定向耦合器参数
- 格式:doc
- 大小:12.23 KB
- 文档页数:1
定向耦合器s参数
定向耦合器是一种无线通信设备,用于从主传输线中耦合出部分信号,并将其传送到一个或多个接收端口。
S参数是描述这种设备性能的重要参数,包括:
1. 直通参数(S21):表示信号从端口2传输到端口1的幅度。
2. 耦合参数(S31):表示信号从端口1传输到端口3的幅度。
3. 隔离参数(S41):表示信号从端口1传输到端口4的幅度。
4. 反射参数(S11):表示信号从端口1反射回自身的幅度。
这些参数共同决定了定向耦合器的性能,如耦合度、工作频带等。
以上内容仅供参考,建议咨询通信工程领域业内人士获取更多专业信息。
南京邮电大学实验报告实验名称:_____传输线参数(特征阻抗)的分析与综合威尔金森功分器设计____________定向耦合器(90/180°均可) _无源滤波器设计 ____ 课程名称: 微波技术EDA姓名:____赵玉蓉_____学号:___B10020504___小组成员:韩倩(B10020404)丁耀慧(B10020501)开课时间 2012 /2013 学年,第 2 学期实验三 定向耦合器一:实验名称:定向耦合器(90/180°均可)二:实验目的1. 了解微波EDA 软件的类型和用途;2. 掌握ADS 软件并进行定向耦合器的建模,仿真,优化和调试等任务;3. 了解微波电路仿真软件IE3d 的应用范围和使用方法;4. 分析ADS 中有耗传输线和无耗传输线仿真的异同;5. 分析ADS Momentum 和IE3d 建模结果的异同。
三:实验原理在射频微波电路中,经常用到多端口网络,分支定向耦合器是最常用的多端口网络,它在电路中起到了十分重要的作用,它能够在固定的参考相位的条件下,分开和组合射频微博端口。
(一)、定向耦合器的基本功能和参数指标定向耦合器是一个4端口网络,它有输入端口、直通端口、耦合端口和隔离端口,分别对应图中的1、2、3、4端口:1 243 定向耦合器定向耦合器的主要技术指标有耦合度、隔离度、定向性、输入驻波比及工作带宽等,下面介绍上述各指标。
1、 耦合度耦合度C 定义为输入端口的输入功率P1和耦合端口P3之比的分贝数,耦合度C 表示为: 1210lg ()P C dB P = 引入网络散射参量,耦合度又可以表示为:±±11233113/2110lg 10lg 20lg ()/2i ilU P C dB P S S U ===耦合度的分贝数越大耦合越弱,通常把耦合度为0dB~10dB 的定向耦合器称为强耦合定向耦合器,把耦合度为10dB~20dB 的定向耦合器称为中等耦合定向耦合器,把耦合度大于20dB 的定向耦合器称为弱耦合定向耦合器。
定向耦合器是一种具有定向传输特性的四端口元件,它是由耦合装置联系在一起的两对传输系统构成的,它是微波功率分配器件的一种。
定向耦合器实物图:定向耦合器主要指标有:耦合度、隔离度、方向性、插入损耗、输入输出驻波比、功率容限、频段范围、带内平坦度。
下面介绍的是350-520MHz定向耦合器:Model No.Freq.Range(MHz)NominalCoupling(dB)IL.(dB)Directivity(dB)VSWRPower(W)ConnectorTypeTemp.(°C)UIYDCP14337A350T520C5NF 350 ~ 520 5±0.6 2.1 20 1.25 200 N-F -20~+70 UIYDCP14337A350T520C6NF 350 ~ 520 6±0.6 1.7 20 1.25 200 N-F -20~+70 UIYDCP14337A350T520C7NF 350 ~ 520 7±0.6 1.4 20 1.25 200 N-F -20~+70 UIYDCP14337A350T520C8NF 350 ~ 520 8±0.6 1.0 20 1.25 200 N-F -20~+70 UIYDCP14337A350T520C10NF 350 ~ 520 10±1 0.8 20 1.25 200 N-F -20~+70 UIYDCP14337A350T520C13NF 350 ~ 520 13±1 0.5 20 1.25 200 N-F -20~+70 UIYDCP14337A350T520C15NF 350 ~ 520 15±1.2 0.4 20 1.25 200 N-F -20~+70 UIYDCP14337A350T520C20NF 350 ~ 520 20±1.2 0.22 20 1.25 200 N-F -20~+70 UIYDCP14337A350T520C30NF 350 ~ 520 30±1.5 0.2 20 1.25 200 N-F -20~+70 UIYDCP14337A350T520C40NF 350 ~ 520 40±1.5 0.2 20 1.25 200 N-F -20~+70机械图:下面则是为大家提供的耦合器:定向耦合器✧频率136MHz-18GHz.✧应用于民用,军事,航天,空间技术等.✧低噪声,高功率,高增益.✧可按客户要求订制生产.✧Directional Coupler型号频率范围(GHz)耦合度(dB)耦合平坦度(dB)插损(dB)方向性(dB)驻波比功率(W)连接形式温度(°C)尺寸长x宽x高(mm)UIYDCP14337B0.136~0.174 5~40 ±1.0 0.2 20 1.25 200 N -20~+70 143×37×18.5 UIYDCP14337A0.35~0.52 5~40 ±1.0 0.2 20 1.25 200 N -20~+70 143×37×18.5 UIYDCP22440A0.35~2.7 5~40 ±2.0 0.2 55 1.3 200 N -35~+65 224.4×40×16.5 UIYDCP12815A0.4~0.5 10~30 ±0.7 0.5 18 1.25 50 SMA -55~+85 128×15×11 UIYDCP13315A0.5~2.5 10~30 ±0.7 0.5 18 1.25 50 SMA -55~+85 133×15×11 UIYDCP12040A0.698~2.7 5~40 ±2.0 0.2 19 1.25 200 N -20~+70 120×40×16.5 UIYDCP8515A0.8~2.5 10~30 ±0.7 0.5 18 1.25 50 SMA -55~+85 85×15×11 UIYDCP7315A 1.0~4.0 10~30 ±0.7 0.5 18 1.25 50 SMA -55~+85 73×15×11优译创立于中国深圳市,注册资金2亿元人民币,是集军民用微波通信器件开发、设计与生产的一体化企业,产品远销海内外。
目录一、前言 (02)二、发展背景 (02)三、组成及分类 (03)四、原理简介 (03)五、定向耦合器的基本功能和参数指标 (04)1、耦合度 (05)2、隔离性 (05)3、定向性D (05)4、输出驻波比....................................... .065、工作频带宽度 (06)六、定向耦合器的应用 (08)七、总结 (11)八、参考文献 (12)1 微波技术与天1定向耦合器的原理及介绍一、前言定向耦合器在微波波段有着广泛的应用,其主要用途有用来监视功率、频率和频谱,把功率进行分配和合成,构成平衡混频器和测量电桥,利用定向耦合器来测量反射功率系数和功率。
它的本质是将微波信号按一定的定向耦合器比例进行功率分配。
二、发展背景在20世纪50年代初以前,几乎所有的微波设备都采用金属波导和同轴线电路,那个时候的定向耦合器也多为波导小孔耦合定向耦合器,其理论依据是Bethe小孔耦合理论,Cohn和Levy等人也做了很多贡献。
随着航空和航天技术的发展,要求微波电路和系统做到小型化、轻量化和性能可靠,于是出现了带状线和微带线。
随后由于微波电路与系统的需要有相继出现了鳍线、槽线、共面波导和共面带状线等微波集成传输线。
这样就出现了各种传输线定向耦合器。
第一个真正意义上的定向耦合器由H. A. Wheeler在1944年设计实现,Wheeler使用了一对长为四分之一中心频率波长的圆柱来实现电场与磁场的能量相互耦合,遗憾的是这种方法只能实现一个倍频程的带宽。
三、组成及分类定向耦合器由传输线构成,同轴线、矩形波导、圆波导、带状线和微带线都可构成定向耦合器,所以从结构来看定向耦合器种类繁多,差异很大。
但从它的耦合机理来看主要分为四种,即小孔耦合、平行耦合、分支耦合以及匹配双T。
定向耦合器四、原理简介主线中传输的功率通过多种途径耦合到副线,并互相干涉而在副线中只沿一个方向传输。
图1为矩形波导定向耦合器的三种典型耦合结构。
Agilent 778DDual Directional Coupler100 to 2000 MHzData SheetFeatures• Multi-octave frequency range: 100 to 2000 MHz• High directivity: 36 dB to 1 GHz, 32 dB to 2 GHz• Reflection coefficient measurement: Over 4 octaves with 1 couplerBroadband 20 dB Dual Directional CouplerThis dual directional 20 dB coupler has a frequency range extending over 4 octaves from 100 MHz to 2 GHz. The multi-octave capability makes measurements easier–setup and calibration time are reduced, since normally several couplers are required over this frequency band. The coupling factor increases about 6 dB per octave below 100 MHz; thus, usefulness below this frequency is restricted only by the amount of signal source power and/or the sensitivity of the RF detector con-nected to the coupler. Figure 1 shows typical coupling and directivity characteristics of the 778D.0.1 to 1 GHz± (0.015 + 0.02 |GL | + 0.05 |GL|2)± (0.015 + 0.05 |GL|2)1 to2 GHz± (0.025 + 0.02 |GL | + 0.05 |GL|2)± (0.025 + 0.05 |GL|2)Maximum phase error = ±sin-1 (∆G L/G L)|GL |= reflection coefficient of unknownThe 778D is ideal for measuring the reflection and transmission characteristics of a device from 100 MHz to 2000 MHz. Figure 2 shows a test configurationin which a 778D dual directional coupler is used to separate and isolate theincident, reflected, and transmitted signals in a swept-frequency measurement.These signals are detected and their ratio displayed on a CRT. This coupler is an ideal companion for the Agilent 8755 frequency response test set, a detectionand display system operating from 15 MHz to 18 GHz.The high directivity and close tracking of the auxiliary arms of this couplermake it particularly useful for this type of broadband measurement. The highdirectivity insures accurate measurements by a true separation of the forwardand reflected signals. Close tracking of signal variation from the auxiliary armsgives a flat frequency response that makes display readings easy to interpret.Maximum amplitude errors in a reflection measuring system are shown in thefollowing tableFigure 1. Coupling and directivity characteristics of the 778D coupler.Figure 2. Setup diagram for simultaneous measurements of insertion and return loss.Simultaneous Reflection and Transmission MeasurementsImpedance MeasurementsSystem Monitoring Choice of Output Connectors Error components include a fixed term due to coupler directivity, and severalGL-dependent terms relating to source match and reference setting (detection errors are not included). These errors apply over broad swept-frequency bands. Somewhat improved accuracy can be achieved by simple recalibration at the frequency of interest.The 778D is also well suited for measurements of impedance when used with the Agilent 8405A vector voltmeter. The technique is described in Application Note 77-3, Measurement of Complex Impedance, available at your nearest Agilent sales office. Again, a reflectometry technique is used. With the vector voltmeter, however, both magnitude and phase angle of the reflection coefficient can be measured. This setup is shown in Figure 3.Data can be read from the two meters of the vector voltmeter and transferred directly to a Smith Chart to provide impedance of such devices as antennas or other passive components. In addition, with an appropriate bias supply, active components, such as transistors, can also be quickly measured and character-ized with this setup. The 778D is well-suited for these types of measurements since both the phase and the magnitude variation between the two coupling arms have been closely controlled in the design of the coupler.Because of the high power capability of the dual directional coupler, it canbe permanently installed in coaxial systems to monitor the power traveling in both directions simultaneously. This enables a system to be continually moni-tored to indicate whether the system is in need of adjustment or maintenance due to excessive standing-wave rations on the transmission lines.To achieve its broad frequency coverage, the 778D’s directivity is optimizedfor mainline energy flowing in one direction, Thus, the test device or system should be connected where the 778D is labeled TEST PORT. To accommodate test devices with type-N or APC-71 connectors, a choice of connectors is avail-able on the TEST PORT; see the options outlined under Specifications.The APC-7 precision sexless connector is recommended on the output, since the coupler can be conveniently converted to other types of connectors by use of an adapter, Adapters are available to OSM, TNC, GR900, and others, so that the coupler becomes a versatile device for making measurements on many different types of connector configurations. The Amphenol, APC-7 is a sexless connector with very low SWR. This precision connector makes possible the construction of adapters with the lowest possible SWR.The type-N connectors are stainless steel for long wear and are compatiblewith connectors whose dimensions conform to MIL-C-39012, or MIL-C-71. Figure 3. Setup of impedance measurement of coaxial devices from ~10 to 1000 MHz.Remove all doubtFor more information on repair and calibration services, go to:/find/removealldoubtAgilent Email Updates/find/emailupdatesGet the latest information on theproducts and applications you select.For more information on AgilentTechnologies’ products, applicationsor services, please contact your localAgilent office. The complete list isavailable at:/find/contactusAmericasCanada (877)894-4414Latin America 305 269 7500United States (800) 829-4444Asia PacificAustralia 1 800 629 485China 800 810 0189Hong Kong 800 938 693India 1 800 112 929Japan 0120 (421) 345Korea 080 769 0800Malaysia 1 800 888 848Singapore 1 800 375 8100Taiwan 0800 047 866Thailand 1 800 226 008Europe & Middle EastAustria 01 36027 71571Belgium 32 (0) 2 404 93 40Denmark 45 70 13 15 15Finland 358 (0) 10 855 2100France 0825 010 700**0.125€/minuteGermany 07031 464 6333Ireland 1890 924 204Israel 972-3-9288-504/544Italy 39 02 92 60 8484Netherlands 31 (0) 20 547 2111Spain 34 (91) 631 3300Sweden 0200-88 22 55Switzerland 0800 80 53 53United Kingdom 44 (0) 118 9276201Other European Countries:/find/contactusRevised: July 2, 2009Product specifications and descriptionsin this document subject to changewithout notice.© Agilent Technologies, Inc. 2004, 2009Printed in USA, September 11, 20095952-8133/find/mtaSpecificationsFrequency range100 MHz to 2000 MHz (usable below 100 MHz)Directivity Auxiliary arm 0.1 to 1 GHz 1 to 2 GHzA 36 dB 32 dBB 30 dB 30 dBCoupling factor20 dB nominal ±1 dB cyclic variation with frequency (coupling~23 dB at 100 MHz. 6 dB rolloff per octave below 100 MHz). Tracking Auxiliary outputs typically track within 0.7 dB.Phase tracking typically 4°.SWR Primary line: 1.1; auxiliary arms: 1.1.Insertion loss 0.6 dBMaximum power50 W average; 500 W peak (peak power duration of 10us). Connectors Choice of mainline connectors (see options); auxiliary armshave type-N female connectors, All type-N connectors stain-less steel, compatible with MIL-C-39012 and MIL-C-71. Dimensions16.75 inches long, 4.375 inches high, 1.189 inches wide(425 x 111 x 30 mm).Weight Net, 3.75 lb (1,5 kg). Shipping, 5 lb (2,3 kg). Accessories availableAdapters Part numberAPC-7 to OSM® male 11533AAPC-7 to OSM female 11534AAPC-7 to type-N male 11525AAPC-7 to type-N female 11524A(Adapters from APC-7 to TNC, GR-900, GR-874 as well as the above are available from Amphenol RF Division, Danbury, Conn.)778D (type-N female output, type-N male input connectors)Option 11 (APC-7 output, type-N female input connectors)Option 12 (type-N male output, type-N female input connectors)。
定向耦合器微带改进的鼠笼式混合接头可实现宽带设计还需考虑 1导体损耗和介质损耗 2对于不连续性和杂散的补偿设计 3介质结构的异向性造成奇偶模的不同相速使定向性变差可利用屏蔽利用集中电容利用介质重叠 67 孔耦合定向耦合器 4 端口隔离端口 2端口直通端口 1 端口输入端口 3端口耦合端口波导定向耦合器 com 倍兹孔定向耦合器 小孔能用电和磁偶极矩组成的等效源替代法向的电偶极矩和轴向的磁偶极矩向两边辐射时是偶对称的而横向磁偶极矩的辐射是奇对称的调整两源的相对振幅能抵消在隔离端口上的辐射加强耦合端口上的辐射对于平行波导耦合是通过小孔离波导窄壁的距离s控制而对于斜交波导耦合是通过两波导之间的角度控制的 com 多孔耦合器及其工作原理 两孔有四分之一波长在耦合口波同相叠加在隔离口反向相消耦合度有较低的频率依赖性方向性对频率有较高的依赖 com 波导双T和魔T 魔T与混合环有相似的性质 1双T及其性质 将具有共同对称面的E―T接头和H―T接头组合起来平分臂隔离臂性质 1 口输入等幅反相输出口输出为0 2 口输入等幅同相输出口输出为0 3 等幅同相输入口无输出口有输出4 等幅反相输入口有输出口无输出 5 口输入等副同相输出口无输出由上述性质有魔T的S参数为由S矩阵端口1和4互相隔离端口2和3也互相隔离 K即S31幅值的平方 Lange耦合器还有助于补偿偶模和奇模相速的不相等缺点在于对跨线之间的连接线加工困难两种情况一种是奇偶模反射系数都为0传输系数不相等对应耦合器14隔离3耦合另一种是奇偶模系数等幅反相传输系数相等对应耦合器13隔离4耦合奇偶模分别得到的反射系数和传输系数代入前面31页的S参数和奇偶模反射系数传输系数的关系式中可得分支线耦合器的S矩阵注1无耗的四端口器件可同时实现互易和各端口的匹配 2若14端口匹配23端口会自动达到匹配展开得引入偶模反射系数和传输系数和由于对称12和34可看作两根独立且完全相同的波导是其中之一的反射系数和传输系数和奇模激励时有展开得由各反射系数和传输系数的表示式求得S参量为引入奇模反射系数和传输系数和 65 分支线型定向耦合器 com 分支线型定向耦合器原理 如图示各条支线在中心频率上是四分之一波导波长由于微带的波导波长还与阻抗有关故图中支线与主线的长度不等阻抗越大尺寸越长图 6-10分支线耦合器如果分支线耦合器的各个端口接匹配负载信号从1口输入4口没有输出为隔离端2口和3口的相位差为90°功率大小由主线和支线的阻抗决定 com 分支线型定向耦合器设计 设计步骤 步骤一确定耦合系数C dB 各端口的特性阻抗Z0Ω中心频率fc基板参数εrh 步骤二计算支线和主线的归一化导纳a和b 步骤三计算特性阻抗Za 和Zb和相应的波导波长步骤四用软件计算微带实际尺寸 com 分支线型定向耦合器设计实例 设计3dB分支线耦合器负载为50Ω中心频率为5GHz基板参数为εr=96h 08mm 步骤一确定耦合器指标 步骤二计算归一化导纳 b a 1 步骤三计算特性阻抗步骤四计算微带实际尺寸 支线 50Ω W 083 mm L 602mm 主线 353Ω W 136 mm L 584 mm com 如何直接写出其S矩阵3dB com 如何由奇偶模分析法验证其S矩阵 对于偶模对于奇模奇偶模叠加得当频率在中心频率附近变化10时相差也改变±50由于超出带宽10外的隔离度不能接受其有用带宽限制在10理论上能设计成3~9dB的耦合度 a2 a1 b 接上页 R 1 075 05 13 0707 0614 05 b 1414 161 2 a1 1 1 1 1 a2 1 134 2 3 分支线定向耦合器圆形分支线耦合器 66 环形桥定向耦合器 混合环又称环形桥两个输出端口相差180°也称为鼠笼式混合接头匹配T型混合接头魔T 用波程相移解释当信号从端口1输入时到端口2为90°到端口3为270°故端口3比端口2滞后180°端口1的信号经端口2到达端口4为180°经端口3到达端口4为360°两路信号相位相反在端口4抵消形成隔离端 理论上环形桥的两个输出口的功率比值可以是任意的实际中各个环段上的阻抗不宜相差太大差别过大难于实现工程中两个输出口多是等功率的等功率输出环形桥的用途与分支线相同频带和隔离特性比分支线更好由于隔离口夹在两个输出口之间输出信号要跨过隔离端实现起来不如分支线方便 混合环的设计关键是按照分配比计算阻抗值和长度对于等分环形桥有 Z1 Z2 Z0 每个端口之间的距离为λg4或3λg4 带宽约为20 com 如何直接写出其S 矩阵3dB com 如何由奇偶模分析法验证其S矩阵 和端口与差端口当信号从端口3和端口2输入时在端口1将形成输入信号的和在端口4将形成输入信号的差因此称端口1为和端口端口4为差端口让单位振幅波信号从和端口1输入对于偶模对于奇模按转移矩阵的定义和它与反射系数传输系数的关系可得让单位振幅波信号从差端口4输入对于偶模对于奇模按转移矩阵的定义可得尺寸压缩的准集中式混合接头取尺寸压缩的鼠笼式混合接头集中参数鼠笼混合接头 RFMW 成都信息工程学院电子工程学院 RFmw 第6章定向耦合器 61 定向耦合器的基本原理 62 集总参数定向耦合器 63 耦合微带定向耦合器 64应用奇偶模理论分析定向耦合器 65 分支线型定向耦合器 66 环形桥定向耦合器 67 波导定向耦合器 61 定向耦合器的基本原理 com 定向耦合器的技术指标 包括频率范围插入损耗耦合度方向性隔离度幅度平衡度相位一致性等 1 工作频带定向耦合器的功能实现主要依靠波程相位的关系也就是说与频率有关 2 插入损耗主路输出端和主路输入端的功率比值包括耦合损耗和导体介质的热损耗 3 耦合度描述耦合输出端口与主路输入端口的比例关系通常用分贝表示dB值越大耦合端口输出功率越小耦合度的大小由定向耦合器的用途决定 4 方向性描述耦合输出端口与耦合支路隔离端口的比例关系理想情况下方向性为无限大 5 隔离度描述主路输入端口与耦合支路隔离端口的比例关系理想情况下隔离度为无限大 com 定向耦合器的原理定向耦合器是个四端口网络结构描述定向耦合器特性的三个指标间有严格的关系即方向性=隔离度-耦合度图6-1 定向耦合器方框图若P1P2 P3P4皆用毫瓦mW来表示定向耦合器的四大参数则可定义为插入损耗方向性耦合度隔离度 62 集总参数定向耦合器 com 集总参数定向耦合器设计方法 常用的集总参数定向耦合器是电感和电容组成的分支线耦合器其基本结构有两种低通L-C式和高通L-C式图 6-2 L-C分支线型耦合 a 低通式 b 高通式集总参数定向耦合器的设计步骤 步骤一确定耦合器的指标包括耦合系数C dB 端口的等效阻抗Z0Ω电路的工作频率fc 步骤二利用公式计算出kZ0s及Z0p 步骤三利用下列公式计算出元件值 1 低通L-C式 2 高通L-C式步骤四利用模拟软件检验再微调 com 集总参数定向耦合器设计实例 设计一个工作频率为400 MHz的10 dB低通L-C支路型耦合器Z0 50 Ω要求S11≤-13dB S21≥-2 dB S31≥-13 dBS41≤-10 dB 步骤一确定耦合器的指标C -10dBfc 400MHz Z0 50 Ω 步骤二计算KZ0s Z0p 步骤三利用下列公式计算元件值图 6-3低通L-C支路型耦合器等效电路步骤四仿真计算图 6-4 低通L-C支路型耦合器仿真结果 63 耦合微带定向耦合器 com 平行耦合线耦合器基本原理 通常它由主线和辅线构成两条平行微带的长度为四分之一波长信号由1口输入2口输出4口是耦合口3口是隔离端口因在辅线上耦合输出的方向与主线上波传播的方向相反它也被称为反向定向耦合器当导线12中有交变电流i1流过的时候由于43线和12线相互靠近43线中耦合有能量能量既通过电场以耦合电容表示又通过磁场以耦合电感表示耦合通过耦合电容Cm的耦合在传输线43中引起的电流为ic4和ic3 图 6-5平行线型耦合器图6-6 耦合线方向性的解释④③同时由于i1的交变磁场的作用在线43上感应有电流iL 根据电磁感应定律感应电流iL的方向与i1的方向相反所以能量从1口输入耦合口就是4口而在3口因为电耦合电流的ic3与磁耦合电流iL的相位相反而叠加抵消故3口是隔离口 com 平行耦合线耦合器设计方法 平行线耦合定向耦合器的设计步骤 步骤一确定耦合系数C dB 各端口的特性阻抗Z0Ω中心频率fc基板参数εrh 步骤二计算奇模阻抗和偶模阻抗Z0e和Z0o 步骤三依据基板参数εr h利用软件 ADS 计算微带耦合线的宽度及间距W S和四分之一波长的长度P 步骤四利用模拟软件检验再微调 com 平行耦合线耦合器设计实例 设计一个工作频率为750 MHz的10dB平行线型耦合器 Z0 50 Ω 步骤一确定包括C -10dBfc 750MHz FR4基板参数εr 45 h 16 mmtanδ 0015材料为铜 1 mil 步骤二计算奇偶模阻抗步骤三建立图示电路拓扑计算得W 238mmS 031mmP 5716mm且50Ω微带线宽度W50 292mm 图 6-7平行线型耦合器电路图仿真结果如图示 图 6-8平行线型耦合器仿真结果在上述平行耦合线定向耦合器的基础上可以得到各种变形结构结构越复杂计算越困难在正确概念的指导下实验仍然是这类电路设计的有效方法图 6-9耦合线的变形改善频率特性图 6-9耦合线的变形增大耦合度紧耦合图 6-9耦合线的变形高方向性图 6-9耦合线的变形拓展带宽问题图示定向耦合器结构完全对称若从三端口输入信号插入衰减耦合度方向性和隔离度怎么表示平行耦合有窄边耦合和宽边耦合形式其特性可由偶模和奇模的适当线性组合实现带状线耦合为TEM波微带线为准TEM波宽频带的多节耦合器可以制作成关于中央节对称的也可制作成不对称的 Lange耦合器也称交指耦合器左为四指耦合右为其展开型使线两边的杂散场对耦合也有贡献实现紧耦合这样容易达到3dB耦合并有一个倍频程或更宽的带宽 64 应用奇偶模理论分析定向耦合器 设有幅度为1的波从端口1输入分解为奇偶模激励考虑对称性和互易性其S矩阵为偶模激励时有RFMW 成都信息工程学院电子工程学院 RFmw K即S31幅值的平方 Lange耦合器还有助于补偿偶模和奇模相速的不相等缺点在于对跨线之间的连接线加工困难两种情况一种是奇偶模反射系数都为0传输系数不相等对应耦合器14隔离3耦合另一种是奇偶模系数等幅反相传输系数相等对应耦合器13隔离4耦合奇偶模分别得到的反射系数和传输系数代入前面31页的S参数和奇偶模反射系数传输系数的关系式中可得分支线耦合器的S矩阵注1无耗的四端口器件可同时实现互易和各端口的匹配 2若14端口匹配23端口会自动达到匹配。
定向耦合器参数
定向耦合器是一种能够使传输信号按照指定方向传播的设备,其可以实现某个特定方向的特定信号的通过,而不会向其他方向传播,因此特别适用于在干扰比较严重的情况下的信号传输,它的参数有: 1、阻抗:定向耦合器的阻抗主要取决于物理结构和它的电气负载。
根据传输的信号类型,有50欧姆,75欧姆和93欧姆三种不同的阻抗值,其中50欧姆是最常用的阻抗。
2、传输损耗:传输损耗是指信号通过定向耦合器以后,能够有效传输的部分,也就是信号传输的系数,叫做传输损耗,它的值越小,表示信号传输的系数越高,传输的信号也就越强。
3、绝缘电阻:它是用来测量几个不同的电源桥连接的定向耦合器之间的静电耦合的一个参数,它可以测出定向耦合器之间的静电耦合关系,如果绝缘电阻过大,可能会影响定向耦合器的正常操作。
4、频率范围:定向耦合器的频率范围指的是它可以处理的信号的频率范围,如果信号频率超出定向耦合器的频率范围,那么频率超出的信号将不会被正常传输,可能会影响定向耦合器正常运行。
- 1 -。