曲线超过、缩短轨计算
- 格式:doc
- 大小:460.00 KB
- 文档页数:23
曲线缩短轨布置曲线缩短轨布置(区间左)一、铺入缩短轨的原则:凡内外股钢轨接点间隔量达至延长轨标准延长量k的一半时,即为应当铺入一根延长轨。
二、缩短轨适用范围:表中1-1缩短轨的缩短量(mm)曲线半径(m)25m钢轨4000~1000800~500450~2002004080160―80160――40408012012.5m钢轨―80120―注:每处曲线应选用同一种表列缩短量较小的缩短轨。
三、曲线延长轨设置延长量计算:1.圆曲线内股钢轨缩短量εy=s1*ly/r(1-1)式中εy―圆曲线内股延长量(mm);s1―内外轨中心距(1500mm);r―曲线半径(m);ly―圆曲线长度(m)。
2.缓解曲线内股钢轨延长量2εh=s1*l/2rl0(1-2)式中εh―缓解曲线始点至缓解曲线就任一点内股理应的延长量(mm);l―缓解曲线就任一点至始点的轨长;r―曲线半径(m);l0―缓解曲线短(m)。
3.曲线全长内股钢轨延长量2ε总=2εh+εy=2*s1*l/2rl0+s1*ly/r=s1*(l0+ly)/r(1-3)4.延长轨根数确认n=ε总/k(1-4)式中n―延长轨的根数;k―缩短轨的标准缩短量(mm)。
外股轨所须要标准轨的根数n0为n0=(2l0+ly)/l标+a(1-5)式中l标―标准轨长度(m);a―轨缝(m)。
延长轨根数n应当不大于曲线外股铺设钢轨总根数,即为n≤n0(1-6)否则应选用缩短量更大的缩短轨。
四、排序:jd188(交点号)曲线要素:az=93°3′36″(夹角);r=500(曲线半径);l=120(缓和曲线长);t=593.32(切线长);l=936.47(曲线总长);zh=213+651.09hy=213+771.09yh=214+467.56hz=214+587.56;216+100至216+650段坡度为10‰;215+700至216+100段坡度为11.5‰;214+600至215+700段坡度为12‰;212+850至214+600段坡度为11‰;轨缝宽8mm,从直线段顺序铺入75型25m标准轨。
一、第(2)栏为每个接头到直缓点或缓圆点的距离。
例如:7.06——1号接头到直缓点的距离(实地测量)。
19.57——2号接头到直缓点的距离(计算得来)。
14.63——8号接头现缓圆点的距离<计算得来>。
二、第(3)栏为各接头处的总缩短量。
例如:第7号接头有10.39m在缓和曲线上,有2.12m进人圆曲线,其总缩短量应为一端缓和曲线总缩短量加2.12m 长的圆曲线缩短量。
三、第(4)栏为缩短轨的布置。
“○”代表标准轨;“×”代表缩短轨。
当计算的缩短轨量大于缩短轨缩短量的一半时,插入一根缩短轨。
例如:4号接头的缩短量为47mm,大于40( )mm,所以插入一缩短轨;7号接头的缩短量为158mm,158—
70=78mm>40mm,所以插入第2根缩短轨。
四、第(5)栏为实际缩短量。
当插入一根缩短轨时,实际缩短量就缩短80mm。
例如:4号接头插入第1根缩短轨,实际缩短量80mm;7号接头插入第2根缩短轨,实际缩短160mm。
五、第(6)栏为接头错量。
接头错量=第5栏-第3栏
例如:1号接头错量=0-1=-l。
4号接头错量=80-47=33。
“+”表示上股在前;“-”表示下股在前。
备注
(7)
进入缓和曲线7.06M
进入圆曲线
2.12m
进入缓各曲线
11.38m
和曲线总缩短量加2.12m 158mm,158—
短160mm。
铁路曲线缩短轨简易计算方法及布置的探讨铁路曲线缩短轨的计算方法和布置,在教科书上有严密的理论,在铁路工具书上也有介绍。
但在实际工作中仍感到比较繁琐,所以便想探求一种比较简捷易行,便于记忆的计算方法。
通过实际应用,该方法无论计算和布置缩短轨方面,还是比较简易的。
一、曲线缩短量计算图(1)1、总缩短量计算根据图(1)几何关系得:=L==L′=则曲线缩短量△L=L-L′=(R-R′)=26.18α整个曲线(包括圆曲线和两端缓和曲线)的总缩短量为:△LZ=26.18αα=+=57.3° (1)式中△LZ—曲线总缩短量(mm)α—曲线转向角R-R′—两股钢轨中心距离,一般取1500mm。
Ly—圆曲线长(m),LH—一端缓和曲线长(m)2、圆曲线缩短量计算根据圆曲线曲线长计算公式:Ly=α==57.3°同理圆曲线上任意点的转角:αi==57.3°根据公式(1)得:△Ly=26.18α(2); △Lyi=26.18αi(3)式中:△Ly—圆曲线缩短量(mm)α—圆曲线转角△Lyi—圆曲线上任意点的缩短量(mm)3、缓和曲线缩短量计算缓和曲线缩短量的计算有两种方法:(1)曲线总缩短量△LZ减去圆曲线缩短量△Ly,其差值除以2即为每端缓和曲线的缩短量△LH。
△LH= (4)(2)计算出缓和曲线切线角β,或缓和曲线上任意点的切线角βi。
根据缓和曲线切线角计算公式:β=·=28.65°,同理缓和曲线上任意点的切线角βi=·=28.65°,根据公式(1)得:△LH=26.18β (5),△Lhi=26.18βi(6)。
所以只要求出缓和曲线或圆曲线的切线角或转角,即可计算出其缩短量。
但在计算过程中应注意,因为缩短量是累计的,所以在计算圆曲线部分转角时,应把前端缓和曲线的切线角累加进去(注:转向角α在工务设备履历中查找,切线角β查《铁路曲线测设用表》)。
曲线缩短轨的计算与配置
一、曲线里股缩短轨计算与配置
(一)、缩短量计算
1、缓和曲线任意一点里股缩短量ΔL=SL2进/(2RL0);缓和曲线里股总缩短量ΔL总=SL0/(2R)。
2、圆曲线里股缩短量ΔL=SL c/R。
3、曲线总缩短量ΔL=S(L0+L c)/R。
式中S——曲线两股轨顶中线间距离,一般按1500mm计;
L进——钢轨进入曲线长度(m);
L0——缓和曲线全长(m);
L c——圆曲线全长(m);
R——曲线半径(m)。
(二)、缩短轨根数计算
缩短轨根数按下式计算:N=ΔL/K
式中K——里股每股根缩短轨的缩短量。
(三)、曲线里股缩短轨配置
曲线缩短轨排列顺序计算见下表:
里程:ZH=28+885.840 HZ=29+219.276
曲线:R=1000m L0=120m L c=93.436m 第一缓和曲线第一根钢轨伸入直线部分长度X L=4.200m 标准缩短轨长度24.960m 轨缝a=0.012m
注:①表中“Δ”代表标准长度钢轨,“×”代表缩短轨;②第二缓和曲线的累计计算缩短量,由缓和曲线终点倒求;③计算“累计计算缩短量”与“实际累计缩短量”之差值为“+”时,外股落后于里股,“—”时相反。
二、标准缩短轨与使用条件
(一)、标准缩短轨长度的规定:见下表
(二)、缩短轨使用条件:
见下表。
说明:设计依据:3、缩短轨的数量及其配置原则:计算出整个曲线的总缩短量后,选用缩短量为k的缩短轨,即可求出整个曲线上所需的缩短轨根数N : N=Δl Z /k N值不能大于外轨线上铺设的标准轨根数N O ,否则应改用缩短量更大的缩短轨。
考虑到曲线和圆曲线的缩短量计算不同,故需要分段计算。
(1)第一缓和曲线(ZH~HY):将坐标原点置于ZH点,则任一接头处内轨累计缩短量计算如下:Δl =1500l 2/(2RL O )(mm) 式中:l-第一缓和曲线上任一钢轨接头至缓和曲线起点(ZH)的距离(m );R-圆曲线半径(m);LO-缓和曲线全长(m)。
(2)圆曲线(HY~YH):坐标原点仍在ZH 点,则任一接头处内轨累计缩短量为:Δl =1500l O /(2R)+1500l /R (mm)式中:l -圆曲线上钢轨接头距离圆曲线起点(HY)的距离(m)。
(3)第二缓和曲线(HY~HZ):将坐标原点置于缓和曲线的终点(),算出每个钢轨接头的内轨缩短量,在由总缩短量减去该值,则得该钢轨接头至缓和曲线起点的内轨累计缩短量为:Δl =Δl z-1500l 2/(2R l O ) (mm) 式中:Δlz-曲线总的缩短量(m); l-第二缓和曲线上任一钢轨至HZ点的曲线长(m)。
这样,即可从曲线起点开始,计算每个接头的对应的累计缩短量,当由于曲线内侧铺设缩短轨而产生的实际累计缩短量小于累计缩短量,且其差值大于所用缩短轨缩短量的一半时,就该在该处布置一个缩短轨。
每个接头计算的累计缩短量与实际的累计缩短量之差即为接头错开量。
3、单位:中铁十三局工程集团公司襄渝铁路二线工程指挥部4、请把它的缺点反馈给我,把它的优点介绍给需要它的人!5、只需要在红色区域内填写即可,根据实际情况,如果计算内容,在表格内不完全显示,请继续往下复制表格即可。
1、铁路曲线地段外股轨线比内股线长,为了保证钢轨接头采用对接方式,内股钢轨宜采用厂制缩短轨,为此需进行缩短轨计算。
R 2V 8.11第一节 曲线超高的计算一、曲线超高的确定线路曲线地段,因列车沿曲线运行而产生离心力,车体被向外推甩,外股钢轨承受较大压力,旅客感觉不舒适,离心力过大能影响行车安全 。
为抵消离心力作用,需要将外股钢轨抬高,即设置超高 。
设置超高的基本要求:保证两钢轨受力比较均匀;保证旅客有一定的舒适度, 保证行车平稳和安全 。
在满足前两项要求的前提下,实现第三项要求是没有问题的 。
1.保证两股钢轨均匀受力条件的超高计算(1)超高的理论计算为了平衡离心力而设置超高,使离心力与车辆重量的合力为作用于轨道中心点,从而使两股钢轨所受压力相等 。
如下图所示 ,J 与 G 的合力作用于 O 点时,则相应的超高为H ,将 g=9.8m/s 2 两股钢轨中心距离 1500 mm 代入离心力计算式,则计算超高的理论公式为:H=(2)平均速度的计算通过一个曲线的列车种类 、列数 、重量和速度各不相同,为了合理地设置超高,在实际计算时,必须综合各种因素,采用平均速度 。
在一般条件下,客车速度较高,列车质(重)量较小;货车速度较低,列车质(重)量较大 。
考虑列车质(重)量计算出的超高,往往比不考虑列车质 (重)量计算出的超高要小,能使两股钢轨的垂直磨耗比较均匀 。
为此采用列车速度平方及列车质(重)量加权平均方法计算平均速度,依此计算设置超高。
V J =∑∑NiQi NiQiV i 2H =R 2J V 8.11实测各类列车速度,宜在列车按运行图比较正常运行的条件下进行 。
为使测得的列车速度具有普遍性,如一昼夜的车次很少,可实测几个昼夜的车速 。
每类列车质(重)量为牵引质 (重)量加上机车质(重)量,可由各区段的统计资料中查得,或按列车运行图牵引质(重)量及机车质(重)量计算确定。
在城市地铁里是以每公里通过列数计算的,如“列•公里/公里”来计算通过量的。
可从客运部门查来一个阶段如一个月的通过量, 也按这种列车速度平方及列车质(重)量加权平均方法计算出平均速度,并以此设置超高,能使乘客乘坐舒适又安全。
为便于管理,超高 h 按5mm 的倍数设置。
2.证旅客舒适条件的超高检算各次列车是以各不相同的速度通过曲线前,设置的超高不可能使所产生的离心力完全得到平衡,因而普遍存在着超高剩余和超高不足现象 。
超高剩余时产生未被平衡向心加速度,超高不足时产生未被平衡离心加速度 。
超高剩余部分称为余超高,超高不足部分称为欠超高 。
(1)未被平衡超高与未被平衡加速度在超高 H 与离心力加速度α相平衡时H=153α,α= 153H 由此,大约150mm 的超高能与 1m/s 2 的离心加速度相平衡,亦即未被平衡欠超高或余超高每15mm ,相当于未被平衡离心加速度或向心加速度s 2 。
这样计算是在假定车辆为刚体的条件下进行的,未考虑车辆弹簧装置对未被平衡α 加速度的影响,其计算结果为理论值 。
实际上当存在余超高时,车体内侧弹簧压缩相当于增大示被平衡向心加速度;当存在欠超高时,车体外侧弹簧压缩,相当于增大了未被平衡离心加速度。
所以实际的未被平衡加速度,应加弹簧附加系数 20% 左右。
(2)未被平衡超高与旅客舒适度旅客舒适度是泛指撞车厢里旅客在生理上和心理上的舒适程度,与车辆运动状态、车厢内外环境、座位条件和旅客的身体素质等有关。
而未被平衡越高的影响,是与车辆运动状态有关的主要一项。
感觉舒适程度因人而异,未被平衡欠超高与舒适度的关系,大致如下表所列。
按实测最高行车速度检算,未被平衡欠超高 Ho一般应不大于 75mm, 即要求α值一般保持在不大于 s2的水平。
在特殊情况下Ho不得大于9Omm,即要求在特殊情况α值亦不得大于 s2。
按上例,实测最高行车速度 95km/h, 平均速度为 h, 经计算后拟设置超高为 70mm, 对未被平衡欠超高检算如下 :H0=80095958.11⨯⨯-70=63mm检算结果,未超过 75mm,不需要调整。
(3) 最大超高的限制在曲线上设置的最大超高,必须有所限制。
如设置的超高过大,当列车以低速运行时,会产生巨过大的未被平衡向心加速度,列车的质(重)量偏压在里股钢轨上,加剧里股钢轨的磨耗和压宽出肥边。
如在曲线上行车,车体间内倾斜量也大,易滚易滑的货物可能产生位移,对行车安全不利。
双线和单线的行车条件不同,最大超高的限制亦应有所不同。
双线按上下行分开行车,同一曲线上的行车速度相差较小,因而最大超高可比较大一些;单线有两方向运量不同,轻重车方向不同,以及线路坡道的影响,上下行的行车速度往往相差较大,因而最大超高应比较小一些。
据此规定最大超高:在双线上不得大于 150mm;在单线上不得大于 125mm 。
所规定的是实际设置超高的最大限度,不包括水平误差在内。
二、根据既有曲线条件检算线路容许速度双线最大超高可达15Omm, 如在曲线上停车或速度很低,则最大未被平衡余超高为 15Omm, 这种情况是允许出现的。
为在个别情况下,未被平衡离心加速度不致太大,舒适条件不致太差,需要对可能出现的最大未被平衡欠超高予以适当控制,以不大于最大未被平衡余超高为宜。
故规定按线路容许速度检算,未被平衡欠超高不得大于13Omm, 否则应进行调整。
在有的曲线上,实际行车速度普遍偏低,与区段的线路容许速度差距很大。
如按规定检算与调整超高有特殊困难,例如调整量过大,调整后会加剧钢轨磨耗,轨枕和扣件伤损,轨道几何尺寸难于保持等等。
这种情况说明,原规定偏高的线路容许速度已无必要,而应适当降低该曲线的线路容许速度。
上述最大未被平衡欠超高 130mm, 只能作为对特殊情况下的检算值,而不得作为计算曲线线路容许速度的限度值。
确定曲线线路容许速度的基本条件,一是曲线轨道有足够的强度; 二是缓和曲线和夹直线长度能满足超高顺坡的需要; 三是最大未被平衡欠超高符合前述规定。
在满足这些条件的前提下,曲线线路容许速度应符合下式:Vmax ≤R Ho H .8.11max +式中Vmax---线路容许速度 (km/h)Hmax---允许最大超高,双线 15Omm, 单线 125mm;Ho ---未被平衡欠超高,一般采用 75mmR --- 曲线半径 (m) 。
按上述计算,在一般条件下双线 Vmax ≤ R单线 Vmax ≤ R在正线上仍有未经改造的个别曲线无缓和曲线,这属于特殊情况,允许按不大于 25mm 的超高在直线上顺坡。
圆曲线始终点的未被平衡欠超高一般应不大于75mm ,曲线线路容许速度应限制在下式范围内:Vmax ≤R .8.117525+ =R第二节曲线轨距加宽原理一、曲线轨距加宽值的确定线路轨距是根据轮轨关系确定的。
机车车辆的走行部分是由两根及以上车轴组成一个转向装置,各车轴之间保持平行,且保持固定距离,形成一个矩形刚体,相距最远的两车轴之间的距离,通称为固定轴距。
当机车车辆行驶在曲线上时,两股钢轨迫使固定轴距内各轮对整体转向。
为使机车车辆平稳和安全地通过曲线,避免被卡住,并尽可能地减少轮轨磨耗及机车车辆对轨道的破坏,在半径小到一定数值的曲线上,必须将轨距适当加宽。
因为机车车辆主要是由曲线外股钢轨导向,为保持曲线外股钢轨圆顺,故规定曲线轨距加宽值加在里股,将里股钢轨向曲线内侧横移。
1. 曲线轨距加宽旧标准这项标准按我国铁路机车最大固定轴距,保证最小运营半径条件,同时按我国铁路车辆最大固定轴距,满足力学自由内接条件确定的。
所谓最小运营半径是指机车通过曲线时,不会对轨道引起急剧破坏,也不致危害行车安全所允许的最小通过半径。
一般情况下,后轴外轮的轮轨游间等于机车在直线上的正常轮轨游间,就能有足够的安全度。
力学自由内接是指在车辆的一个转向架上,前轴外轮轮缘靠贴外股钢轨,有导向力,后轴内轮不导向,作用于里股钢轨上的横向力为零,依此条件减少轮轨之间的横向作用力。
按我国铁路客车转向架最大固定轴距,客车总重为 80t,车辆轮对的正常轮轨游间δ = 18mm,通过计算看出,在半径为 30Om 的曲线上,轨距不加宽即能满足力学自由内接条件 。
半径为 250m 的曲线上,行车速度为 50km/h 时只需加宽 , 行车速度为4Okm/h 时即不需要加宽 。
由此确定我国铁路在半径为350m 及以上的曲线不作轨距加宽 。
半径为 30Om 及以上至小于350m 的曲线轨距加宽 5mm 。
为减少轨距加宽档次,半径为 30Omm 以下的曲线轨距一律加宽15mm 。
二、缓和曲线的选用机车车辆在曲线上运行时,出现在直线上运行时所没有的力,如转动车架的转向力、促使车体向曲线外侧倾斜的离心力以及由于车辆绕着竖直轴线和水平轴线转动所产生的线加速和角加速所引起的各种惯力 。
这些力,当车辆自直线进入曲线时,不应突然发生 。
在圆曲线上,外轨应有超高度,而在直线上,两钢轨顶面应在同一水平上 。
外轨超高度必须有相当长度的递减距离,如外轨超高度与曲线半径不相适应,便会使两侧钢轨磨耗不均,轨距易于变动,旅客感觉不适,甚至发生震动,造成行车不稳 。
故在直线与圆曲线之间,应有缓和曲线,使外轨按曲线变化的半径逐渐提高,并使轨距得以逐渐而圆顺地加宽 。
由此,缓和曲线应当符合下列基本要求 :一是要使车辆自直线转入缓和曲线和自缓和曲线转入圆曲线时,或自圆曲线转入缓和曲线和自缓和曲线转入直线时以及在缓和曲线上行驶时所发行的横向、竖向力,没有一个是突然发生,都是逐渐变动的; 二是要使外轨超高度及轨距加宽,在缓和曲线上全部完成,过渡时受力的逐渐变动,是由于机车车辆行驶于曲线所发生的力,主要是离心力,在缓和曲线始点的曲率为 0,终点为R 1,整个缓和曲线的曲率自 0 渐增为R1; 当行车时沿外轨转动的车轮,在缓和曲线的始点及终点,将给外轨以突然的竖向撞击力,为消除这种撞击力,在缓和曲线的始点及终点 ,必须使倾斜角等于 0,外轨超高度的顺坡成为曲线,该曲线于缓和曲线的始点及终点,各与直线上的及圆曲线上的外轨顶相切,其曲率对于弧长的一次导函数均应当为 0, 在缓和曲线上,此导函数应当连续变动; 车辆在缓和曲线上的行驶,为不稳态运动,有在直线上或圆曲线上行驶时所没有的附加力 ,这些附加力不应突然发生,并必然伴有相应的加速度,在缓和曲线的始点及终点加速度为 0, 在缓和曲线上则连续变动 。
根据上述原理,设计正确的缓和曲线应当具有的性质:一是在缓和曲线始点,缓和曲线的纵坐标、倾角和曲率均应当为0, 在曲线上某一点的倾角,为曲线之在该点的切线与横坐标轴正方向间的夹角 ;二是在缓和曲线终点,缓和曲线的纵坐标及倾角应当各等于该点的圆曲线之纵坐标及倾角,其曲率应当等于圆曲线的曲率 (R 1);三是在缓和曲线自始点至终点间的纵坐标、倾角及曲率应当连续渐增 。
我国铁路一般选用放射螺形线或三次抛物线作为缓和曲线线型 。