精确度和准确度的关系
- 格式:docx
- 大小:11.64 KB
- 文档页数:1
准确度与精确度的概念的区别有关准确度与精确度的概念的区别准确度与精密度是在科学、工程学、工业及统计学等范畴上一个重要概念。
一个结果必须要同时符合准确与精密这两个条件,才可算是精准。
以下是小编精心整理的有关准确度与精确度的概念的区别,仅供参考,欢迎大家阅读!1、准确度与精确度的概念的区别:准确度是指测定值与真实值符合的程度,表测定的正确性。
而精确值是指用相同方法对同一试样进行多次测定,各测定值彼此接近的程度。
即各次测定结果之间越接近,结果的精密度越高表现了测定的重复性和再现性。
但两者之间又有密切关系。
准确度高的前提是精密度高;但精密度高不一定准确度高;精密度不高,准确度肯定不可靠,只有准确度和精密度都好的测量值才最可靠。
2、准确度:测定结果与真实值或参考值接近的程度,表示分析方法测量的正确性,一般以回收率(%)表示。
3、精密度:指用该法经多次取样测定同一个均匀样品,各测定值彼此接近的程度。
精密度一般以标准偏差(S)或者(RSD)表示。
4、杂质限量:药物中所含杂质的最大允许量,通常用百分之几或者百万分之几来表示。
5、药品标准:国家对药品质量规格及检验方法所作的技术规定,是药品生产,供应,使用,检验和管理部门共同遵循的依据法律。
6、空白试验:指实验中不加供试品,或以等量的容积代替供试液,或试验中不加有关试剂,按供试品溶液同样的方法和步骤操作。
7、阴性对照:为了考察制剂中其他药味对欲鉴别药味薄层色谱的干扰。
8、线性考察的目的:(1)确定关系是否为线性关系:(2)确定线性关系的范围:(3)看直线是否过原点以确定用一点法测还是两点法测量。
9、薄层色谱鉴别对照物有哪几种:对照品,对照药材,阴性对照。
10、举例说明一般杂质和特殊杂质含义?答:一般杂质:指在自然界中分布较广泛,在药材的采集,收购,加工以及制剂的生产或储存过程中容易容易引入的杂质,如:酸,碱,水分,氯化物,硫酸盐,铁盐,重金属,砷盐等。
特殊杂质:指的是个别中药制剂中所含有的杂质,是在制备或储存过程第一文库网中,因制备工艺的`特殊性或药物本身性质的特殊性而引入的一类杂质。
测量工程师的规范要求准确性与精确度的关系测量工程师在工程领域扮演着至关重要的角色,其工作涉及到各种测量任务,包括长度、角度、体积等各项参数的测量。
其中,准确性和精确度是评估测量结果的两个重要指标。
本文将探讨测量工程师的规范要求与准确性、精确度之间的关系。
一、准确性的定义和重要性准确性是指测量结果与真实值之间的接近程度。
在测量工程中,准确性是评估测量结果可靠性的基础,直接影响到工程设计和施工的精确性和可行性。
准确的测量结果可以避免工程偏差,确保工程质量的稳定和可持续性。
二、精确度的定义和重要性精确度是指测量结果重复性或一致性的程度。
与准确性不同,精确度侧重于测量结果的稳定性和可重复性。
精确度高的测量结果具有较小的误差范围,多次测量结果的差异较小。
在工程测量中,精确度的提高可以大大降低工程成本和资源浪费。
三、测量工程师的规范要求为了保证测量结果的准确性和精确度,测量工程师需要符合一系列的规范要求。
首先,测量工程师必须掌握专业的测量技术知识和操作技巧,熟悉各种测量仪器的使用方法。
其次,测量工程师需要具备严格的工作纪律,保持专注和细致的工作态度。
第三,测量工程师应具备高度的责任心和纪律性,严格按照相关标准和规范进行测量操作。
最后,测量工程师需要不断学习和提升自身的专业能力,跟上工程测量领域的最新技术和发展趋势。
四、准确性与精确度的关系在测量工程中,准确性和精确度是密不可分的。
准确性是保证测量结果与真实值接近,而精确度则是保证多次测量结果的一致性和稳定性。
准确性是精确度的基础,只有准确的测量结果才能有较高的精确度。
相反,准确性低的测量结果无法保证其精确度,即使多次测量结果一致,但其与真实值之间的偏差依然存在。
准确性和精确度的关系可以用以下图表表示:[图表]从图表中可以看出,准确性和精确度的关系是相互依存的。
只有准确的测量结果才能有较高的精确度,而精确度的提高也需要准确性的支撑。
因此,测量工程师需要在工作中同时注重准确性和精确度的要求。
精度与准确度是两个不同的概念近年来,有关精度(或者说精确度) 的概念常常被误读或者误解,甚至被滥用.尤其是与计量学意义上的准确度常常被所谓的“精确度”概念所取代。
这种情况在近年的网文或者科普文章中经常出现,甚至一些大的媒体也常常把精度和准确度这两个不同的概念混为一谈。
作为信息传播或者科学普及,这是很不应该的。
作为计量学的定义,国际计量学术界和工程界对二者是有严格区分和定义的,绝对不能混为一谈,尤其是把“精度就是一切”作为一种对技术性能的文字表达是完全错误的。
精确度指被测量的测得值之间的一致程度以及与其“真值”的接近程度,即是精密度和正确度的综合概念。
从测量误差的角度来说,精确度(准确度)是测得值的随机误差和系统误差的综合反映。
准确度指在一定实验条件下多次测定的平均值与真值相符合的程度,以误差来表示。
它用来表示系统误差的大小。
也就是说, 精确度,系指被测量的测得值之间的一致程度以及与其“真值”的接近程度,即是精密度和正确度的综合概念。
从测量误差的角度来说,精确度(准确度)是测得值的随机误差和系统误差的综合反映。
而准确度指在一定实验条件下多次测定的平均值与真值相符合的程度,以误差来表示。
它用来表示系统误差的大小。
如果进一步解释。
精密度,系指在相同条件下,对被测量进行多次反复测量,测得值之间的一致(符合)程度。
从测量误差的角度来说,精密度所反映的是测得值的随机误差。
精密度高,不一定正确度(见下)高。
也就是说,测得值的随机误差小,不一定其系统误差亦小。
正确度,系指被测量的测得值与其“真值”的接近程度。
从测量误差的角度来说,正确度所反映的是测得值的系统误差。
正确度高,不一定精密度高。
也就是说,测得值的系统误差小,不一定其随机误差亦小。
所以精度就是一切的说法不准确,应当是精度+准确度才能完整地表述。
例如通俗地讲,飞机用导弹打一个靶子,弹着点之间分布的大小表征的是精度,而着弹点离靶心的偏差大小表征的就是准确度。
测量中的重要概念——精确度,准确度,敏感度和分辨率问题简述:在测量中经常会遇到测量精确度(accuracy)、准确度(precision)、敏感度(sensitivity)以及分辨率(resolution)的概念,它们的含义是什么,以及在何种程度上会影响到测量结果,是不是分辨率越高精确度就越好,本文就这些内容作一个探讨。
问题解答:对于精确度(accuracy)和准确度(precision),简单来说,精确度表征的是测量结果与真实值偏差的多少,准确度则是指多次测量结果的一致性如何。
以下图为例,我们将测量比作打靶。
精确度越高,多次测量结果取平均值就越接近真实值;准确度越高,多次测量结果越一致。
工程应用中,准确度(precision)也是一个十分重要的指标。
由于实际现场存在许多不可预期因素,测量结果的精确度总是会随着时间、温度、湿度、光线强度等因素的变化而发生变化。
但如果测量的准确度足够高,即测量结果的一致性较好,就可以通过一定的方式对测量结果进行校正,减小系统误差,提高精确度。
在测量系统中,分辨率(resolution)和敏感度(sensitivity)也是常见指标。
以NI 的M 系列数据采集卡为例。
下图是NI 6259 的部分技术参数:可以看到,6259 模拟输入的分辨率是16 位,即采用的是16 位的ADC。
那么在满量程下(-10,10V),ADC 的码宽为20/2^16=305µV ,通常我们也将该值称为1LSB(1LSB = V FSR/2N,其中V FSR为满量程电压,N 是ADC 的分辨率)。
在满量程下,6259 的精确度为1920µV。
敏感度是采集卡所能感知到的最小电压变化值。
它是噪声的函数。
数据采集卡可能在基准电压,可编程仪器放大器(PGIA),ADC 等处引入测量误差,如下图所示。
NI 的数据采集卡精确度遵循以下计算公式:精确度= 读数×增益误差+ 量程×偏移误差+ 噪声不确定度增益误差= 残余增益误差+ 增益温度系数×上次内部校准至今的温度改变+ 参考温度系数×上次外部校准至今的温度改变偏移误差= 残余偏移误差+ 偏置温度系数×上次内部校准的温度改变+ INL_误差可以在625X 的技术手册中查找公式中的各项参数,如下表所示:其中增益误差主要由于放大器的非线性引起,而ADC 的分辨率主要影响INL(Integral nonlinearity)误差(积分非线性误差)。
精度、精密度、精确度、准确度、正确度等释义与应用谭恺炎毛华为董志广朱利春摘要:通过比较前苏联、我国计量术语标准以及国际通用计量术语标准的定义及其发展历程,还“精度”一词本来面目,并进行重新定义。
论证精度不同于精密度、也不同于准确度和正确度,而是一个类似于准确度概念的可定量。
关键词:精度、精密度、精确度、准确度、正确度1 引子当前在一些技术标准中经常需要对一些测量仪器和测量结果的准确性进行定量规定,有用准确度表示,也有用精度来表示的。
尤其是关于精度一词,长期以来颇受争议,有作精密度解,也有作精确度解,有必要追根溯源来探讨一下这些基本计量术语的内涵及其发展过程。
2早期概念关于精度、精密度、精确度、准确度、正确度等概念,计兵于1995年12月发表在《宇航计测技术》第6期的‘“准确度”和“精度”’一文详细介绍了前苏联标准和我国早期标准的相关解释:① 1970年,前苏联发布了计量术语标准ΓOCT16263-70,之后,哈尔滨工业大学121教研室和黑龙江省计量处长度室翻译成中文,有关定义如下:测量准确度Accuracy of measurements反映测量结果与被测量的真值接近程度的那个量。
注:1测量的高准确度相应于各种小的测量误差(无论是系统误差还是偶然误差)。
2数量上,准确度可用相对误差的倒数来表示。
测量精度Precision of measurements反映在相同条件下测量结果相互间接近程度的那个量。
该标准明确“准确度”与“精度”是两个不同的概念,其对应的英文名词分别为Accuracy和Precision,且都是定量的概念。
首次提出“精度”概念,显然,这里的精度是精密度的意思。
②《中华人民共和国计量器具检定规程》JJG1001-82 有关定义如下:准确度(精确度)Accuracy是测量结果中系统误差与随机误差的综合,表示测量结果与真值的一致程度。
注:从误差观点来看,准确度反映了测量的各类误差的综合。
误差、精确度、不确定度、估读、有效数字广州番禺王耀强1、误差系统误差:仪器误差△仪、方法误差等。
随机误差:可以采取多次测量,以算术平均值代表真值的方法减小随机误差。
随机误差常用标准偏差来衡量。
过失误差:操作错误所致2、精确度与准确度、精密度准确度是多次测量时,平均值与真值之间的差距。
精密度是数据的一致性,体现出数据分布的分散性(集中性)。
精确度是准确度和精密度的综合。
形象的理解见下图的射击分布:一般来说,仪器的精密度越高,精确度也越高,仪器误差△仪越小。
精确度、仪器误差尽管与分度值的大小有关,但并不等同于分度值的大小。
比如,两个分度值相同的不同型号电流表,它们的精确度、仪器误差△仪未必相同。
不同仪器的允许误差(极限误差)数值的确定依据不同。
有的看仪器上标示的精确度等级(电流表等仪表),有的看感量(天平),有的看分度值(刻度尺、螺旋测微器),要不就查阅说明书等等。
3、不确定度:由于测量数据的真值是不可知的,所以误差也是不可得的,只能通过统计等方法进行估算。
不确定度是对测量结果的评定,表征测量结果的分散性,在一定置信概率内,真值的分布区间大小。
测量结果以平均值表示,也就是评定这个平均值代表真值的信度。
不确定度虽然需综合系统、随机误差的考量,但不等同于误差。
(1)A类不确定度uA :取平均值的样本标准偏差,uu AA xxσσxx1ii2nn。
其中,xx是平均值,σσxx是测量值的样本标准偏差,σσxx是平均值的样本标准偏差。
:常取为 u BB=∆仪√3。
其中,△仪为仪器误差。
B类不确定度uB总不确定度U=�uu AA2+uu BB2。
不确定度的数值一般只取一位(有时会是两位)有效数字。
(2)一次直接测量时,数据的不确定度只是B类不确定度uB(3)多次直接测量时,不确定度U=�uu AA2+uu BB2理论上,测量次数越多就越好。
但是,一般多于10次后,不确定度的变化已经不大,而趋于恒值了。
所以一般来说,只需测量5至10次就足够了。
准确度指在一定实验条件下多次测定的平均值与真值相符合的程度,以误差来表示.它用来表示系统误差的大小.在实际工作中,通常用标准物质或标准方法进行对照试验,在无标准物质或标准方法时,常用加入被测定组分的纯物质进行回收试验来估计和确定准确度.在误差较小时,也可通过多次平行测定的平均值作为真值μ的估计值.测定精密度好,是保证获得良好准确度的先决条件,一般说来,测定精密度不好,就不可能有良好的准确度.对于一个理想的分析方法与分析结果,既要求有好的精密度,又要求有好的准确度.精密度是指多次重复测定同一量时各测定值之间彼此相符合的程度.表征测定过程中随机误差的大小.精密度是表示测量的再现性,是保证准确度的先决条件,但是高的精密度不一定能保证高的准确度.准确度指在一定实验条件下多次测定的平均值与真值相符合的程度,以误差来表示。
精密度是指多次重复测定同一量时各测定值之间彼此相符合的程度,表征测定过程中随机误差的大小。
在规定条件下所得独立试验结果间的符合程度。
准确度和精密度是两个不同的概念,但它们之间有一定的关系。
应当指出的是,测定的准确度高,测定结果也越接近真实值。
但不能绝对认为精密度高,准确度也高,因为系统误差的存在并不影响测定的精密度,相反,如果没有较好的精密度,就很少可能获得较高的准确度。
可以说精密度是保证准确度的先决条件。
精密度是表示测量的再现性,是保证准确度的先决条件,但是高的精密度不一定能保证高的准确度。
好的精密度是保证获得良好准确度的先决条件,一般说来,测量精密度不好,就不可能有良好的准确度。
反之,测量精密度好,准确度不一定好,这种情况表明测定中随机误差小,但系统误差较大。
准确度用来表示系统误差的大小。
在实际工作中,通常用标准物质或标准方法进行对照试验,在无标准物质或标准方法时,常用加入被测定组分的纯物质进行回收试验来估计和确定准确度。
反映系差的大小,指数据的均值偏离真值的程度。
对不同的规定条件,有不同的精密度的度量。
灵敏度精密度准确度精确度概念区分Last revised by LE LE in 2021灵敏度精密度准确度精确度概念区分灵敏度、精密度、准确度和精确度是物理实验教学中经常用到的,然而又是很容易混淆的几个概念。
这几个概念,有的是尽对仪器而言的,有的即使对仪器又是对测量而言的。
本文拟就从仪器和测量两方面对此予以简述。
1、仪器的灵敏度、精确度和准确度:1.1仪器的灵敏度:灵敏度是指仪器测量最小被测量的能力。
所测的最小量越小,该仪器的灵敏度就越高。
如天平的灵敏度,每个毫克数就越小,即使天平指针从平衡位置偏转到刻度盘一分度所需的最大质量就越小。
又如多用电表表盘上标的数字“20kΩ/V”就是表示灵敏度的。
它的物理意义是,在电表两端加1V电压时,使指针满偏所要求电表的总内阻Rv(表头内阻与附加电压之和)为20kΩ。
这个数字越大,灵敏度越高。
这是因为U=IgRv,即Rv/U=1/Ig,显然当Rv/U越大,说明满偏电流Ig越小,即该电表所能测量的最小电流越小,灵敏度便越高。
仪器的灵敏度也不是越高越好,因为灵敏度过高,测量时的稳定性就越差,甚至不易测量,即准确度就差。
故在保证测量准确性的前提下,灵敏度也不易要求过高。
灵敏度一般是对天平和电气仪表等而言,对直尺、卡尺、螺旋测微器则无所谓。
1.2仪器的精密度:仪器的精密度,又称精度,一般是指仪器的最小分度值。
如米尺的最小分度为1mm,其精密度就是1mm,水银温度计的最小分度为0.2℃,其精度就是0.2℃。
仪器的最小分度值越小,其精度就越高,灵敏度也就越高。
比如最小分度为0.1℃的温度计就比最小分度为0.2℃的温度计灵敏度和精密度都高。
在正常使用情况下,仪器的精度高,准确度也就高,这表明仪器的精度是一定准确度的前提,有什么样的准确度,也就要求有什么样的精度相适应。
这正是人们常用精度来描述一起准确度的原因。
但是,仪器的精度并不能完全反映出其准确度。
例如一台一定规格的电压表,其内部的附加电压变质,使其实际准确度下降了,但精度却不变。
误差\准确度\精密度和不确定度的定义以及它们之间的关系在产品质量检验的实际工作中,时常会遇到误差值、准确度、精确度和不确定度问题。
特别是一次性的检验活动中,如食品、酒类样品的分析;建筑材料(水泥、砖、钢筋)的检验;轻纺产品的检测等等,都离不开这些定义的运用与归纳。
因此,作为检验、检测的技术机构应充分掌握和理解它们之间的关系,并在实际检验工作中运用好准确度与误差值、精密度和不确定度之间的关系。
对正确判定检验结论有很大的帮助。
1误差的定义误差是指测定的数值或其他近似值与真值的差。
例如:以0. 33代替1/3,其绝对误差就是1/300;相对误差就是l%。
2准确度的定义准确度是指测量值与真实值之间相符合的程度。
准确度的高低常以误差的大小来衡量。
即误差越小,准确度越高;误差越大,准确度越低。
为了说明一些仪器测量的准确度,常用绝对误差来表示。
如:分析天平的称量误差是±0.0002g;常量滴定管的读数误差是±0. 01ml等等。
3精密度的定义精密度是指在相同条件下,n次重复测量结果彼此相符合的程度。
精密度的大小,常用偏差表示,偏差越小,说明精密度越高。
为能准确衡量精密度,一般用标准偏差来表示。
其数学公式为:样本标准偏差S= [∑(Xi - X)2/(n-1)] 。
4不确定度的定义在《国际计量学基本和通用术语词汇表》中不确定度的定义为:表征合理地赋予被测量之值的分散性与测量结果相联系的参数。
在实际工作中,结果的不确定度,可能有很多来源。
如定义不完整,取样、基体效应和干扰,环境条件,质量和容量仪器的不确定度,参考值,测量方法和程序中的估计和假定以及随机变化等。
例如,对二等铂铑10 ——铂热电偶标准装置不确定度的评定,当在800℃点时,校准证书上表明,修正值为0.6℃,测得的平均值是800. 2℃,则实际结果为:t= 800.2℃+0. 6℃=800.80℃,其中不确定度U95=1.5℃(置信概率95%时,则KP =2)。
精确度和准确度的关系
准确度指在一定实验条件下多次测定的平均值与真值相符合的
程度,以误差来表示。
它用来表示系统误差的大小。
精确度,系指被测量的测得值之间的一致程度以及与其“真值”的接近程度,即是精密度和正确度的综合概念。
从测量误差的角度来说,精确度(准确度)是测得值的随机误差和系统误差的综合反映。
精密度,系指在相同条件下,对被测量进行多次反复测量,测得值之间的一致(符合)程度。
从测量误差的角度来说,精密度所反映的是测得值的随机误差。
精密度高,不一定正确度(见下)高。
也就是说,测得值的随机误差小,不一定其系统误差亦小。
正确度,系指被测量的测得值与其“真值”的接近程度。
从测量误差的角度来说,正确度所反映的是测得值的系统误差。
正确度高,不一定精密度高。
也就是说,测得值的系统误差小,不一定其随机误差亦小。