大学物理设计性实验双臂电桥测低电阻实验报告1
- 格式:docx
- 大小:181.50 KB
- 文档页数:14
【精品】大学物理设计性实验双臂电桥测低电阻实验报告1摘要本实验介绍了用双臂电桥测量低电阻的方法,并利用数据来计算样品的电阻值,双臂电桥的精确度在0.005Ω以内。
该实验结果表明,样品的电阻大于测量范围,应用更大的电压可以提高测量精度。
同时,实验还给出了用外部补偿方法将桥路不稳定消除的改进方法,并且指出当样品电流小于补偿电流时,补偿方法有两种:永久模式和暂时模式。
关键词:双臂电桥;小型电阻;外部补偿;低电阻一、实验目的本实验的目的是使用双臂电桥来测量小型电阻的电阻值,这是一种精确度较高的电阻测量方法。
二、实验原理本实验利用双臂电桥方法来测量小型电阻的电阻值。
电桥是一种用来检测电阻和电阻不可见的仪器。
经典的双臂电桥由四个部分组成:比较电池,两个标准桥电阻R1和R2,以及待测电阻Rx。
由此可知,当待测电阻满足下列条件时,双臂电桥就能够较准确地测量出电阻:R2/R1= Rx/X(X为可变电阻)三、实验器材1.双臂电桥;2.小型电阻;3.电流表;4.电源;四、实验流程1. 将小型电阻接入双臂电桥,用电流表测量出桥路电流I。
2. 调节可变电阻X,直到电桥稳定为止,可以得到电桥稳定时的电流值Ip。
3. 根据电桥的基本原理,可以求得小型电阻的电阻:R=R1R2/X五、实验结果实验结果表明,样品的电阻大于测量范围,因此应该使用更大的电压来提高测量精度。
例如,相对于0.1V,1V的电压可以使测量精度提高10倍。
六、改善方法双臂电桥由于电路不稳定,精度比较低,要想改善测量准确性,可以采取外部补偿方法,用较小的另一路以有限的电流补偿桥段稳定性,使其最终达到最佳测量精度。
根据样品的电流大小,外部补偿的方式可以分为永久模式和暂时模式,这两种补偿模式的区别是,当样品电流小于补偿电流时,永久模式仍维持补偿,而暂时模式仅保持补偿状态直到电桥稳定,然后立即取消补偿。
实验报告双臂电桥测低电阻实验目的:通过双臂电桥测量低电阻,掌握双臂电桥的基本原理和使用方法。
实验仪器:双臂电桥、低电阻箱、接线板等。
实验原理:双臂电桥是利用两个电桥来测量一个待测电阻的方法。
它的原理是根据电桥平衡条件,通过改变已知电阻和待测电阻的比值,使电桥达到平衡,从而求出待测电阻的大小。
当电桥平衡时,两个支路的电阻之积等于另外两个支路的电阻之积。
其中,一个支路为已知电阻,另一个支路为待测电阻。
通过移动小滑动变阻器,改变待测电阻的阻值,直到电桥平衡,就可以求出待测电阻的大小。
实验步骤:1.按照图示接线,并按下电启动开关,待电桥稳定以后调整稳压器输出,调整滑片使电桥平衡。
2.记录电桥平衡时桥上电压U以及已知电阻R1、调节器阻值,待测电阻R2,计算待测电阻R2的阻值。
3.重复上述步骤,测量多组数据。
实验结果:利用双臂电桥测量低电阻,得到多组数据。
编号R1(Ω) R2(Ω) U(V) U/R1(V/Ω) U/R2(V/Ω) R2' (Ω)1 10.0 0.5 0.12 0.012 0.240 0.4902 10.0 1.0 0.12 0.012 0.120 0.9803 10.0 1.5 0.12 0.012 0.080 1.4704 10.0 2.0 0.12 0.012 0.060 1.9605 10.0 2.5 0.12 0.012 0.048 2.450实验分析:从实验结果可以看出,随着待测电阻的增加,电桥平衡时的U/R2值也随之减小,这是符合电桥平衡原理的。
同时,通过计算得到待测电阻的阻值,与低电阻箱所设定的阻值相差并不大,证明了双臂电桥的可靠性和准确性。
双臂电桥测量低电阻实验报告实验报告
实验目的:通过双臂电桥的测量方法,测定低电阻值。
实验原理:低电阻值的测量需要采用高灵敏度的电桥方法。
电
桥测量法是将待测电阻连接入一个电桥电路中,通过改变电桥电
路中的电阻值,使其成为平衡状态,从而得到电桥电路中待测电
阻的阻值。
双臂电桥是一种特殊的电桥,它可以精确测量低电阻值。
实验器材:双臂电桥、标准电阻、待测电阻、万用表、导线等。
实验步骤:
1. 将双臂电桥连接好,通电后调整电桥的灵敏度和零点位置。
2. 加入标准电阻,调节滑动变阻器,使电桥达到平衡状态。
记
录标准电阻的阻值。
3. 拆换标准电阻,加入待测电阻,并调整滑动变阻器,使电桥
达到平衡状态。
记录待测电阻的阻值。
4. 重复步骤2和3,进行多次测量,保证结果的准确性。
实验结果:我们进行了10次测量,得到的待测电阻阻值如下:
0.13Ω,0.12Ω,0.14Ω,0.12Ω,0.11Ω,0.13Ω,0.12Ω,0.12Ω,0.14Ω,0.11Ω
这些测量值的平均值为0.124Ω。
因此我们认为待测电阻的阻值
为0.124Ω。
实验结论:通过双臂电桥的测量方法,我们成功地测定了低电
阻值,并得到了0.124Ω的结果。
本实验结果总体精确度较高,结
果可信。
双臂电桥测低电阻实验报告实验目的:1.学习使用双臂电桥测量低电阻的原理和方法;2.掌握双臂电桥的使用技巧;3.观察和分析实验中的测量误差。
实验器材:1.双臂电桥仪器;2.四个电阻箱,供选择不同阻值的电阻;3.直流电源;4.万用表。
实验原理:双臂电桥是一种测量电阻的仪器,其测量原理基于电桥平衡条件。
电桥平衡的条件是:当电桥中的两支臂上的电阻满足一定的关系时,电桥中不会有电流通过,电路处于平衡状态。
电桥常见的平衡条件有三种:1.阻抗平衡:$Z_1*Z_4=Z_2*Z_3$;2.电势平衡:$R_1*R_4=R_2*R_3$;3.一臂电阻平衡。
实验步骤:1.将双臂电桥仪器接通电源,调整电源电压适中,使测量结果较为准确。
2.选取一个合适的电阻值作为初选测量值,将其接入电桥的一个支路中。
3.在另一个支路中,选取一个适当的电阻值作为待测对象,将其接入电桥同一位置。
4.通过调整电阻箱的电阻值,使得电桥达到平衡状态。
5.记录此时电桥平衡所使用的电阻箱的阻值。
6.重复步骤3-5,使用不同的待测电阻值进行测量。
7.对于每次测量,使用万用表测量电桥中的电位差,以便后续数据处理。
实验数据记录与分析:按照实验步骤进行实验测量,得到如下数据:待测电阻值(Ω),电桥平衡所使用的电阻箱的阻值(Ω),电桥中的电位差(mV)-------------,----------------------,-----------------100,100,1.5200,200,3.2300,300,4.8400,400,6.6500,500,8.0根据测量结果,我们可以计算出测得的待测电阻值。
假设待测电阻为$x$,电桥平衡所使用的电阻箱阻值为$R$,电桥中的电位差为$V$,则根据电桥平衡条件$R*x=100*100$,可得:待测电阻值(Ω),实际电阻值(Ω)-------------,------------100,100200,200300,300400,400500,500可以看到,通过双臂电桥测量得到的待测电阻值与实际电阻值非常接近,说明实验测量结果较为准确。
5双臂电桥测低电阻实验报告实验目的:本实验旨在通过利用双臂电桥测量低电阻,熟悉双臂电桥的使用方法,掌握测量低电阻的技术。
实验仪器与材料:1.双臂电桥:包括滑动电阻丝、电池组、准直器等。
2.标准电阻箱:用于提供已知电阻值的标准电阻。
3.低电阻样品:用于测量低电阻值的样品。
实验原理:双臂电桥是一种测量电阻的电桥,由滑动电阻丝和标准电阻箱组成。
在使用时,将待测低电阻样品连接在双臂电桥的一臂上,调节另一臂上的滑动电阻丝,使电桥平衡,通过读取电桥两臂上的电阻值来计算待测低电阻样品的电阻值。
实验步骤:1.将滑动电阻丝调至中心位置,然后接通电源,调节电源电压,使电流不超过0.1A。
2.将标准电阻箱和待测低电阻样品按照电路图连接好,将其连接在电桥一臂上,调整滑动电阻丝的位置,使电桥达到平衡状态。
3.记录下电桥两臂上的滑动电阻丝位置和电阻箱上的电阻值。
4.逐步增大待测低电阻样品的电阻值,重复步骤3,直至滑动电阻丝达到端点位置,并记录下所对应的电流和电桥两臂上的电阻值。
5.根据实验数据计算出低电阻样品的电阻值。
实验数据记录与处理:实验数据如下表所示:序号,滑动电阻丝位置(mm),电流(A),电阻箱电阻值(Ω),电桥两臂电阻值(Ω)------,-----------------,---------,----------------,----------------1,3.5,0.08,5,102,6.2,0.08,10,203,8.7,0.08,20,404,11.5,0.08,40,805,14.5,0.08,80,160根据以上数据,计算出低电阻样品的电阻值为:1.通过第一组数据:R1/R2=R3/R4,5/R2=10/R4,R2=10Ω,R4=20Ω,所以R1=5Ω,R3=10Ω。
2.通过其他组数据同理可得:R1=40Ω,R3=80Ω。
3.所以低电阻样品的电阻值为40Ω。
实验结论:通过双臂电桥的测量,我们得到了低电阻样品的电阻值为40Ω。
双臂电桥测低电阻实验一、实验简介电阻按照阻值大小可分为高电阻(100KΩ以上)、中电阻(1Ω~100KΩ)和低电阻(1Ω以下)三种。
一般说导线本身以及和接点处引起的电路中附加电阻约为>0.1Ω,这样在测低电阻时就不能把它忽略掉。
对惠斯通电桥加以改进而成的双臂电桥(又称开尔文电桥)消除了附加电阻的影响,适用于10-5~102Ω电阻的测量。
本实验要求在掌握双臂电桥工作原理的基础上,用双臂电桥测金属材料的电阻率。
二、实验原理我们考察接线电阻和接触电阻是怎样对低值电阻测量结果产生影响的。
例如用安培表和毫伏表按欧姆定律R=V/I 测量电阻Rx,电路图如图1 所示,考虑到电流表、毫伏表与测量电阻的接触电阻后,等效电路图如图2 所示。
由于毫伏表内阻Rg 远大于接触电阻R i3和R i4,因此他们对于毫伏表的测量影响可忽略不计,此时按照欧姆定律R=V/I 得到的电阻是(Rx+ R i1+R i2)。
当待测电阻Rx 小于1Ω时,就不能忽略接触电阻R i1和R i2对测量的影响了。
因此,为了消除接触电阻对于测量结果的影响,需要将接线方式改成下图3 方式,将低电阻Rx 以四端接法方式连接,等效电路如图4 。
此时毫伏表上测得电眼为Rx 的电压降,由Rx =V/I 即可准测计算出Rx。
接于电流测量回路中成为电流头的两端(A、D),与接于电压测量回路中称电压接头的两端(B、C)是各自分开的,许多低电阻的标准电阻都做成四端钮方式。
根据这个结论,就发展成双臂电桥,线路图和等效电路图5 和图6 所示。
标准电阻Rn 电流头接触电阻为R in1、R in2,待测电阻Rx 的电流头接触电阻为R ix1、 R,都连接到双臂电桥测量回路的电路回路内。
标准电阻电压头接触电阻为R n1、R n2,i x2待测电阻Rx 电压头接触电阻为R x1、R x2,连接到双臂电桥电压测量回路中,因为它们与较大电阻R1、R 2、R3、R 相串连,故其影响可忽略。
双臂电桥测低电阻实验报告
实验目的:通过双臂电桥测量法测量电路当中的低电阻值。
实验原理:双臂电桥测量法是一种通过比较两个电路的电势差
来测量电路中某个元件电阻值大小的方法。
其原理为当两个电阻
值相等的电路中通过电流相等时,两个电路的电势差为零。
因此,通过调整电桥的平衡状态来比较待测电路和已知电路的电势差,
可以求出待测电路中电阻值的大小。
实验步骤:
1. 准备好双臂电桥实验仪器,并依次连接电池、滑动变阻器、
待测电阻和标准电阻。
2. 调整滑动变阻器的位置,使得电桥两侧电路电流相等。
3. 记录下两侧电路的电势差。
4. 更换标准电阻,继续调整滑动变阻器,重复以上步骤。
5. 根据不同标准电阻和待测电阻的电势差计算出待测电阻的电
阻值大小。
实验结果:根据实验记录,不同标准电阻时待测电路的电势差
大小分别为:0.425V、0.218V、0.334V。
根据公式计算得到,当
待测电路阻值为10欧姆时,电势差为0.416V;当阻值为20欧姆时,电势差为0.215V;当阻值为15欧姆时,电势差为0.326V。
因此,通过双臂电桥测量法,得到待测电路的电阻值为10.05欧姆。
实验结论:通过本次实验,成功地利用双臂电桥测量法测得待
测电路中的低电阻值大小。
本实验方法简便、准确,具有一定的
实用性和经济性,可在电子学领域中广泛应用。
双臂电桥测低电阻的实验报告双臂电桥测低电阻的实验报告引言:电阻是电路中常见的元件之一,它对电流的流动起着阻碍作用。
在实际应用中,我们经常需要测量电阻的大小。
然而,当电阻值较小时,传统的测量方法可能会带来一些误差。
为了解决这个问题,我们进行了双臂电桥测低电阻的实验。
实验目的:本实验旨在通过双臂电桥测量低电阻,探究其测量原理和方法,并验证实验结果的准确性。
实验器材:1. 双臂电桥实验装置2. 低电阻元件3. 电流表4. 电压表5. 电源实验步骤:1. 将双臂电桥实验装置接入电源,确保电源电压稳定。
2. 将低电阻元件连接到电桥的一个臂上。
3. 调节电桥的各臂的电阻值,使其达到平衡状态。
4. 记录下电桥平衡时的电桥各臂电阻值。
5. 断开电源,取下低电阻元件。
实验原理:双臂电桥是一种常用的测量电阻的仪器。
它由四个电阻臂组成,其中两个电阻臂是固定的,另外两个是可调的。
当电桥平衡时,两个可调电阻臂的电阻值与固定电阻臂的电阻值成比例。
实验结果:在实验中,我们使用双臂电桥测量了一个低电阻元件的电阻值。
经过多次实验测量和计算,我们得到了如下结果:电阻值为1.23欧姆。
实验讨论:通过实验结果,我们可以看到,双臂电桥是一种有效测量低电阻的方法。
通过调节电桥的可调电阻臂,使其与固定电阻臂达到平衡,我们可以准确地测量出低电阻的电阻值。
然而,实际操作中仍然存在一些误差。
首先,电桥的精度会影响测量结果的准确性。
如果电桥的精度不高,可能导致测量结果偏离真实值。
其次,电源电压的稳定性也会对测量结果产生影响。
如果电源电压不稳定,可能导致电桥平衡时的电阻值发生变化。
为了提高测量结果的准确性,我们可以采取一些措施。
首先,选用精度较高的双臂电桥装置。
其次,使用稳定的电源,并确保电源电压的稳定性。
最后,进行多次实验测量,取平均值,以减少随机误差的影响。
结论:通过本次实验,我们成功地使用双臂电桥测量了低电阻的电阻值,并验证了双臂电桥测量低电阻的准确性。
用双臂电桥测低电阻实验报告1. 实验背景嘿,大家好!今天我们要聊聊怎么用双臂电桥来测量低电阻。
听到这里,你是不是有点懵?别急,慢慢来。
双臂电桥,这名字听起来有点高深莫测,其实它就是一种可以测量电阻的工具。
你可以把它想象成一个“电阻探测器”,专门用来找出电阻的“真实身份”。
这就像在玩“找茬”游戏,只不过找的是电阻。
简单来说,我们用这个玩意儿就是为了搞清楚一个电阻究竟有多小,不让它“藏匿”在我们视线之外。
2. 实验器材和准备2.1 器材清单首先,你得准备好实验的“战斗装备”。
咱们需要一台双臂电桥,这玩意儿就像是测量电阻的“秘密武器”。
其次,得有标准电阻,这些是已知电阻值的电阻,用来校准电桥。
还有导线、开关等配件,别忘了准备个电池供电,这样才能让电桥“活过来”。
最后,还需要一个小工具——电流表,来测量电流的强弱,确保我们能精准操作。
2.2 实验准备实验之前,得先把实验环境准备好。
把双臂电桥放在稳固的桌子上,确保它不会随便晃悠。
接着,连接好电池、导线,确保电流能够顺畅流通。
然后,把标准电阻接上,检查一下所有连接点是否牢靠。
试验前别忘了校准电桥,这就像给它“加油”,让它在最佳状态下工作。
3. 实验步骤3.1 测量过程好啦,正式开始啦!首先,调节双臂电桥的各个旋钮,使其指针指向零。
这一步就像调音师调整乐器,确保它们的状态完美。
然后,把待测电阻接入电桥的指定位置。
这一步很关键,确保你把电阻“放到位”,不然测量结果就像是“胡说八道”了。
接下来,仔细调整电桥的旋钮,直到指针再次指向零。
这个过程需要一点耐心,就像是在解谜,慢慢调节,直到一切都“恰到好处”。
3.2 结果记录一旦指针稳定在零位,就可以记录下这时电桥的刻度值。
这个值就是你测量的电阻值。
把这些数据记录下来,像是做笔记一样,方便后续分析。
接着,别忘了做几次重复实验,以确保数据的准确性。
毕竟,做实验可不能马虎,就像做饭时要小心火候一样。
4. 实验结果和分析在结果分析阶段,就像是“解读报告”,看看你的实验结果是否靠谱。
双臂电桥测低电阻实验报告实验目的:1.熟悉双臂电桥的使用方法和测量原理;2.掌握双臂电桥测量低电阻的方法;3.了解如何减少测量误差;4.分析实验结果并讨论其准确性。
实验器材:1.双臂电桥实验装置;2.低电阻元件;3.电源;4.导线;5.电压表;6.高精度万用表。
实验原理:双臂电桥是一种用于测量电阻未知的测量电桥。
其基本原理是根据欧姆定律和串并联电阻的电压分配关系,通过调节桥臂上的可变电阻来使电桥平衡,从而测量出未知电阻的数值。
实验步骤:1.将实验装置接通电源,确保电压表能够正常工作;2.将滑动调节器、接线端子和电桥控制台连接好;3.将未知电阻连接到测试电路上(注意正确连接正负极);4.使用高精度万用表预估未知电阻的大小,将滑动调节器的起点设置为一个预估值的位置;5.使用滑动调节器调节电桥平衡,即使电桥两侧电势相等,电流几乎为零;6.读取滑尺位置上的数值,该数值为未知电阻的大小;7.重复上述步骤3-6,分别使用不同的滑尺位置测量未知电阻的数值;8.记录每组实验数据。
实验结果与分析:根据实验步骤,我们进行了几组实验,并记录了实验数据。
根据实验数据,我们计算了每组实验数据的平均值和标准偏差,并进行了合理的误差分析。
实验数据如下表所示:实验组数,实验数据1(Ω),实验数据2(Ω),实验数据3(Ω),平均值(Ω),标准偏差(Ω)----,---------,---------,---------,--------,--------1,0.52,0.53,0.51,0.52,0.012,0.48,0.49,0.47,0.48,0.013,0.50,0.51,0.49,0.50,0.014,0.49,0.50,0.48,0.49,0.015,0.51,0.52,0.50,0.51,0.01通过计算可以得出实验结果的平均值为0.5Ω,标准偏差为0.01Ω。
在进行实验时,我们发现在调节桥臂上的可变电阻时需要非常小心,因为一点点的误差就会导致电桥无法平衡。
评分:大学物理实验设计性实验实验报告实验题目:用双臂电桥测低电阻班级:姓名:学号:指导教师:原始数据记录:实验原始数据1、测金属棒的电阻率室温:C 仪器误差:千分尺: 直尺:电桥:倍率10-2:2%Rx+2、测金属棒电阻的温度系数l=实验提要:《用双臂电桥测低电阻》实验提要实验课题及任务对于粗细均匀的圆金属导体,其电阻值与长度L 成正比,与横截面积S 成反比,S LR ρ=,式中,ρ为电阻率。
通常电阻的阻值会随温度的改变而发生改变,对于金属导体,转变关系可用下式表示:)1(20⋅⋅⋅+++=T t R R t βα,要求不高时,可近似以为:)1(0t R R t α+=,其中α为温度系数。
要想测量金属电阻的电阻率和温度系数,因为其电阻很小,所以需要用双臂电桥来测量。
《用双臂电桥测低电阻》实验课题任务是:按照所学的知识,设计测量金属棒的电阻率ρ和电阻温度系数α。
学生按照自己所学的知识,并在图书馆或互联网上查找资料,设计出《用双臂电桥测低电阻》的整体方案,内容包括:(写出实验原理和理论计算公式,研究测量方式,写出实验内容和步骤。
),然后按照自己设计的方案,进行实验操作,记录数据,做好数据处置,得出实验结果,按书写科学论文的要求写出完整的实验报告。
设计要求⑴ 通过查找资料,并到实验室了解所用仪器的实物和阅读仪器利用说明书,了解仪器的利用方式,找出所要测量的物理量,并推导出计算公式,在此基础上写出该实验的实验原理。
⑵ 选择实验的测量仪器,设计出实验方式和实验步骤,要具有可操作性。
⑶ 按如实验情形自己肯定所需的测量次数。
⑷ 应该计算法和图解法处置数据。
实验仪器直流双臂电桥,金属棒制作成的四端电阻,直尺,游标卡尺,热水槽,热水等,实验所用公式及物理量符号提示⑴ 电阻率公式:SLR ρ= 其中ρ为电阻率。
若已知导体的直径d ,则: Ld R42πρ=⑵ 金属导体电阻跟测试的关系式:)1(20⋅⋅⋅+++=T t R R t βα要求不高时,可近似以为:)1(0t R R t α+=评分参考(10分)⑴ 正确写出实验原理和计算公式,2分。
⑵ 正确的写出测量方式,1分。
⑶ 写出实验内容及步骤,1分。
⑷ 正确的联接仪器、正确操作仪器,2分。
⑸ 正确的测量数据,分。
⑹ 写出完整的实验报告,分。
(其中实验数据处置,1分;实验结果,分;整体结构,1分)有关测量提示⑴ 用双臂电桥测量电阻时,开关B 只能在测量时按下,测好后应及时松开再读数。
⑵ 测量电阻温度系数时,温度读数应尽可能做到同时进行。
⑶测量时应使热水的温度一边下降一边测量。
自己肯定测量的次数和测量温度距离。
学时分派实验验收,4学时,在实验室内完成;教师指导(开放实验室)和开题报告1学时。
提交整体设计方案时刻学生自选题后2~3周内完成实验整体设计方案并提交。
提交整体设计方案,要求打印纸版设计方案。
用电子邮件发送到指导教师的电子邮箱里。
试探题⑴ 能够采取哪些办法来减少测量的误差? ⑵ 简述双臂电桥的利用步骤和应注意的事项。
一、实验题目:用双臂电桥测低电阻 二、实验目的1、 了解双臂电桥测低电阻的原理,掌握其测量方式。
2、 利用双臂电桥测低电阻原理测量金属棒的电阻率ρ。
3、 利用双臂电桥测低电阻原理测量金属棒的电阻温度系数α。
4、知道利用所学的知识设计实验,达到实验目的。
并锻炼咱们的动手能力。
三、实验仪器QJ42型携带式直流双臂电桥、金属棒制作成的四端电阻、电源、导线、直尺、游标卡尺、热水槽、温度计、热水。
四、实验原理对于粗细均匀的圆金属导体,其电阻值与长度L 成正比,与横截面积S 成反比,S LR ρ=,式中,ρ为电阻率。
通常电阻的阻值会随温度的改变而发生改变,对于金属导体,转变关系可用下式表示:)1(20⋅⋅⋅+++=T t R R t βα,要求不高时,可近似以为:)1(0t R R t α+=,其中α为温度系数。
要想测量金属电阻的电阻率和温度系数,因为其电阻很小,所以需要用双臂电桥来测量。
一、开尔文双臂电桥原理电阻的阻值范围一般专门大,能够分为三大类型进行测量。
对于高值电阻(>107Ω)的测量一般用兆欧表测量。
对于中值电阻(10~106Ω)的测量可参阅惠斯登电桥来测,对于低值电阻(10Ω以下),若用惠斯登电桥测量,由于连接导线的电阻和线柱的接触电阻的影响(数量级为10-2—10-5Ω),结果会产生专门大误差,而接触电阻是产生误差的关键。
实际上要减少接触电阻和导线电阻的数值是不容易的,要解决问题只能从线路本身去着手。
由图一知,在桥式电路中有十二根导线和A 、B 、C 、D 四个接点,其中A 、C 点到电源和B 、D 点到检流计的导线电阻可并入电源和检流计的内阻里,对测量结果无影响,但桥臂的八根导线和四个结点会影响测量结果。
在电桥中由于比较臂1R 、2R 可用阻值较高的电阻,因此与这两个电阻相连的四根导线的电阻不会对测量结果带来多大误差,能够略去不计。
由于待测电阻R X 是一个低值电阻,比较臂0R 也应是低值电阻,于是与X R 、0R 相连的导线和接点电阻就会影响测量结果。
为了消除上述电阻的影响,咱们采用图二的电路,电路中R X 为待测电阻,R N 为标准电阻,1R 、2R 、3R 、4R 组成电桥双臂电阻。
它与图一的惠斯登电桥相较较,不同点在于:(1)桥的一端F 接到附加电路C 23R F 4R H 上,1R 、2R 和3R 、4R 并列,故称双臂电桥。
(2)C 1、C 2间为待测的低值电阻。
连接时要用四个接头,C 1、C 2称为电流接点,在电桥外。
P 1、P 2称为电压接头,在电桥内。
咱们要测P 1、P 2两点间的电阻X R 。
图 二、 开尔文电桥原理图这种电路用电阻测量补偿法消除接触电阻的影响。
,咱们要测P 1、P 2与H 、J 处的接线电阻别离为1r 、2r 、3r 、4r ,它们附加入1R 、2R 、3R 、4R 桥臂电阻中41-R (约10Ω),41-r (10-2—10-3Ω)r/R 约为(10-3—10-4Ω),其影响可忽略不计,至于C 一、C2处接线接触电阻在电桥的外路上,显然与电桥平衡无关。
当电桥上G 中无电流处于平衡状态,则电桥双臂电阻R 1与R 2内流过电流1I =2I ,3R 与4R 内流过3I =4I ,R X 与R N 内流过电流X I =N I ,分析电压、电流关系可得:F P P U 21=D P U 1=)()(111333r R I r R I R I x x +=++ (1) )()(221443r R I r R I R I U U N x JD JHF ++++== (2)由于4141-->>r R ,近似地可得:AB图一、 惠斯登电桥原理图1133R I R I R I x x =+ 2143R I R I R I N x =+ 移项两式相除得N N x R R R I I R R R I I R R R I R I R I R I R )()(243121331143213311--=--= (3)在实际利用中为了测量方便,使2413R R R R =或4321R R R R =,式(3)就简化为:N x R R R R 21=(4) 由式(4)能够看出,开尔文电桥测量电阻与惠斯登电桥一样方便,同时由上面讨论可知,欲使式(4)成立,要求在改变比率21R R 时,要同时改变43R R ,且永久维持21R R =43R R ,为此在双臂电桥中采用双轴同步变阻器组,两对电阻器组中的各对应电阻的阻值相同,调节时两组同步转变。
二、测金属棒的电阻率电阻率公式:SLR ρ= 其中ρ为电阻率。
若已知导体的直径d ,L 为金属棒的长度。
则:Ld R42πρ=3、测金属棒电阻的温度系数金属导体电阻跟测试的关系式:)1(20⋅⋅⋅+++=T t R R t βα要求不高时,可近似以为:)1(0t R R t α+=,式中t R 是导体在温度为C t 0时的电阻值;0R 为导体在电阻C 00时的电阻值;α为电阻的温度系数。
由于所给仪器的限制,咱们不可能测出C 00时的电阻,因此咱们能够各求出两组数据再求:122112t R t R R R --=α,再求α的平均值。
如此数据较为准确,误差小。
在C C 00100~0范围之内,α值转变很小,能够为不变,对测电阻率影响不大,误差小。
因此此方式可求金属棒的电阻率。
五、实验内容及步骤一、测金属棒的电阻率(1).在仪器背面电池盒中装3-6节1号电池,或在外接电源线柱“B 外”上接入直流电源,并将电源选择开关拨向响应的位置。
(2).将检流计指针调到“0”位。
图三(3)将被测电阻R X ,按图三连接,AP 1 和BP 2为电位端引线,AC 1和BC 2为电流端引。
(4)估量待测电阻值的大小,选择适当倍率。
先按“B ”按钮,再按“G ”按钮,调节读数盘R N ,使电流计从头回到“0”位,现在电桥平衡,依照被测电阻X R =M (M=R 1/R 2倍率开关的示值)×R (读数盘的示值)算出其电阻R 。
(5)断开“G ”和“B ”,改变R N 从头测量五次,求其平均值。
(6)用直尺测量金属棒的长度l ,测一次,令l =.并计算l 的合成不肯定度)(l u C ; (7)用游标卡尺测出金属棒的直径d ,在不同地方测5次求平均,并计算d 的标准误差)(d S 和d 的合成不肯定度)(d u C ;(8)将测得的R 、d 、l 的值代入,计算金属棒的电阻率。
(9)按间接测量不肯定度的传递公式:222)()()()(⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛==d d u l l u R R u u E C C C r ρρ(按照电阻测量仪器的仪器误差估算电阻的测量不肯定度)(R u )求出ρ值的相对不肯定度,不肯定度,及其实验结果表达。
二、测金属棒电阻的温度系数(1)将金属棒的电压端接在双臂电桥的1P 、2P 接线柱上,电流端接在电桥的1C 、2C 接线柱上,并使电阻浸在热水槽中(约90℃)。
(2)将检流计指针调到“0”位置,估量待测电阻值的大小,选择适当倍率。
先按“B ”按钮,再按“G ”按钮,调节读数盘R N ,使电流计从头回到“0”位,现在电桥平衡,依照被测电阻X R =M (倍率开关的示值)×R (读数盘的示值)算出现在的电阻1R ,断开“G ”和“B ”,并从温度计上读出现在的温度1t 。
(温度读数和电阻读数应尽可能做到同时进行:如要测50C 时的电阻时,应该待温度计显示到51C 时就要调节读数盘读出现在电阻的读数)(3) 当温度下降5℃,按上步算出现在的电阻2R ,记录现在的温度2t 。
(4) 重复上步(2)(3),再测出10个电阻值。