半导体物理学刘恩科第七版课后习题解第1章习题解
- 格式:doc
- 大小:810.50 KB
- 文档页数:6
第一章习题1.设晶格常数为a的一维晶格,导带极小值附近能量Ec(k和价带极大值附近能量EV(k分别为:Ec=(1)禁带宽度;(2)导带底电子有效质量;(3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化解:(1)2. 晶格常数为0.25nm的一维晶格,当外加102V/m,107 V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:得补充题1分别计算Si(100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si在(100),(110)和(111)面上的原子分布如图1所示:(a)(100晶面(b)(110晶面(c)(111晶面补充题2一维晶体的电子能带可写为,式中a为晶格常数,试求(1)布里渊区边界;(2)能带宽度;(3)电子在波矢k状态时的速度;(4)能带底部电子的有效质量;(5)能带顶部空穴的有效质量解:(1)由得(n=0,1,2…)进一步分析,E(k)有极大值,时,E(k)有极小值所以布里渊区边界为(2能带宽度为(3)电子在波矢k状态的速度(4)电子的有效质量能带底部所以(5能带顶部,且,所以能带顶部空穴的有效质量半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
(2)理想半导体是纯净不含杂质的,实际半导体含有若干杂质。
(3)理想半导体的晶格结构是完整的,实际半导体中存在点缺陷,线缺陷和面缺陷等。
2. 以As掺入Ge中为例,说明什么是施主杂质、施主杂质电离过程和n型半导体。
As有5个价电子,其中的四个价电子与周围的四个Ge原子形成共价键,还剩余一个电子,同时As原子所在处也多余一个正电荷,称为正离子中心,所以,一个As 原子取代一个Ge原子,其效果是形成一个正电中心和一个多余的电子.多余的电子束缚在正电中心,但这种束缚很弱,很小的能量就可使电子摆脱束缚,成为在晶格中导电的自由电子,而As原子形成一个不能移动的正电中心。
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+0m 。
试求:为电子惯性质量,nm a ak 314.0,1==(1)禁带宽度;(2)导带底电子有效质量;(3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2.晶格常数为0.25nm 的一维晶格,当外加102V/m,107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:tk hqE f ∆∆==得qEk t -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面(b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (,式中a 为晶格常数,试求(1)布里渊区边界;(2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*pm 解:(1)由0)(=dk k dE 得an k π=(n=0,±1,±2…)进一步分析an k π)12(+=,E(k)有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)ma k E MAX =(ank π2=时,E(k)有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-((3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部an k π2=所以mm n 2*=(5)能带顶部an k π)12(+=,且**n p m m -=,所以能带顶部空穴的有效质量32*m m p =半导体物理第2章习题1.实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
第一章习题1.设晶格常数为a的一维晶格,导带极小值附近能量Ec(k和价带极大值附近能量EV(k分别为:Ec=(1)禁带宽度;(2)导带底电子有效质量;(3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化解:(1)2. 晶格常数为0.25nm的一维晶格,当外加102V/m,107 V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:得补充题1分别计算Si(100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si在(100),(110)和(111)面上的原子分布如图1所示:(a)(100晶面(b)(110晶面(c)(111晶面补充题2一维晶体的电子能带可写为,式中a为晶格常数,试求(1)布里渊区边界;(2)能带宽度;(3)电子在波矢k状态时的速度;(4)能带底部电子的有效质量;(5)能带顶部空穴的有效质量解:(1)由得(n=0,1,2…)进一步分析,E(k)有极大值,时,E(k)有极小值所以布里渊区边界为(2能带宽度为(3)电子在波矢k状态的速度(4)电子的有效质量能带底部所以(5能带顶部,且,所以能带顶部空穴的有效质量半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
(2)理想半导体是纯净不含杂质的,实际半导体含有若干杂质。
(3)理想半导体的晶格结构是完整的,实际半导体中存在点缺陷,线缺陷和面缺陷等。
2. 以As掺入Ge中为例,说明什么是施主杂质、施主杂质电离过程和n型半导体。
As有5个价电子,其中的四个价电子与周围的四个Ge原子形成共价键,还剩余一个电子,同时As原子所在处也多余一个正电荷,称为正离子中心,所以,一个As 原子取代一个Ge原子,其效果是形成一个正电中心和一个多余的电子.多余的电子束缚在正电中心,但这种束缚很弱,很小的能量就可使电子摆脱束缚,成为在晶格中导电的自由电子,而As原子形成一个不能移动的正电中心。
半导体物理学第一章习题(公式要正确显示,请安装字体MTextra)1.设晶格常数为a的一维晶格,导带极小值附近能量E c(k)和价带极大值附近能量E V(k)分别为:........................................................................................1...2.晶格常数为0.25nm的一维晶格,当外加102V/m,107V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
...............................................3.1.设晶格常数为a的一维晶格,导带极小值附近能量E c(k)和价带极大值附近能量E V(k)分别为:Ec2222223k(k k)k11,E(k)V3mm6m0002km2m为电子惯性质量,k1,a0.314nm。
试求:a(1)禁带宽度;(2)导带底电子有效质量;(3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化1解:10k 1=109a0.31410(1) 导带:由dE C dk 2 2 k 3m0 2 2 (k mk)1 0得: k3 4 k12 dE 2c 又因为: dk2 2 3m 0 2 2 m 0 2 8 3m0 所以:在 k 3 4 k 处,Ec 取极小值Ec 122 k 14m0 (1.054 1049.110 1031 10 ) 2 3.05 * 10 17J 价带:dEV dk6 2 km 00 得 k0 又因为 2 dE V 2 dk2 6 m0 0, 所以 k 0 处, E 取极大值 V E(k V ) 22k 1 6m 0因此: E g E C ( 3 4 k) 1 E(0) V 22 k 1 4m 0 22 k 1 6m 0 22 k 1 12m 0 (1.054 12 34 10 9.108 10 10 31 10 ) 2 1.02 * 10 17 J *(2)m nC d2 3 2E 8C m 0dk 2 k 34 k 1*(3)mnV d 2 2 EV m 0 62 dkk0 (4)pk准动量的定义:所以:p(k) k 3 4 k 1 ( k) k 0 3 4 k 1 0 3 4 6.625 2 1034 0.314109 3 41.541034 10 107.95 10 25 N /s 23.晶格常数为0.25nm的一维晶格,当外加102V/m,107V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
半导体物理学 刘恩科第七版习题答案---------课后习题解答一些有错误的地方经过了改正和修订!第一章 半导体中的电子状态1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:220122021202236)(,)(3Ec m k m k k E m k k m k V0m 。
试求:为电子惯性质量,nm a ak 314.0,1(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:10911010314.0=ak (1)J m k m k m k E k E E m k k E E k m dk E d k m kdk dE J m k Ec k k m m m dk E d k k m k k m k dk dE V C g V V V V c C 17312103402120122021210122022202173121034021210202022210120210*02.110108.912)1010054.1(1264)0()43(6)(0,0600610*05.310108.94)1010054.1(4Ec 43038232430)(232因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nCs N k k k p k p m dk E d mk k k k V nV/1095.71010054.14310314.0210625.643043)()()4(6)3(251034934104300222*11所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:tkqE f得qE k ts a t s a t 137192821993421911028.810106.1)0(1028.810106.11025.0210625.610106.1)0(第二章 半导体中杂质和缺陷能级7. 锑化铟的禁带宽度Eg=0.18eV ,相对介电常数 r =17,电子的有效质量*n m =0.015m 0, m 0为电子的惯性质量,求①施主杂质的电离能,②施主的弱束缚电子基态轨道半径。
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:tkhqE f ∆∆== 得qE k t -∆=∆sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX=( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-==能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =第二章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
第一章习题1.设晶格常数为a的一维晶格,导带极小值附近能量Ec(k和价带极大值附近能量EV(k分别为:Ec=〔1〕禁带宽度;〔2〕导带底电子有效质量;〔3〕价带顶电子有效质量;〔4〕价带顶电子跃迁到导带底时准动量的变化解:〔1〕2. 晶格常数为0.25nm的一维晶格,当外加102V/m,107 V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:得补充题1分别计算Si〔100〕,〔110〕,〔111〕面每平方厘米内的原子个数,即原子面密度〔提示:先画出各晶面内原子的位置和分布图〕Si在〔100〕,〔110〕和〔111〕面上的原子分布如图1所示:〔a〕(100晶面〔b〕(110晶面〔c〕(111晶面补充题2一维晶体的电子能带可写为,式中a为晶格常数,试求〔1〕布里渊区边界;〔2〕能带宽度;〔3〕电子在波矢k状态时的速度;〔4〕能带底部电子的有效质量;〔5〕能带顶部空穴的有效质量解:〔1〕由得〔n=0,1,2…〕进一步分析,E〔k〕有极大值,时,E〔k〕有极小值所以布里渊区边界为(2能带宽度为(3〕电子在波矢k状态的速度〔4〕电子的有效质量能带底部所以(5能带顶部,且,所以能带顶部空穴的有效质量半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:〔1〕理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
〔2〕理想半导体是纯洁不含杂质的,实际半导体含有假设干杂质。
〔3〕理想半导体的晶格结构是完整的,实际半导体中存在点缺陷,线缺陷和面缺陷等。
2. 以As掺入Ge中为例,说明什么是施主杂质、施主杂质电离过程和n型半导体。
As有5个价电子,其中的四个价电子与周围的四个Ge原子形成共价键,还剩余一个电子,同时As原子所在处也多余一个正电荷,称为正离子中心,所以,一个As 原子取代一个Ge原子,其效果是形成一个正电中心和一个多余的电子.多余的电子束缚在正电中心,但这种束缚很弱,很小的能量就可使电子摆脱束缚,成为在晶格中导电的自由电子,而As原子形成一个不能移动的正电中心。
第一章1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:t k hqE f ∆∆== 得qEkt -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX =( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =第二章1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E C (K )=0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dkE d mk k k k VnV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:tkhqE f ∆∆== 得qE k t -∆=∆sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dkk dE 得 a n k π=(n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX=( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-==能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E C (K )=0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC=== sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:tkhqE f ∆∆== 得qE k t -∆=∆sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a)(100)晶面(b)(110)晶面(c)(111)晶面214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cmatomaaacmatomaaacmatomaa⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-=(, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π=(n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,222)mak E MAX=( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()mak E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-==能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E C (K )=0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:tkhqE f ∆∆== 得qE k t -∆=∆sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,222)mak E MAX=( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-==能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E C (K )=022012202122236)(,)(3m kh m k h k E m k kh m kh V 0m 。
试求:为电子惯性质量,nm a ak 314.0,1(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化解:(1)eVm k E k E E E km dkE d k m kdk dE Ec k k m m m dk E d k k m k k m kV C gV V V c64.012)0()43(0,06006433823243)(23202121022202222221122因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dkE d mk k C nCsN k k k pk p m dkE d mkk k k V nV/1095.7043)()()4(6)3(2514300222*11所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:tk hqEf得qEk tsat sat 137192821911027.810106.1)0(1027.810106.1)0(补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面(b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka kamak E (,式中a 为晶格常数,试求(1)布里渊区边界;(2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*pm解:(1)由0)(dkk dE 得an k(n=0,1,2…)进一步分析an k)12(,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cmatom aaa cmatom a a a cmatom a a):():():(222)mak E MAX(ank 2时,E (k )有极小值所以布里渊区边界为an k )12((2)能带宽度为222)()mak E k E MINMAX((3)电子在波矢k 状态的速度)2sin 41(sin 1ka kamadkdE v(4)电子的有效质量)2cos 21(cos 222*ka ka m dkE d mn能带底部a n k2所以mmn2*(5)能带顶部an k)12(,且**n pmm,所以能带顶部空穴的有效质量32*m mp半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E C (K )=0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ (1)禁带宽度;(2)导带底电子有效质量;(3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化解:(1)2.晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:tkhqE f ∆∆==得qE k t -∆=∆η补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面(b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-=η(, 式中a 为晶格常数,试求(1)布里渊区边界;(2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得an k π=(n=0,?1,?2…)进一步分析an k π)12(+=,E (k )有极大值,ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()mak E k E MINMAX η=-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -==ηη (4)电子的有效质量能带底部an k π2=所以m m n2*= (5)能带顶部an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1.实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
半导体物理学 第一章习题
(公式要正确显示,请安装字体MT extra)
1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为: ........................................................................................... 1 2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
(3)
1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:
2
20122021202236)(,)(3Ec m k m k k E m k k m k V -
=-+= 0m 。
试求:
为电子惯性质量,nm a a
k 314.0,1==
π
(1)禁带宽度;
(2)导带底电子有效质量; (3)价带顶电子有效质量;
(4)价带顶电子跃迁到导带底时准动量的变化
解:109
11010
314.0=-⨯=
=π
π
a
k
(1)
J m k m k m k E k E E m k k E E k m dk E d k m k
dk dE J m k Ec k k m m m dk E d k k m k k m k dk dE V C g V V V V c C 17
31
210340212012202
1210
12202220
21731
2
103402
12102
02022210120210*02.110
108.912)1010054.1(1264)0()43(6)(0,0600610*05.310108.94)1010054.1(4Ec 430
382324
3
0)(232------=⨯⨯⨯⨯==-=-==
=<-===-==⨯⨯⨯⨯===>=+==
=-+= 因此:取极大值处,所以又因为得价带:
取极小值处,所以:在又因为:得:由导带:
04
32
2
2*
8
3)2(1
m dk E d m
k k C nC
=== s N k k k p k
p m dk E d m k k k k V nV
/1095.71010054.14
3
10314.0210625.643043)()()4(6)3(2510349
3410
4
3
222
*
1
----===⨯=⨯⨯⨯=
⨯⨯
⨯⨯=-=-=∆=-==ππ 所以:准动量的定义:
2. 晶格常数为0.25nm 的一维晶格,当外加102
V/m ,107
V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:t
k
qE f ∆∆==
得qE k t -∆=∆
s a t s a t 137
19282
199
3421911028.810
106.1)
0(1028.810106.11025.0210625.610106.1)0(-------⨯=⨯⨯--=∆⨯=⨯⨯-⨯-⨯⨯=⨯⨯--=∆π
π
ππ
补充题1
分别计算Si(100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)
Si在(100),(110)和(111)面上的原子分布如图1所示:
(a)(100)晶面(b)(110)晶面
(c)(111)晶面
2
14
2
2
14
2
8
2
2
2
1
2
1
4
/
10
59
.9
2
4
2
2
1
2
4
1
4
2
110
/
10
78
.6
)
10
43
.5(
2
2
4
1
4
1
100
cm
atom
a
a
a
cm
atom
a
a
+
⨯
+
⨯
⨯
=
=
⨯
⨯
+
⨯
+
⨯
=
⨯
=
=
⨯
+
-
):
(
):
(
补充题2
一维晶体的电子能带可写为)2cos 81
cos 8
7()2
2ka ka ma k E +-= (, 式中a 为 晶格常数,试求
(1)布里渊区边界; (2)能带宽度;
(3)电子在波矢k 状态时的速度;
(4)能带底部电子的有效质量*
n m ;
(5)能带顶部空穴的有效质量*p m
解:(1)由
0)(=dk k dE 得 a
n k π
=
(n=0,±1,±2…) 进一步分析a
n k π
)
12(+= ,E (k )有极大值,
2
22)ma
k E MAX =( a
n
k π
2=时,E (k )有极小值
所以布里渊区边界为a
n k π
)
12(+=
(2)能带宽度为2
22)()ma
k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 4
1
(sin 1ka ka ma dk dE v -==
(4)电子的有效质量
)2cos 21(cos 2
22*
ka ka m
dk
E
d m n
-==
能带底部 a
n k π2=
所以m m n 2*
= (5)能带顶部 a
n k π
)12(+=, 且*
*
n p m m -=,
所以能带顶部空穴的有效质量3
2*m
m p =。