲10个样本均来自同一正态总体N(10,52),应当无差异,但我们用两样本t检验时,已经规定犯第一类错误的概率不超过α=0.05,本次实验实际犯第一类错误的频率为5/45≈0.11,显然比所要控制的0.05要大。
因此不能直接用前面学过的两样本t检验对多样本均数作两两比较,而应采用专用的两两比较的方法。
(2) 计算检验统计量首先将三个样本均数由大到小排列,并编组次:, =11()2A B A B A B X X A BX X X X q S MS n n νν---==+误差误差(3) 确定值并作出推断结论自由度ν误差和对比组内包含组数a查附表4的q界值表得q界值,将算得的q值与相应q界值进行比较得各组的p值。
(3) 确定P值并作出推断结论自由度ν误差和实验组数 (不含对照组)查附表5.2的Dunnett –t(q, )界值表,得q,临界值,用计算得到的q,与临界值进行比较,得P值 。
(2) 计算检验统计量=11()A B A B A B X X A BX X X X t S MS n n νν---==+误差误差。
第十三章 2χ检验与方差分析我们前面已经比较系统地讨论了双样本的参数和非参数检验的问题。
现在,我们希望利用一般的方法来检验三个以上样本的差异,2χ检验法和方差分析法就是解决这方面问题的。
2χ检验法可以对拟合优度和独立性等进行检验,方差分析法则可以对多个总体均值是否相等进行检验。
后者由于通过各组样本资料之间的方差和组内方差的比较来建立服从F分布的检验统计量,所以又称F 检验。
第一节 拟合优度检验1.问题的导出第十一章最后一节,我们将累计频数检验用于经验分布与理论分布的比较,实际已经提供了拟合优度检验的一种方法。
2χ拟合优度检验与累计频数拟合优度检验相对应,在评估从经验上得到的频数和在一组特定的理论假设下期望得到的频数之间是否存在显著差异时,是一种更普遍的检验方法。
2.拟合优度检验(比率拟合检验)据经验分布来检验总体分布等于理论分布的零假设,检验统计量是2o χ=频数理论理论频数观察频数∑-/)(2 理论证明,当n 足够大时,该统计量服从2χ分布。
因此对给定的显著性水平α,将临界值2αχ与2o χ比较,可以就H o 作出检验结论。
对于拟合优度检验,在试验规模小时,否定零假设的意义大,接受零假设的意义不大;若试验规模大时,则接受零假设的意义大,否定零假设的意义不大。
3.正态拟合检验第二节 无关联性检验2χ检验的另一个重要应用是对交互分类资料的独立性检验,即列联表检验。
由于列联表一般是按品质标志把两个变量的频数进行交互分类的,所以,①2χ检验法用于对交互分类资料的独立性检验,有其它方法无法比拟的优点;②如何求得列联表中的理论频数就成了独立性检验的关键。
1.独立性、理论频数及自由度检验统计量 2oχ=∑-e e o f f f 2)(=∑∑==-c i r j eij eij oij f f f 112)( 进一步上式可变为 2o χ=-∑∑==c i r j eij oij f f 112n在使用2χ检验法进行列联表检验之前,还必须确定与2o χ这个检验统计量相联系的自由度,即 (r ×c -1)-(r -1)-(c -1)=(c -1)(r -1)。
统计学三大检验方法一、前言在数据分析中,我们经常需要对样本数据进行检验以判断其是否符合某些假设或推断。
统计学三大检验方法包括t检验、方差分析和卡方检验,是数据分析中常用的方法之一。
二、t检验1.概述t检验是一种用于比较两个样本均值是否显著不同的方法。
它可以用于两个样本的独立样本t检验和配对样本t检验。
2.独立样本t检验独立样本t检验适用于两个不相关的样本。
它的基本思想是通过比较两个组别的平均值来判断它们是否有显著性差异。
具体步骤如下:(1)建立假设:假设两个组别的总体均值相等;(2)确定显著性水平:通常选择0.05作为显著性水平;(3)计算统计量:根据公式计算出t值;(4)查找临界值:根据自由度和显著性水平查找临界值;(5)作出结论:比较计算得到的t值与临界值,如果计算得到的t值小于临界值,则接受原假设,否则拒绝原假设。
3.配对样本t检验配对样本t检验适用于两个相关的样本。
它的基本思想是比较两个组别的差异是否显著。
具体步骤如下:(1)建立假设:假设两个组别的总体均值相等;(2)确定显著性水平:通常选择0.05作为显著性水平;(3)计算统计量:根据公式计算出t值;(4)查找临界值:根据自由度和显著性水平查找临界值;(5)作出结论:比较计算得到的t值与临界值,如果计算得到的t值小于临界值,则接受原假设,否则拒绝原假设。
三、方差分析1.概述方差分析是一种用于比较三个或以上样本均值是否显著不同的方法。
它可以用于单因素方差分析和双因素方差分析。
2.单因素方差分析单因素方差分析适用于只有一个自变量的情况。
它的基本思想是通过比较各组之间的离散程度来判断它们是否有显著性差异。
具体步骤如下:(1)建立假设:假设各组的总体均值相等;(2)确定显著性水平:通常选择0.05作为显著性水平;(3)计算统计量:根据公式计算出F值;(4)查找临界值:根据自由度和显著性水平查找临界值;(5)作出结论:比较计算得到的F值与临界值,如果计算得到的F值大于临界值,则拒绝原假设,否则接受原假设。
几种常见的显著性检验方法显著性检验是统计学中常用的一种方法,用于判断样本数据是否由一个总体生成,或者判断两个或多个样本数据是否来自同一个总体。
它的主要目的是通过计算样本数据之间的差异,并基于概率理论判断这些差异是否由随机因素引起,从而得出结论。
下面将介绍几种常见的显著性检验方法:1.t检验:t检验是一种常用的参数检验方法,用于判断两个样本均值是否有显著差异。
当总体的方差未知时,可以使用独立样本t检验;当总体的方差已知时,可以使用配对样本t检验。
2.方差分析:方差分析是一种用于比较两个或多个样本均值是否有显著差异的方法。
它通过比较组间变异与组内变异来判断均值的差异是否有统计学意义。
常用的方差分析方法包括单因素方差分析和多因素方差分析。
3.卡方检验:卡方检验是一种用于比较观察值与期望值之间的差异是否有显著性的非参数检验方法。
它适用于分类数据的分析,常用于分析两个或多个分类变量之间的关联性。
4.相关分析:相关分析是一种用于衡量两个变量之间相关关系的方法,常用于测量变量之间的线性相关性。
通过计算相关系数来判断两个变量是否存在显著的相关关系。
5.回归分析:回归分析是一种用于研究自变量与因变量之间关系的方法。
通过拟合回归模型并进行参数估计,可以判断自变量对因变量的影响是否显著。
除了上述几种常见的显著性检验方法外,还有其他一些方法,如非参数检验方法(如Wilcoxon秩和检验和Mann-Whitney U检验)、生存分析中的log-rank检验等。
在实际应用中,应根据具体问题选择适当的检验方法,并进行合理的假设设置和数据分析,以得出准确的结论。
卫生统计学第七章卡方检验一、题型:A1题号:1本题分数:2四格表资料两样本率比较的χ2检验,正确的一项为A.χ2值为两样本率比较中u值B.P<α前提下,χ2值越大,越有理由拒绝H0C.χ2值大小与样本含量无关D.每个格子的理论频数与实际频数的差值相等E.χ2检验只能进行单侧检验正确答案:B答案解析:根据专业知识确定四格表资料两样本率比较的χ2检验采用单侧检验或是双侧检验,(也可使用四格表专用公式),可以证明四格表计算得出的χ2值与正态近似法两率比较中u值的平方相等,其大小与样本含量有关,且每个格子的理论频数与实际频数的差的绝对值相等,P<α前提下,自由度一定时,χ2值越大,P值越小,越有理由拒绝H0,故答案为B。
做答人数:0做对人数:0所占比例:0题号:2本题分数:2下列能用χ2检验的是A.成组设计的两样本均数的比较B.配对设计差值的比较C.多个样本频率的比较D.单个样本均数的比较E.多个样本均数的比较正确答案:C答案解析:χ2检验可用于率或构成比比较的假设检验中,不适宜于均数的比较。
做答人数:0做对人数:0所占比例:0题号:3本题分数:2行×列表的自由度是A.行数-1B.列数-1C.行数×列数D.(行数-1)×(列数-1)E.样本含量-1正确答案:D答案解析:行×列表中,行的自由度=行数-1,列的自由度=列数-1,行×列二维表资料的χ2统计量所对应的自由度=(行数-1)×(列数-1)。
做答人数:0做对人数:0所占比例:0题号:4本题分数:2四个百分率做比较,有一个理论数小于5,其他都大于5,则A.只能做校正χ2检验B.不能做χ2检验C.直接采用行×列表χ2检验D.必须先做合理的合并E.只能做秩和检验正确答案:C答案解析:四个百分率做比较,资料可整理为4×2的行×列表,多个率比较的行×列表资料不适宜采用秩和检验,当满足行×列表资料χ2检验的应用条件(理论频数T<5的格子数不超过总格子数的1/5)时,可进行χ2检验,否则,可增大样本含量,或进行合理的合并或删除,使资料满足应用条件后进行χ2检验,还可直接采用Fisher精确概率检验。
SPSS:T检验、方差分析、非参检验、卡方检验的使用要求和适用场景一、T检验1.1 样本均值比较T检验的使用前提1.正态性;(单样本、独立样本、配对样本T检验都需要)2.连续变量;(单样本、独立样本、配对样本T检验都需要)3.独立性;(独立样本T检验要求)4.方差齐性;(独立样本T检验要求)1.2 样本均值比较T检验的适用场景1.单样本T检验(比较样本均数和总体均数);2.操作:打开分析—比较均值—单样本t检验要求:正态性(可以用K-S检验法,在SPSS中的“分析”–“非参数检验”—“单样本”中;或者直接根据直方图、P-P图,Q-Q图来观察或根据偏度峰度法来分析)说明:由中心极限定理可知,即使原数据不符合正态分布,只要样本量足够大时样本均数分布仍然是正态的。
只要数据不是强烈的偏正态,没有明显的极端值,一般而言单样本t检验都是可以使用的,分析结果都是稳定的。
3.独立样本T检验(比较成组设计的两个样本);4.操作:打开分析—比较均值—独立样本t检验5.我们输入数据的时候,两个样本的数据是要在一列变量里的,另外还有一列二分类变量为这列因变量做标注。
要求:独立性、正态性(对正态性有耐受性)、方差齐性(影响大,检验更有必要,使用Levene’s检验,两样本T检验中提供Levene’s检验,如需更详细的检验结果可在“分析”–“描述统计”–“探索”中进行)说明:各样本相互独立,且均来自于正态分布的样本,各样本所在总体的方差相等;* 疑问:独立性怎么检验?有些数据可以根据现实环境判断;*6.配对样本T检验(如用药前和用药后的两个人群的样本、同一样品用两种方法的比较)7.操作:打开分析—比较均值—配对样本t检验要求:正态性(配对样本等价于单样本T检验,检验的是两个样本对应的差值,初始假设为差值等于0)二、单因素方差分析2.1 单因素方差分析的基本思想•基本思想:变异分解,总变异=随机变异+处理因素导致的变异,又可以分解为总变异=组内变异+组间变异,F=组间变异/组内变异,F 的值越大,处理因素的影响越大。
简述卡方检验的功能-回复卡方检验的功能是用于检验两个或多个分类变量之间是否存在显著性关联。
它基于观察到的数据,计算实际观测频数与期望频数之间的差异,并根据这些差异来评估变量之间的关系是否是由于随机因素导致的。
卡方检验可以用于以下几个方面:1. 方差分析:卡方检验可用于比较两个或多个条件下的均数是否存在差异。
例如,可以使用卡方检验来比较不同年龄组之间是否存在偏好某种产品的差异。
2. 相关性分析:卡方检验可以用于确定两个分类变量之间是否存在相关性。
例如,在市场调研中,我们可以使用卡方检验来确定产品优惠与购买意愿之间是否存在关联。
3. 独立性分析:卡方检验可以用来确定两个分类变量之间是否是相互独立的。
例如,在医学研究中,我们可以使用卡方检验来确定吸烟与患癌症之间是否相互独立。
4. 拟合优度检验:卡方检验可以用来判断观测频数与期望频数之间是否存在显著差异。
例如,在市场调研中,我们可以使用卡方检验来判断实际销售数量与预测销售数量之间是否存在差异。
卡方检验的基本步骤如下:1. 建立假设:- 零假设(H0):各组之间没有显著性差异,变量之间无关。
- 备择假设(H1):各组之间存在显著性差异,变量之间有关。
2. 计算期望频数:- 根据总体频数和各组的比例计算期望频数。
3. 计算卡方值:- 使用实际观察频数与期望频数之间的差异计算卡方值。
4. 查表或计算P值:- 查找卡方分布表,根据卡方值和自由度计算P值,或使用统计软件计算P值。
5. 判断结果:- 如果P值小于设定的显著性水平(通常为0.05),则拒绝零假设,认为存在显著差异。
- 如果P值大于设定的显著性水平,则接受零假设,认为没有显著差异。
需要注意的是,卡方检验有一些假设和限制:- 观测频数应当满足每个单元格中的期望频数大于5,否则卡方检验的结果可能不准确。
- 卡方检验只能检验两个或多个分类变量之间的关系,不能用于连续变量之间的比较。
- 卡方检验假设各组之间独立,不适用于序列数据或重复测量数据。