第1部分 第1章 第2节 二次根式及其运算
- 格式:doc
- 大小:311.50 KB
- 文档页数:15
北师大新版九年级数学上册教案带教学反思北师大新版九年级数学上册教案及教学反思第一章代数基础第一节:一元二次方程及其解法教学目标:一、理解一元二次方程的概念及一般形式。
二、掌握一元二次方程的求解方法(直接开平、因式分解、配方法等)。
三、培养学生的运算能力和问题解决能力。
教学过程:一、导入新课:通过复习线性方程,引导学生理解方程的重要性,并提出一元二次方程的概念。
二、新课讲解:讲解一元二次方程的概念、一般形式及解的性质。
通过实例演示各种解法。
三、课堂练习:学生独立解决一元二次方程问题,教师巡视指导。
四、布置作业:给学生布置相关习题,加强一元二次方程的解法练习。
教学反思:学生对一元二次方程概念的理解较为到位,但在应用因式分解法解决方程时存在困难,需要更多的实践训练。
在后续教学中,我将加强对因式分解法的讲解和练习。
第二节:二次函数及其性质教学目标:一、理解二次函数的定义和基本形式。
二、掌握二次函数的性质(开口方向、顶点、对称轴等)。
三、能应用二次函数的性质解决实际问题。
教学过程:一、导入新课:回顾一元二次方程,引出二次函数的概念。
二、新课讲解:讲解二次函数的定义、基本形式及性质。
展示二次函数的应用。
三、课堂互动:让学生观察不同形式的二次函数,总结其性质。
四、布置作业:让学生解决与二次函数相关的实际问题。
教学反思:学生对二次函数的基本概念理解较好,但在应用二次函数性质解决实际问题时存在困难。
在今后的教学中,我将更多地结合生活实际,帮助学生理解并应用二次函数。
第二章几何基础第一节:圆的基本性质教学目标:一、理解圆的概念和性质。
二、掌握圆的周长和面积计算。
三、能应用圆的基本性质解决实际问题。
教学过程:一、导入新课:通过生活中的圆形物体,引出圆的概念。
二、新课讲解:讲解圆的基本性质、周长和面积的计算方法。
展示圆的应用。
三、实践操作:让学生通过实际操作,加深对圆的认识和理解。
四、布置作业:让学生观察生活中的圆形物体,并尝试用所学知识解决实际问题。
沪教版初中数学目录八年级数学第一册第十六章二次根式第1节二次根式的概念和性质16.1 二次根式16.2 最简二次根式和同类二次根式第2节二次根式的运算16.3 二次根式的运算第十七章一元二次方程第1节一元二次方程的概念17.1 一元二次方程的概念第2节一元二次方程的解法17.2 一元二次方程的解法17.3 一元二次方程根的判别式第3节一元二次方程的应用17.4 一元二次方程的应用第十八章正比例函数和反比例函数第1节正比例函数18.1函数的概念18.2 正比例函数第2节反比例函数18.3 反比例函数第3节函数的表示法18.4 函数的表示法第十九章几何证明第1节几何证明19.1 命题和证明19.2 证明距离第2节线段的垂直平分与角的平分线19.3 逆命题和逆定理19.4 线段的垂直平分线19.5 角的平分线19.6 轨迹第3节直角三角形19.7 直角三角形全等的判定19.8 直角三角形的性质19.9 勾股定理19.10 两点的距离公式八年级第二册第二十章一次函数第1节一次函数的概念20.1 一次函数的概念第2节一次函数的图像与性质20.2 一次函数的图像20.3 一次函数的性质第3节一次函数的应用20.4 一次函数的应用第二一章代数方程第2节整式方程21.1 一元整式方程21.2 特殊的高次方程的解法第2节分式方程21.3 可化为一元二次方程的分式方程第3节无理方程21.4 无理方程第4节二元二次方程组21.5 二元二次方程和方程组21.6 二元二次方程组的解法第5节列方程(组)解应用题21.7列方程(组)解应用题第二十二章四边形第1节多边形22.1 多边形第2节平行四边形22.2 平行四边形22.3 特殊的平行四边形第3节梯形22.4 梯形22.5等腰梯形22.6 三角形、梯形的中位线第4节平面向量积及其加减运算22.7 平面向量22.8 平面向量的加法22.9 平面向量的减法第二十三章概率初步第1节事件及其发生的可能性23.1确定事件和随机事件23.2 事件发生的可能性第2节事件的概率23.3事件的概率23.4 概率计算举例。
二次根式的运算内容分析二次根式的加减法和乘除法是八年级数学上学期第一章第一节内容,是二次根式的加、减、乘、除、乘方、开方的混合运算.它是以二次根式的概念和性质为基础,同时又紧密地联系着整式、分式的运算,也可以说它是运算问题在初中阶段一次总结性、提高性的综合学习.知识结构模块一:二次根式的加减法知识精讲1.二次根式的加法和减法:先把各个二次根式化为最简二次根式,再把同类二次根式分别合并(化简 合并).班假暑级年八2 / 19【例1】计算:(1)4817543--; (2)11(0.53)(75)38---. 【答案】(1)332;(2)3442+. 【解析】(1)原式43311=533433--=;(2)原式232353234⎛⎫⎛⎫=-⨯-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭22235343244=--+=+. 【总结】本题主要考查二次根式的加减运算,注意先化简后合并.【例2】计算:(1)2391634m m +; (2)850()p q p q-+-. 【答案】(1)m 5;(2)()q p q p -⎪⎪⎭⎫⎝⎛-+225. 【解析】(1)2323916342353434m m m m m m m +=⨯+⨯=+=;(2)82250()52()2()52()p q p q p q p q p q p q p q ⎛⎫-+=-+-=+- ⎪---⎝⎭. 【总结】本题主要考查二次根式的加减运算,注意先化简后合并.【例3】计算:例题解析(1)32832222x x x x x x + (2315032222x x x x x 【答案】(1)x x x 223422⎪⎭⎫ ⎝⎛++;(2)xx 22-【解析】(1)原式22322422224222x x x x x x x x x x ⎛=+=++ ⎝; (2)原式2122422522252222x xx x x x x x x x x x x x =⋅+-==- 【总结】本题主要考查二次根式的加减运算,注意先化简后合并.【例4】如图,长方形内有两个正方形,面积分别为4和2,求阴影部分的面积. 【答案】222-.【解析】阴影部分的宽为22-,长为2.【总结】本题主要考查利用二次根式的运算求几何图形的面积.【例5】 计算: (133244()(0)a b a b a a b a --->;(25072()m n m n--;(3221a b a b a b a b a b -++--(0)a b >>. 【答案】(1)()b a b --2;(2)()n m n m -⎪⎭⎫ ⎝⎛-+256;(3222221b a b b a +--.【解析】(1)由题可知:0>-b a ,则原式((22a b a b a b a b b a b =----=--(2)原式()()5562()262m n m n m n m n m n ⎛=--=+- --⎝(3)原式2222222222111a b a b a b a b a b a b a b ---⎛=-=--- +--⎝ 222221b a b b a+--. 【总结】本题主要考查二次根式的加减运算,注意先化简后合并.【例6】先化简,再求值:336436y x x xy xy x y y ⎛⎛+- ⎝⎝,其中32x =,27y =. 【答案】2225.【解析】原式364x x y ⎛⎛=+⋅-+ ⎝⎝43x y ⎛==- ⎝当32x =,27y =时,原式=22252723272343=⨯⨯⎪⎪⎪⎪⎭⎫ ⎝⎛⨯-. 【总结】本题主要考查二次根式的化简求值,注意先化简再带值计算.【例7】设直角三角形的两条直角边分别为a b ,,斜边为c ,周长为C . (1)如果a b ==C ; (2)如果a b ==,求C . 【答案】(1)230;(2)17058+.【解析】(1)因为2133382885022==+=+=b a c , 所以2302132122521328850=++=++=C ;(2)因为1701254522=+=+=b a c ,所以170581705553+=++=C . 【总结】本题主要考查二次根式的化简以及加法运算在几何图形中的运用.【例8】解不等式:24x x +>- 【答案】5125<x .【解析】由24x x +>24x x >-2x ->x . 【总结】本题主要考查二次根式的运算在解不等式中的运用,注意判断不等式两边所除的数的符号.1、二次根式的乘法和除法(1)两个二次根式相乘,被开方数相乘,根指数不变; (2)两个二次根式相除,被开方数相除,根指数不变.【例9】计算:(1)1232⨯;(2)4xy y ⋅.【答案】(1)68;(2)x y 2.例题解析知识精讲模块二:二次根式的乘除法师生总结1、二次根式加减法的步骤是什么?【解析】(1(2.【总结】本题主要考查二次根式的乘法运算,注意法则的准确运用.【例10】计算.(1(2;(3(4.【答案】(1)3;(2)y xy 26;(3)y yx 552;(4. 【解析】(13==;(2=;(3= (422=. 【总结】本题主要考查二次根式的除法运算,注意法则的准确运用.【例11】 计算:(1; (2;(3)53; (4【答案】(1)z xyz ;(2)36;(3)a ax 1562;(4)22222222y x y x --.【解析】(113=(2332⎛=÷== ⎝⎭;(3)53536a ax ax ==;(4 【总结】本题主要考查二次根式的乘除运算,注意法则的准确运用.【例12】 计算:(1(2)(3(0,0x y >>);(4 (0a b >>).【答案】(1)b b a --2;(2)ab 330;(3)y y x +;(4)cbca cbca ++.【解析】(1)由题意可得:0<b 2a a =⋅-=-;(2)=(3x yy+;(4=.【例13】 计算:(1);(2)⎛- ⎝【答案】(1)2-2)-【解析】(1)1515288=-=-=-(2)⎛- ⎝332122⎛⎫=-⋅-- ⎪⎝⎭ 【总结】本题主要考查二次根式的乘除运算,注意法则的准确运用以及符号的准确判定.班假暑级年八8 / 19EDCBA【例14】 如图所示,在面积为2a 的正方形ABCD 中,截得直角三角形ABE 的面积为33a ,求BE 的长. 【答案】36a . 【解析】正方形的边长为a 2,则a AB BE 3321=⋅⋅,则36aBE =. 【总结】本题主要考查二次根式的运算在几何图形中的运用.【例15】 已知2和10是等腰三角形的两条边,其面积为192,求等腰三角形的高. 【答案】腰上的高为:10190;底边上的高为382. 【解析】由题意可得:等腰三角形的三边长为10,10,2, 由2191021=⋅⋅h ,解得:10190=h ,即腰上的高为10190;由119222h ⋅⋅=,解得:382h =,即底边上的高为382. 【总结】本题考查的知识点较多,一方面考查二次根式的乘除运算,另外考查了三角形的三边关系,另一方面此题没有说明是哪条边的高,因此要分类讨论. 【例16】 解方程:32622x -=-. 【答案】324312x +=. 【解析】由32622x -=-,得:26223x =+,则22326x +=,化简,得:324312x +=. 【总结】本题主要考查二次根式的运算在解方程中的运用.随堂检测【习题1】 计算:(1) (2;(3)(⎛- ⎝. 【答案】(1)52511;(2)33172417-;(3)334.【解析】(1); (2)33172417354233224227581312325.0-=---+=---+;(3)(⎛-== ⎝ 【总结】本题主要考查二次根式的加减运算,注意先化简再合并.【习题2】 计算:(1(2)-. 【答案】(1)26-;(2)12431--.【解析】(1-(2)-+11==. 【总结】本题主要考查二次根式的加减运算,注意先化简再合并.【习题3】 计算:(1)(2)263x ⎛ ⎝;(38a 【答案】(1)y x52+;(2)xy x x 7+;(3)a a 2. 【解析】(1)+= (2)2623x ⎛=+= ⎝; (3822a == 【总结】本题主要考查二次根式的加减运算,注意先化简再合并.【习题4】 计算:(1)(-; (2)⎛- ⎝ ;(3); (4)(⎛÷ ⎝; 【答案】(1)-108;(2)34-;(3)10;(4)3236+-.【解析】(1)((108-=-=-;(2)(43⎛-=-=- ⎝ ; (3)(=;(4)((18⎛⎛÷=÷=- ⎝⎝⎭【总结】主要考查二次根式的混合运算,注意法则的准确运用以及符号的判定. 【习题5】 计算:(1)(3-;(2)3(3)a . 【答案】(1)()b ab b a -+;(2)()xy y x +-4;(3)a a a a 2221522+⎪⎭⎫ ⎝⎛-+.【解析】(1)原式(3232b a ab =+-(2)(34x y -+(3)原式21252522a a a a ⎛=++- ⎝【总结】本题主要考查二次根式的加减运算,注意先化简再合并,另外只有同类二次根式才能合并.【习题6】 计算:(1)(2; (2)(3 (4)32⎛⨯ ⎝ 【答案】(1)61230-;(2)331-;(3)332-.【解析】(1)(2121830=+-=-(2)1-(3)原式223=-=(4)原式271633881=⨯⨯== 【总结】主要考查二次根式的混合运算,注意法则的准确运用以及符号的判定. 【习题7】 计算:(1)(2)(3)3⎛ ⎝; (4)(.【答案】(1)x 365;(2)y x 2108;(3)35;(4)y xy x 2137-+.【解析】(1)155636x÷==;(2)22186108x y x y ==⋅=; (3)533⎛÷= ⎝; (4)(7272x y x y =+=+.【总结】主要考查二次根式的混合运算,注意法则的准确运用以及符号的判定.【习题8】 计算. (1(20)y >; (3(-;(4(-⨯ 【答案】(1)c abc 2;(2)xy 32;(3)a a 434-;(4)x x y 8-.【解析】(12=(2;(3((44233a a --⨯-(4(-⨯=--= 【总结】本题主要考查二次根式的乘法运算,注意法则的准确运用.【习题9】 计算. (1) (20)a b >>; (30)u >;(4)- 【答案】(1)1530;(2)bcac bc ac --;(3)uv uv515;(4)b 15-.【解析】(1)263=;(2=;(3;(4)564-=-⨯-. 【总结】本题主要考查二次根式的除法运算,注意法则的准确运用.【习题10】 计算:(1)3⎛ ⎝;(2()370,0a m ⎛<< ⎝.【答案】(1)0;(2)【解析】(1)原式2230x x y x y ⎛=+=-= ⎝;(2)原式237a m a ⎛=⋅+=- -⎝⎭【总结】本题主要考查二次根式的除法运算,注意法则的准确运用,(2)中要特别注意被开方数的符号.【习题11】 先化简后求值,当149x y ==, 【答案】0.-1y =⋅=-所以当149x y ==,时,原式30=-=.【总结】本题主要考查二次根式的化简求值.班假暑级年八14 / 19【作业1】 计算:(1)1175253108833+--; (2)()2120.12563232⎛⎫+--- ⎪ ⎪⎝⎭;(3) 11484340.533⎛⎫⎛⎫--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; (4)121813324312-+-. 【答案】(1)313-;(2)2417631+-;(3)22335+;(4)31123+. 【解析】(1)118875253108853318331333333+--=+--=-;(2)()2122211720.1256326642623232434⎛⎫+---=+--+=-+ ⎪ ⎪⎝⎭; (3) 1145484340.54333223223333⎛⎫⎛⎫---=--+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; (4)1218133333221221124312263-+-=-+-=+. 【总结】本题主要考查二次根式的加减运算,注意先化简后合并.【作业2】 计算. (1)233835082aa a a a a +-; (2)323272750.755c c c c c+-;(3)22218638xx x x x x ++; 课后作业(4)34⎛⎛- ⎝⎝()00x y >>,. 【答案】(1)a a 2162;(2)c c 33;(3)x x229;(4)xy y 8.【解析】(1)32152162aa a a a ⋅(2)原式225c c =⋅-=(3)原式22623x x x =⋅+=(4)原式7834x x ⎛⎛=--⋅ ⎝⎭⎝88==【总结】本题主要考查二次根式的加减运算,注意先化简后合并.【作业3】 计算.(10.6; (2(3(4) 【答案】(1)205;(2)8;(3)23;(4)35【解析】(110.60.63==;(28;(33122==;(4)1135+6326==-=. 【总结】本题主要考查二次根式的乘除混合运算,注意法则的准确运用.【作业4】 计算:(1)22--;(2)(;(3)(⎛⨯ ⎝; (4)62x 【答案】(1)158;(2)-6;(3)25+-a a ;(4)x 3- 【解析】(1)((22512512-=++-+-=;(2)(12186=-=-;(3)(552a ⎛⨯=+=- ⎝; (4)原式(2233x =-=-.【总结】本题主要考查二次根式的混合运算,注意法则的准确运用.【作业5】 计算.(1(;(2)1(102(0)3m m >;(3(-()00x y >>,. 【答案】(1)ab b a 29;(2)m m ;(3)x xy8-. 【解析】(1)原式22223(992b a b a b =⋅-=-=-;(2)原式21(102223m m m =⋅==;(3)原式16(483y x =-⋅=- 【总结】本题主要考查二次根式的混合运算,注意法则的准确运用. 【作业6】 化简:(1(2)20x y >>.【答案】(1)ab b ;(2)xy .【解析】(1)原式2222b b a b a b =++(2)原式22y y x y x y ===-- 【总结】本题主要考查二次根式的混合运算,注意法则的准确运用.【作业7】 若直角三角形的面积是2,求另一条直角边长及斜边上的高线长.【答案】62;632.【解析】另一条直角边长为:623182=÷;斜边上的高为:63233362=÷⋅. 【总结】本题一方面考查二次根式的化简,另一方面考查等积法的运用.【作业8】 化简:2(0,0)a a b m n ÷>>. 【答案】2221ba ab a +-.【解析】原式2221(n a m a b =⋅222222111a ab a ab m m m a b a b ⎛-+=-+= ⎝.【总结】本题主要考查二次根式的混合运算,注意法则的准确运用. 【作业9】已知3a =+3b =-22a b ab -的值. 【答案】544-.【解析】由题意有:11-=ab ,54=-b a ,所以()2211ab a b a b ab =-=⨯=--- 【总结】本题主要考查利用整体代入的思想求代数式的值.【作业10】 解关于x 的不等式:(11>;(2)())211x x +-.【答案】(1)2332--<x ;(2)52362+-->x . 【解析】(11>+,1x >,则1x >⎝⎭,1>,解得:x <-;(2)由())211x x +-,得:)22x >则x ,所以5x >.【总结】本题主要考查二次根式在解不等式中的运用,注意判定不等式两边所除的二次根式的符号.【作业11】 已知:3a b +=-,23ab =,求+的值.【答案】6623-. 【解析】由题意可得:0<a ,0<b ,则=+== 代入3a b +=-,23ab =,得原式==. 【总结】本题主要考查二次根式的化简求值,解题时注意判定a 、b 的符号,最后利用整体代入的思想求值.【作业12】 求下列式子的值:22x xy y -+,其中x y == 【答案】22.【解析】由题意有:72=+y x ,2=xy ,∴()(222233222x xy y x y xy -+=+-=-⨯=.【总结】本题主要考查利用整体代入的思想求多项式的值.。
第一章数与式第二节数的开方与二次根式(建议时间:25分钟)基础过关1. (2019桂林)9的平方根是()A. 3B. ±3C. -3D. 92.下列各式一定是二次根式的是()A. aB. 2C. x+5D. -33. (2019绵阳)若a=2,则a的值为()A. -4B. 4C. -2D. 24. (2019云南)要使x+12有意义,则x的取值范围为()A. x≤0B. x≥-1C. x≥0D. x≤-15. (2019通辽)16的平方根是()A. ±4B. 4C. ±2D. +26. (2019山西)下列二次根式是最简二次根式的是()A. 12 B.127 C. 8 D. 37. (2019济宁)下列计算正确的是()A. (-3)2=-3B. 3-5=35C. 36=±6D. -0.36=-0.68. (2019益阳改编)下列运算正确的是()A.34=2 B. (23)2=6 C. 2+3= 5D. 2×3=69. (人教七下P 47习题6.1第4题改编)下列说法正确的有( ) (1)5是25的算术平方根; (2)56是2536的一个平方根; (3)(-5)2的平方根是-5; (4)0的平方根与算术平方根都是0. A. 1个B. 2个C. 3个D. 4个10. (2019天津)估计33的值在( ) A. 2和3之间 B. 3和4之间 C. 4和5之间D. 5和6之间11. (2019台州)若一个数的平方等于5,则这个数等于 . 12. (2019宿迁)实数4的算术平方根为 . 13. (2019梧州)计算:38= . 14. 计算:(-7)2= .15. (2019安徽)计算18÷2的结果是 . 16. (2019衡阳)27-3= .17. (2019天津)计算(3+1)(3-1)的结果等于 . 18. (2019南京)计算147-28的结果是 . 19. (2019成都)估算:37.7≈ (结果精确到1). 20. (2019辽阳)6-3的整数部分是 .满分冲关1. (2019甘肃省卷)下列整数中,与10最接近的整数是()A. 3B. 4C. 5D. 62. (2019常州)下列各数中与2+3的积是有理数的是()A. 2+ 3B. 2C. 3D. 2-33. (2019绵阳)已知x是整数,当|x-30|取最小值时,x的值是()A. 5B. 6C. 7D. 84. (2019重庆B卷)估计5+2×10的值应在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间5.实数b在数轴上的位置如图所示,则化简(b-5)2+b2=.第5题图6. (2019泰州)计算:(8-12)× 6.参考答案第二节数的开方与二次根式基础过关1. B2. B3. B4. B【解析】要使x+12有意义,则x+1≥0,解得x≥-1.5. C【解析】∵16=4,4的平方根是±2.∴16的平方根是±2,故选C.6. D【解析】逐项分析如下:选项逐项分析正误A 12=22×B 127=2217×C8=22×D3是最简二次根式√7. D【解析】∵(-3)2=|-3|=3,∴A错误;∵3-5=-35,∴B错误;∵36=6,∴C错误;∵-0.36=-0.6,∴D正确.8. D【解析】逐项分析如下:选项逐项分析正误A34已是最简结果×B(23)2=22×(3)2=4×3=12≠6×C2和3不是同类项,不能合并×D2×3=2×3=6√9. C10. D 【解析】∵25<33<36,∴5<33<6. 11. ±5 【解析】设这个数为x ,则x 2=5,∴x =± 5. 12. 2 13. 2 14. 715. 3 【解析】18÷2=9=3.16. 23 【解析】27-3=33-3=2 3. 17. 2 【解析】原式=(3)2-12=3-1=2. 18. 0 【解析】原式=27-27=0.19. 6 【解析】∵(37.7)2=37.7,36<37.7<49,∴6<37.7<7,∵6.52=42.25>37.7,∴6<37.7<6.5,∴37.7≈6.20. 4 【解析】∵3≈1.73,∴6-3≈6-1.73=4.27,∴整数部分为4.满分冲关1. A 【解析】∵32=9,42=16,∴3<10<4.∵(3+42)2=12.25>10,∴与10最接近的整数为3.2. D 【解析】(2+3)(2-3)=22-(3)2=4-3=1,1是有理数,满足题意,故选D.3. A 【解析】∵25<30<36,即5<30<6,∵5.52=30.25>30,∴与30最接近的整数是5,∴当|x -30|取最小值时,x 的值是5.4. B 【解析】5+2×10=5+25=35=45,而36<45<49,∴6<45<7,即5+2×10的值应在6和7之间.5. 2b -5 【解析】由数轴可得:5<b <10,则原式=b -5+b =2b -5.6. 解:原式=48-3=43-3=3 3.。
高一上册一二章数学知识点第一节:实数及其性质实数的概念:实数是有理数和无理数的总称,包括正数、负数和零。
实数的性质:1. 实数可以进行加法、减法、乘法和除法运算。
2. 实数满足交换律、结合律、分配律等运算规律。
3. 实数可以通过绝对值的概念表示,并且绝对值恒大于等于零。
4. 实数可以比较大小,满足大小比较规则。
第二节:二次根式二次根式的概念:形如√a的形式,其中a为非负实数。
二次根式的性质:1. 二次根式可以进行加法、减法、乘法和除法运算。
2. 二次根式遵循乘法法则和除法法则。
3. 二次根式可以化简为最简形式。
4. 二次根式满足开方运算的性质。
第三节:整式与多项式整式的概念:由常数、变量及其乘积及代数和构成的表达式。
多项式的概念:一种特殊的整式,由若干项的代数和构成,其中每一项由常数与变量及其乘积构成。
整式与多项式的性质:1. 整式可以进行加法、减法、乘法运算。
2. 多项式遵循加法法则、减法法则和乘法法则。
3. 多项式可以进行合并同类项、提取公因式和分解因式等运算。
4. 多项式的次数等于其中最高次项的次数。
第四节:整式的运算与因式分解整式的运算:1. 合并同类项:将具有相同变量部分的项合并。
2. 提取公因式:将多项式中可提取出的公因式分离出来。
3. 分配律:将一个因式与两个或多个其他因式相乘时,可以分别与每一个因式相乘再相加。
4. 因式分解:将多项式表示为两个或多个因式的乘积形式。
第五节:一元一次方程一元一次方程的概念:一次方程是一元变量的多项式等于常数的代数等式。
一元一次方程的解:1. 方程的解是使得方程成立的变量的值。
2. 方程的解可以通过将变量代入方程中验证得到。
3. 方程可能有一个解、无解或无穷多个解。
第六节:不等式与不等式的解集表示不等式的概念:是包含关系的代数等式,表达了两个实数或变量之间的大小关系。
不等式的解集表示:1. 使用集合的形式表示解集,例如{x | x > 3}表示大于3的实数集合。
第二节二次根式及其运算知识点考点分值考频等级考查难度常见题型二次根式及其运算二次根式的概念3~4分☆☆☆☆易选择题、填空题二次根式的性质3~6分☆☆☆☆易选择题、填空题最简二次根式3~4分☆☆☆☆☆易选择题、填空题二次根式的运算3~6分☆☆☆☆☆易选择题、填空题、解答题考点一:二次根式的概念核心点拨1.二次根式定义:一般地形如a(a≥0)的式子叫做二次根式,a叫做被开方数.(1)被开方数可以是数字、字母,也可以是代数式.(2)二次根式有意义的条件:被开方数一定是非负数.考点二:二次根式的性质核心点拨2.双重非负性(1)a(a≥0)中的a是非负数.二次根式的被开方数及结果都不能是负数.(2)a(a≥0)的值是非负数.3.运算性质(1)a2=⎩⎨⎧a(a≥0),-a(a<0).a2和(a)2二者a的取值范围不同,a2中a可取全体实数,(a)2中a一定是非负数.(2)(a)2(a≥0)=a.考点三:最简二次根式核心点拨4.最简二次根式,最简二次根式满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.最简二次根式的两个条件缺一不可.考点四:二次根式的运算核心点拨5.二次根式的运算(1)二次根式的乘除:①a·b=ab(a≥0,b≥0);②ab=ab(a≥0,b>0).(1)二次根式的乘除主要用于乘除运算.(2)积、商的算术平方根主要用于二次根式的化简.(2)积、商的算术平方根:①a·b=a·b(a≥0,b≥0);②ab=ab(a≥0,b>0).(3)二次根式的加减:先将二次根式化成最简二次根式,再将被开方数相同的二次根式合并.1二次根式的概念基础点(2021·岱岳区期末)若式子x+1x有意义,则实数x的取值范围为____________.(1)根据二次根式有意义的条件确定x+1的范围;(2)再结合分式有意义的条件确定x的取值范围.x≥-1且x≠0解析:要使式子x+1x有意义,必须x+1≥0且x≠0,解得x≥-1且x≠0.故答案为x≥-1且x≠0.1-1(2021·内江)函数y=2-x+1x+1中,自变量x的取值范围是( )A.x≤2B.x≤2且x≠-1C.x≥2D.x≥2且x≠-1B解析:由题意得:2-x≥0,x+1≠0,解得x≤2且x≠-1.故选B.1-2(2022·新泰检测)若代数式x+1有意义,则实数x的取值范围是________.x≥-1解析:∵代数式x+1有意义,∴x+1≥0.∴x≥-1.故答案为x≥-1.1-3(2022·滨州)若二次根式x-5在实数范围内有意义,则x的取值范围为___________.x≥5解析:由题意知x-5≥0,解得x≥5.故答案为x≥5.与二次根式有关的取值原则1.二次根式有意义,被开方数一定是非负数.2.若分母中有二次根式,则被开方数只能大于0.3.在既有二次根式,又有分式的代数式中确定取值范围,一定要考虑所有的限制条件.2二次根式的性质及化简能力点(2022·宁阳检测)实数a,b在数轴上的位置如图所示,化简(a+1)2+(b-1)2-(a-b)2的结果是( )A.-2B.0C.-2a D.2b(1)根据a2=|a|化简;(2)绝对值化简即可.A解析:由数轴可知-2<a<-1,1<b<2,∴a+1<0,b-1>0,a-b<0.∴(a+1)2+(b-1)2-(a-b)2=||a+1+||b-1-||a-b=-(a+1)+(b-1)+(a-b)=-2.故选A.2-1(2022·肥城月考)计算(27-12)×13的结果是()A.33B.1C. 5 D.3B解析:(27-12)×1 3=9-4=3-2=1.故选B.2-2(2021·杭州)下列计算正确的是( )A.22=2B.(-2)2=-2C.22=±2D.(-2)2=±2A解析:22=4=2,故A正确,C错误;(-2)2=2,故B,D错误.故选A.2-3(2022·舟山)估计6的值在()A.4和5之间B.3和4之间C.2和3之间D.1和2之间C解析:∵4<6<9,∴ 2<6<3.故选C.2-4(2022·新泰模拟)估计3×(23+5)的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间B解析:3×(23+5)=6+15.∵9<15<16,∴ 3<15<4.∴9<6+15<10.故选B.a2和(a)2的区别:1.a的取值范围不同:a2中的a是全体实数;(a)2中的a只能是非负数.2.运算顺序不同:a2是先平方,再开方;(a)2是先开方,再平方.3.运算结果不同:a2=||a;(a)2=a.3最简二次根式基础点(2022·宁阳月考)将452化为最简二次根式,其结果是( )A.452B.902C.9102D.3102(1)被开方数分子、分母同乘2,化为;(2)把开方出来.D解析:452=904=94×10=3102.故选D.3-1(2022·泰山区期末)下列根式中,是最简二次根式的是( )A.19B.4C.a2D.a+1D解析:A.19=13;B.4=2;C.a2=|a|;D.a+1是最简二次根式.故选D.3-2(2021·重庆A卷)计算14×7-2的结果是( ) A.7B.62C.72D.27B解析:14×7-2=2×7×7-2=72-2=62.故选B.4二次根式的运算基础点考向1| 二次根式的乘除(2022·宁阳一模改编)计算:45÷33×3 5.(1)按照从左到右的顺序进行运算;(2)结果化成最简二次根式.1解析:原式=13×15×35=13×15×35=13×9=1.4-1等式x+2x-2=x+2x-2成立的条件是( )A.x≠2B.x≥-2 C.x≥-2且x≠2D.x>2D解析:x+2x-2=x+2x-2成立的条件是x-2>0,得x>2.故选D.4-2(2021·岱岳区检测)计算18×12的结果是( )A.6B.62C.63D.66D解析:18×12=32×23=66.故选D.4-3(2022·天津)计算(19+1)(19-1)的结果等于_______.18解析:(19+1)(19-1)=(19)2-12=19-1=18.故答案为18.4-4计算:27×50÷26.答案:15 2解析:原式=33×52÷26 =156÷26=152.考向2| 二次根式的混合运算(2021·临沂)计算:│-2│+⎝ ⎛⎭⎪⎫2-122-⎝ ⎛⎭⎪⎫2+122.(1)去绝对值,利用完全平方公式运算; (2)进行加减运算. 答案:-2解析:原式=2+2-2+14-2-2-14=-2.5-1 (2022·东平模拟)计算:2×3-24=________. -6 解析:原式=6-26=-6. 故答案为-65-2 (2021·威海)计算:24-65×45=________.-6 解析:原式=26-65×35 =26-36=-6. 故答案为-6.5-3 (2022·泰山区检测)计算:3-25=________. -2 解析:原式=3-5=-2. 故答案为-2.二次根式的运算法则1.二次根式的运算顺序与实数的运算顺序相同.2.二次根式的乘除常结合积的算术平方根和商的算术平方根的性质,将二次根式化简成最简二次根式后再运算.3.二次根式的加减可类比整式的加减进行,也可认为是合并同类二次根式.4.二次根式的运算结果一定要化成最简二次根式,分母中也不能有根式.二次根式的概念和运算命题点1| 二次根式的有关概念1.(2022·东平检测)下列各式中,一定是二次根式的是()A.--2B.a2+1C.a-1 D.3 3B解析:A.根号下不能是负数,故A选项不合题意;B.a2+1≥1,故B选项符合题意;C.当a<1时,a-1<0,此时根号下是负数,故C选项不合题意;D.33是3的立方根,不是二次根式,故D选项不合题意.故选B.2.(2022·宁阳检测)已知二次根式2x+1,则x的最小值是() A.0 B.-1C.12D.-12D解析:由题意得:2x+1≥0,解得x≥-12.∴x的最小值为-12.故选D.3.(2021·绥化)若式子x0x+1在实数范围内有意义,则x的取值范围是()A .x >-1B .x ≥-1且x ≠0C .x >-1且x ≠0D .x ≠0C 解析:若x 0x +1在实数范围内有意义, 则⎩⎪⎨⎪⎧x ≠0,x +1>0.解得x >-1且x ≠0.故选C . 4.(2022·滨州)若二次根式x -5在实数范围内有意义,则x 的取值范围为________.x ≥5 解析:由题意知,x -5≥0, 解得x ≥5. 故答案为x ≥5. 5.(2022·宁阳检测)若y =x -4+4-x 2-2,则(x +y )y=________.14 解析:由题意得:⎩⎪⎨⎪⎧x -4≥0,4-x ≥0, ∴ x =4.∴ y =-2. ∴ (x +y )y =(4-2)-2=14. 故答案为14.6.已知y =x -20+30-x ,且x 、y 均为整数,则x +y =______. 25或33 解析:由题意得:⎩⎪⎨⎪⎧x -20≥0,30-x ≥0,解得20≤x ≤30. ∵ x ,y 均为整数, ∴ x =21或29.当x=21时,y=4,x+y=25;当x=29时,y=4,x+y=33.故答案为25或33.命题点2| 二次根式的性质及化简1.(2022·岱岳区月考)当x>2时,(2-x)2=()A.2-x B.x-2C.2+x D.±(x-2)B解析:∵x>2,∴ 2-x<0.∴(2-x)2=x-2.故选B.2.化简(-5)2的结果是()A.-5B.5C.±5D.25B解析:(-5)2=5.故选B.3.(2022·东平检测)若(a-3)2=3-a,则实数a的取值范围是() A.a<3 B.a≤3C.a>3 D.a≥3B解析:∵(a-3)2=3-a=-(a-3),∴a-3≤0.∴a≤3.故选B.4.实数7不可以写成的形式是()A.72B.-72C.(-7)2D.(-7)2B解析:∵72=(-7)2=(-7)2=7,-72=-7,∴ 7不可以写成-72的形式.故选B.5.(2021·娄底)2,5,m 是某三角形三边的长,则(m -3)2+(m -7)2等于( )A .2m -10B .10-2mC .10D .4D 解析:∵ 2,5,m 为三角形的三边长,∴ 5-2<m <5+2.即3<m <7.∴ m -3>0,m -7<0.∴ (m -3)2+(m -7)2=m -3+7-m =4.故选D .6.(2022·贺州)若实数m ,n 满足 ∣m -n -5∣+2m +n -4=0,则 3m +n =__________.7 解析:∵ m ,n 满足 ∣m -n -5∣+2m +n -4=0,∴ m -n -5=0,2m +n -4=0.∴ m =3,n =-2.∴ 3m +n =9-2=7.故答案为7.7.(2022·新泰模拟)如果实数a ,b ,c 在数轴上的位置如图所示,那么代数式a 2-||a +b +(c -a )2+||b +c 可以化简为( )A .2c -aB .2a -2bC .-aD .a C 解析:由数轴可得b <a <0<c ,|b |>|c |.∴ 原式=-a -[-(a +b )]+c -a +[-(b +c )]=-a +a +b +c -a -b -c =-a .故选C .命题点3| 二次根式的运算1.(2021·梧州)下列计算正确的是()A.12=3 2 B.2+3=5C.62=3D.(2)2=2D解析:A.12=23,该选项错误;B.2和3不是同类二次根式,无法合并,该选项错误;C.62是最简二次根式,无法化简,该选项错误;D.(2)2=2,该选项正确.故选D.2.(2022·肥城模拟)如果ab>0,a+b<0,那么下面各式:①ab=ab,②ab·ba=1, ③ab÷ab=-b.其中正确的是()A.①②B.②③C.①③D.①②③B解析:∵ab>0,a+b<0,∴a<0,b<0.①等号右边根号下为负数,错误;②ab·ba=ab·ba=1,正确;③ab÷ab=ab÷ab=ab×ba=b2=-b,正确.故选B.3.下列二次根式中,不能与2合并的是()A.12B.8C.12 D.18C解析:12=22,8=22,12=23,18=32,∴不能与2合并的是12.故选C.4.(2021·常德)计算:(5+12-1)·5+12=()A.0B.1C.2D.5-1 2B解析:原式=(5+1-22)×5+12=5-12×5+12=1.故选B.5.(2022·河北)下列正确的是()A.4+9=2+3 B.4×9=2×3C.94=32D. 4.9=0.7B解析:A.原式=13,故该选项不符合题意.B.原式=4×9=2×3,故该选项符合题意.C.原式=(92)2=92,故该选项不符合题意.D.0.72=0.49,故该选项不符合题意.故选B.6.(2022·泰山区模拟)计算:27·83÷12=______.12解析:原式=33×223×2=12.故答案为12.7.计算:45-25×50=______.5解析:原式=35-25×50=35-20=35-25=5.故答案为5.8.(2022·东平月考)若x=3-2,则代数式x2-6x+9的值为______.2解析:x2-6x+9=(x-3)2=(3-2-3)2=(-2)2=2.故答案为2.。