内外压容器受压元件设计.
- 格式:doc
- 大小:879.50 KB
- 文档页数:14
压力容器设计技术规定第四版文件编号:THRSGD-2014/A发放编号:受控状态:发布日期:2014年3月1日实施日期:2014年6月1日批准页编制:审核:批准:目次前言 (V)1 总则 (1)2 图纸图幅、图样的要求 (1)2.1 图纸图幅面和图框格式 (1)2.2 比例 (2)2.3 字体 (2)2.4 图线 (2)3 非标压力容器设计数据表 (8)3.1 非标储罐设计数据表(表2) (9)3.2 塔器设计数据表(表4) (15)3.3 非标换热器设计数据表(表5) (17)3.4 夹套容器设计数据表(表7) (19)3.5 常压容器设计数据表(表8) (21)3.6 搅拌容器设计数据表(表9) (23)3.7 大型储罐设计数据表(表10) (24)4 非标压力容器总图(装配图)技术要求 (26)4.1 碳钢、低合金钢制压力容器 (26)4.2 不锈钢制压力容器 (31)4.3 不锈钢复合板制压力容器 (32)4.4 钢制焊接常压容器 (32)4.5 夹套容器 (33)4.6 钢制固定顶大型储罐 (34)5 常规压力容器设计数据表 (36)5.1 压力容器设计数据表(表11) (36)5.2 换热器设计数据表(表12) (39)6 塔器技术要求 (42)6.1 板式塔装配图 (42)6.2 板式塔塔盘部件图 (44)6.3 板式塔板零件图 (44)6.4 填料塔装配图 (45)7 管壳式换热器技术要求 (46)7.1 管壳式换热器装配图 (46)7.2 管板 (47)7.3 折流板、支持板 (48)8 搅拌设备技术要求 (50)8.1 搅拌设备装配图 (50)8.2 搅拌轴 (51)8.3 搅拌器 (51)8.4 轴封装置 (52)8.5 联轴器 (52)9 高压容器(单层)技术要求 (53)9.1 设计数据表 (53)10 零部件技术要求 (57)10.1 锻制零件 (57)10.2 法兰、法兰盖 (57)10.3 人孔、手孔 (57)10.4 补强圈 (58)10.5 螺栓 (58)10.6 螺柱 (58)10.7 螺母 (58)10.8 视镜 (58)10.9 玻璃板液位计 (59)10.10 玻璃管液位计 (59)10.11 磁翻板(柱)液位计 (59)附录A(规范性附录)容器分片、分段制造、试验和运输要求 (60)附录B(规范性附录)固定式压力容器风险评估报告 (63)前言为了加强压力容器设计的管理,确保压力容器产品的设计质量,依据TSG R1001《压力容器压力管道设计许可规则》、TSG R0004《固定式压力容器安全技术监察规程》的规定,在公司质量保证体系文件《质量手册》和《管理制度》的基础上,依据国家压力容器相关标准和公司实际,编制了公司的压力容器设计技术规定,各级设计人员必须严格遵守并执行本规定。
压力容器设计基础一.概述1、标准适用的压力范围GB150-1998《钢制压力容器》设计压力P:0.1~35 MPa真空度:≥0.02 MPaGB151-1999《管壳式换热器》设计压力P:0.1~35 MPa真空度:≥0.02 MPa公称压力PN≤35 MPa,公称直径DN≤2600mmPN•DN≤1.75×104JB4732-95《钢制压力容器-分析设计标准》设计压力P:0.1~100 MPa真空度:≥0.02 MPaJB/T4735-1997《钢制焊接常压容器》设计压力P:圆筒形容器:-0.02 MPa≤P≤0.1 MPa立式圆筒形储罐、圆筒形料仓 -500Pa≤P≤0.2000 Pa矩形容器:连通大气GB12337-1998《钢制球形储罐》设计压力P≤4MPa,公称容积V≥50M3 JB4710-2000 《钢制塔式容器》设计压力P:0.1~35MPa(对工作压力<0.1MPa内压塔器,P取 0.1MPa)高度范围 h>10m 且h/D(直径)>52.设计时应考虑的载荷1)内压、外压或最大压差;2)液体静压力(≥5%P);需要时,还应考虑以下载荷3)容器的自重(内件和填料),以及正常工作条件下或压力试验状态下内装物料的重力载荷;4)附属设备及隔热材料、衬里、管道、扶梯、平台等的重力载荷;5)风载荷、地震力、雪载荷;6)支座、座底圈、支耳及其他形式支撑件的反作用力;7)连接管道和其他部件的作用力;8)温度梯度或热膨胀量不同引起的作用力;9)包括压力急剧波动的冲击载荷;10)冲击反力,如流体冲击引起的反力等;11)运输或吊装时的作用力。
3、设计单位的职责1)设计单位应对设计文件的正确性和完整性负责。
2)压力容器的设计文件至少应包括设计计算书和设计图样。
3)压力容器的设计总图应盖有压力容器设计资格印章。
4.容器范围GB150管辖的容器范围是指壳体及其连为整体的受压零部件1)容器与外部管道连接2)接管、人孔、手孔等的承压封头、平盖及其紧固件3)非受压元件与受压元件的焊接接头。
一氧化碳一、补充作业 1:划定下列容器类别序号设计压力 p() 介质容器(m 3) 设计温度(℃) 容器类别10.6 4 5020.5 氧气 10 50 31.6臭氧4050·压 力 容 器 分 类 方法:①先按照介质特性,选择相应的分类图,②再根据设计压力 p (单位)和容积 V (单位 m 3), 标出坐标点,③确定容器类别。
第一组 是易燃性质,容器类别是类;第二组 属于 类;第三组 高度毒性,属于 类。
二、补充作业 2:压力容器十大主要受压元件1.壳体;②封头(端盖);③膨胀节;④设备法兰;⑤球罐球壳板;⑥换热器的管板; ⑦换热管;⑧M36(含 36)以上的设备主螺柱;⑨公称直径大于或等于250 的接管;⑩公称 直径大于或等于 250 的管法兰三、问答题:国外产品图纸可否采用我国的材料及 150 标准制造压力容器?答: 不能,因为:1.安全系数 n 数值不一样,则应力许用值[σ ]t 不一样,计算壁厚不一 样;2.钢材几何尺寸偏差不一样,国外小一些,负偏差小;3.钢材化学成分和机械性能不 一样,国外严,国内松;4.制造、检验要求不一样,如,水压试验=1.5P[σ ]/[σ ]t ,而 我国水压试验=1.25P[σ ]/[σ ]t第二章一、一壳体成为回转薄壳轴对称的条件是什么?⑴满足薄壳条件: (t / R)≤0.1;⑵结构对称:结构的几何形状对称于回转轴;⑶载荷对 称:壳体任一横截面上的载荷对称于回转轴,但是沿轴线方向的载荷可以按照任意规律化。
⑷边界对称:支承壳体的边界对称于轴线。
⑸材质对称:壳体的材料性质对称于轴线。
二、试分析标准椭圆形封头采用长短轴之比 a / 2 的原因?原因是其应力的分布特点及加工工艺性: ⑴应力绝对值从小到大为:a /b <2 → a / 2 → a / b >2 ;⑵加工工艺性从易到难为:a /b >2 → a / 2 → a / b <2 ;可以看到,标准椭圆形封头的应力分布及加工工艺性比其它的非标准椭圆形封头综合性好。
第七章 外压容器设计第一节 外压容器设计【学习目标】 掌握外压容器稳定性概念,了解加强圈设置规定;掌握外压圆筒、封头、加强圈的设计计算;掌握外压容器压力试验规定。
一、外压容器的稳定性容器在正常操作时,凡壳体外部压力高于内部者,均称为外压容器,这类容器有两种:真空容器;两个压力腔的夹套容器。
但是对于薄壁容器,承受外压作用时,往往在强度条件能够满足、应力远低于材料屈服强度的情况下,容器有可能因为不能保持自己原有的形状而出现扁塌,这种现象称为结构丧失了稳定性,即失稳。
失稳是由于外压容器刚度不足而引起的,因此,保证容器有足够的稳定性(刚度)是外压容器能够正常工作的必要条件,也是外压容器设计中首先应该考虑的问题。
按圆筒的破坏情况,外压圆筒可分为长圆筒、短圆筒和刚性圆筒三类。
长圆筒刚性最差,最易失稳,失稳时呈现两个波形。
短圆筒刚性较好,失稳时呈现两个以上的波形。
刚性圆筒具有足够的稳定性,破坏时属于强度失效。
1、临界压力外压容器由原平衡状态失去稳定性而出现扁塌时对应的压力称之为临界压力(p cr )。
影响临界压力的因素有:① 圆筒的几何尺寸δ/D (壁厚与直径的比值)、L /D (长度与直径的比值)是影响外压圆筒刚度的两个重要参数。
δ/D 的值越大,圆筒刚度越大,临界压力p cr 值也越大;L /D 的值越大,圆筒刚度越小,临界压力p cr 也越小。
② 材料的性能材料的弹性模量E 值和泊松比μ值对临界压力有直接影响,但是这两个值主要由材料的合金成分来决定,对已有材料而言无法改变,因此讨论弹性模量E 值和泊松比μ值的影响意义不大。
③ 圆筒的不圆度圆筒的不圆度会影响圆筒抵抗变形的能力,降低临界压力p cr ,因此在圆筒制造过程中要控制不圆度。
2、许用外压力与内压容器强度设计要取安全系数类似,外压容器刚度设计也要设定稳定系数,我国标准规定外压容器稳定系数m=3,故许用外压力[]3cr p p ≤。
二、外压圆筒的计算长度外压圆筒的计算长度对许用外压值影响很大。
一、填充1、化工容器的基本是安全性与经济性,安全是核心问题,在充分保证安全的前提下尽可能做到经济。
2、受内压的容器其主要失效形式属于弹塑性失效,而外压容器的失效形式则主要是整体失稳。
3、化工容器采用合金钢的目的主要是抗腐蚀、抗高温氧化或耐特高的温度。
4、容器的应力分析有两种基本的研究方法:解析法和实验应力分析法。
5、按无力矩理论假设,轴对称条件下的薄壳中只有薄膜应力,没有弯曲应力和剪应力。
6、容器由于这种总体结构的不连续而在连接边缘的局部地区出现衰减很快的应力升高现象称为边缘应力。
7、在壳体的不连续区域由内压和边缘效应产生的应力由两部分组成薄膜应力和弯曲应力。
8、园板周边简支表示周边不允许有挠度,但可以自由转动,因而不存在弯矩,最大挠度发生在圆板中心。
9、 最大挠度和最大应力与圆板的材料、半径、厚度有关,减小半径或增加厚度都可减小挠度和降低最大正应力。
10、 容器的设计压力其值不得小于容器得最大工作压力得1.05~1.3倍,在相应设计压力下设定得受压元件得金属温度,其值不得低于金属可能达到得最高金属温度。
11、 厚度附加量由两部分组成:钢板厚度的负偏差和腐蚀裕度。
12、 最常见的容器封头包括半球形、椭圆形、碟形和无折边球形等凸形封头以及圆锥形、平板封头等数种。
13、 大多数中低压容器采用椭圆形封头,常压或直径不大的高压容器常用平板封头,半球形封头一般用于低压。
14、 对于标准椭圆形封头,其壁厚计算公式为ppD t t i 5.0][2-=ϕσ 15、 流体在垫片处的泄漏以两种形式出现,即渗透泄漏和界面泄漏。
16、 垫片系数m 是指操作时,达到紧密不漏,垫上所必须维持的比压于介质压力的比值。
17、 常用的压紧面形状有突面、凹凸面、榫槽面和梯形槽等几种。
18、 法兰的设计必须考虑两个不同的问题:一是法兰连接结构中的各部件必须有足够的强度,二是连接本身必须保证密封。
19、 应力集中常发生在容器上有过渡圆角的地方,分布范围很小,只是在极局部的地方产生一个比薄膜应力大许多倍的应力峰值。
2006年第四期压力容器设计审核人员考核闭卷试题一.填空题(20分)1.对于不能以GB150来确定结构尺寸的受压元件,.GB150允许用 , ,方法设计.2. GB150规定,钢材许用应力的确定,应同时考虑材料的抗拉强度, ,,和蠕变极限.03.奥氏体不锈钢制压力容器用水进行液压试验时,应严格控制水中的氯离子含量不超过。
试验合格后,应立即将去除干净。
4.最大允许工作压力是根据容器壳体的计算所得,且取各受压元件的。
5.换热器设计中强度胀中开槽是为了增加管板与换热管之间的而对管孔的粗糙度要求是为了。
6.不锈钢堆焊管板的复层中的过渡层应采用不锈钢焊条或焊带来堆焊。
7.卧式管壳式换热器壳程为气液共存或液相中含有固体颗粒时,折流缺口应—布置。
8.球罐可视为__________ 体系,对其进行基本自振周期计算。
9.球壳的焊缝以及直接与球壳焊接的焊缝,应选用药皮焊条,开按批号进行复验10.按GB150规定,超压泄放装置不适用于操作过程中可能产生 ,反应速度达到的压力容器。
11.铝容器的最高设计压力为MPa;钛容器的最高设计压力为MPa。
12.GB150不适用于设计压力低于MPa,真空度低于MPa的容器。
13.含碳量不小于的不锈钢称为低碳不锈钢;含碳量不小于的不锈钢称为超低碳不锈钢。
14.外压圆筒按受力方向和失稳时的变形特征,有和两种失15.因特殊情况不能开设检查孔的容器,应在设计图样上注明,并应给出。
16.压力容器专用钢板的磷含量不应大于 ,硫含量不应大17.奥氏体不锈钢的使用温度高于525C时,钢中含碳量不小18.设计盛装液化石油的储罐容器,使用法兰连接的第一个法兰密封面,应采用法兰,垫片(带)和螺栓组合。
19.用于制造压力容器壳体的钛材应在状态下使用。
20.计算压力是指在相应温度下用以确定的压力c21.卧式容器的支座主要有和。
22.换热管的排列形式主要是,换热管中心距一般不小23.爆破片的设计爆破压力指爆破片在下的爆破压力。
【毕业设计】双鞍座支撑的内压卧式容器设计化工装备技术专业(文档可以直接使用,也可根据实际需要修改使用,可编辑欢迎下载)毕业设计说明书设计名称: 毕业设计题目: 双鞍座支撑的内压卧式容器设计学生姓名: 罗志高专业: 化工装备技术班级: 装备1012学号: 202113040246指导老师: 李群松指导时间: 二0一二年十一月目录一、设计方案的分析与拟定 (1)二、设计任务书 (2)三、计算步骤与内容 (4)§1设计条件§2、压力容器圆筒和封头设计计算 (5)2.1、圆筒厚度的计算2.2、封头厚度的计算§3、压力容器支座的选型与计算 (6)3.1、圆筒、封头、附件、充液质量计算3.2、鞍座反力计算§4、压力容器圆筒轴向弯矩设计 (8)§5、压力容器圆筒轴向应力设计计算 (13)§6、压力容器圆筒、封头切向应力设计计算 (14)§7、压力容器圆筒周向应力设计计算 (15)§8压力容器鞍座有效断面平均应力设计计算 (16)§9 典型零部件的选用 (23)参考文献 (26)设计方案的分析和拟定熟练掌握查阅文献资料、收集相关数据、正确选择公式在兼顾技术先进性、可行性、经济合理的前提下,综合分析设计任务要求,确定化工工艺流程,进行设备选型,并提出保证过程正常、安全可行所需的检测和计量参数,同时还要考虑改善劳动条件和环境保护的有效措施。
准确而迅速的进行过程计算及主要设备的工艺设计计算及选型。
✓据设计任务书的要求,双鞍座卧式储罐有筒体、两端封头,支座、人孔、手孔以及安全附件工艺接管等构成。
根据任务书要求以及卧式压力容器的类型及承载能力为工程实际中的运行我们选取鞍式支座,鞍式支座也应用最广泛。
✓在阅读了设计任务书后,按以下内容和步骤进行设计✓总体结构设计。
根据工艺的要求,并考虑到制造安装和维护检修的方便来确定各部分结构形式。
◆决定并选择支座类型及有关零部件。
第三章内压薄壁容器设计第一节内压薄壁圆筒设计【学习目标】通过内压圆筒应力分析和应用第一强度理论,推导出内压圆筒壁厚设计公式。
掌握内压圆筒壁厚设计公式,了解边缘应力产生的原因及特性。
一、内压薄壁圆筒应力分析当圆筒壁厚与曲面中径之比δ/D≤0.1或圆筒外径、内径之比K=D0/D i≤1.2时,可认为是薄壁圆筒。
1、基本假设①圆筒材料连续、均匀、各向同性;②圆筒足够长,忽略边界影响〔如筒体两端法兰、封头等影响〕;③圆筒受力后发生的变形是弹性微小变形;④壳体中各层纤维在受压〔中、低压力〕变形中互不挤压,径向应力很小,忽略不计;⑤器壁较薄,弯曲应力很小,忽略不计。
2、圆筒变形分析图3-1 内压薄壁圆筒环向变形示意图筒直径增大,说明在其圆周的切线方向有拉应力存在,即环向应力〔周向应力〕圆筒长度增加,说明在其轴向方向有轴向拉应力存在,即经向应力〔轴向应力〕。
圆筒直径增大还意味着产生弯曲变形,但由于圆筒壁厚较薄,产生的弯曲应力相对环向应力和经向应力很小,故忽略不计。
另外,对于受低、中压作用的薄壁容器,垂直于圆筒壁厚方向的径向应力相对环向应力和经向应力也很小,忽略不计。
3、经向应力分析采用“截面法”分析。
根据力学平衡条件,由于内压作用产生的轴向合力〔外力〕与壳壁横截面上的轴向总应力〔内力〕相等,即:124δσππD p D =由此可得经向应力: δσ41pD=图3-2 圆筒体横向截面受力分析4、环向应力分析 采用“截面法”分析。
图3-3 圆筒体纵向截面受力分析根据力学平衡条件,由于内压作用产生的环向合力〔外力〕与壳壁纵向截面上的环向总应力〔内力〕相等,即:22δσL LDp = 〔3-3〕由此可得环向应力: δσ22pD= 〔3-4〕 5、结论通过以上分析可以得到结论:122σσ=,即环向应力是经向应力的2倍。
因此,对于圆筒形内压容器,纵向焊接接头要比环向焊接接头危险程度高。
在圆筒体上开设椭圆形人孔或手孔时,应当将短轴设计在纵向,长轴设计在环向,以减少开孔对壳体强度的影响。
内外压容器——受压元件设计中国石化工程建设公司桑如苞向全国压力容器设计同行问好!内外压容器——受压元件设计压力容器都离不开一个为建立压力所必须的承压外壳—压力壳。
内外压容器设计即是指对组成压力壳的各种元件在压力作用下的设计计算。
压力壳必须以一定方式来支承:当采用鞍式支座支承时成为卧式容器的形式,由于自重、物料等重力作用,在压力壳上(特别是支座部位)产生应力,其受力相当于一个两端外伸的简支梁,对其计算即为卧式容器标准的内容。
当采用立式支承时成为立(塔)式容器的形式,由于自重、物料重力、风载、地震等作用,在压力壳上产生应力,其受力相当于一个直立的悬臂梁,对其计算即为塔式容器标准的内容。
当压力壳做成球形以支腿支承时,即成为球罐,在自重、物料重力、风载、地震等作用下的计算即为球形储罐标准的内容。
一、压力容器的构成圆筒—圆柱壳 压力作用下,以薄膜应力承载,为此整 球形封头 —球壳 体上产生一次薄膜应力,控制值1倍 壳体 椭圆封头(椭球壳) 许用应力。
但在相邻元件连接部位,会 碟封(球冠与环壳) 因变形协调产生局部薄膜应力和弯曲应 典型板壳结构 锥形封头(锥壳) 力,称二次应力,控制值3倍许用应力。
圆平板(平盖) 压力作用下,以弯曲应力承载,为此整 平板 环形板(开孔平盖) 体上产生一次弯曲应力,控制值1.5倍 环(法兰环) 许用应力。
弹性基础圆平板(管板)二、压力容器受压元件计算1.圆筒1)应力状况:两相薄膜应力、环向应力为轴向应力的两倍。
2)壁厚计算公式:ci c ][2p D p t-=ϕσδ符号说明见GB 150。
称中径公式:适用范围,K ≤1.5,等价于p c ≤0.4[σ]t ϕ3)公式来由:内压圆筒壁厚计算公式是从圆筒与内压的静力平衡条件得出的。
设有内压圆筒如图所示(两端设封头)。
(1)圆筒受压力p c 的轴向作用: p c 在圆筒轴向产生的总轴向力:F 1=c 2i 4p D π圆筒横截面的面积:f i =πD i δ由此产生的圆筒轴向应力:σh =δδππ44i c i c2i D p D p D =当控制σh ≤[σ]t ϕ时,则:δ1=ϕσt D p ][4i c此即按圆筒轴向应力计算的壁厚公式。
(2)圆筒受压力p c 的径向作用(见图)p c 对圆筒径向作用,在半个圆筒投影面上产生的合力(沿图中水平方向): F 2=p c ·D i ·l承受此水平合力的圆筒纵截面面积: f 2=2δl由此产生的圆筒环向应力:σθ=δδ22ic i c D p l l D p ⋅=⋅⋅当控制σθ≤[σ]t ϕ时,δ2=ϕσtD p ][2i c ⋅此式称为内压圆筒的内径公式。
上述计算公式认为应力是沿圆筒壁厚均匀分布的,它们对薄壁容器是适合的。
但对于具较厚壁厚的圆筒,其环向应力并不是均匀分布的。
薄壁内径公式与实际应力存在较大误差。
对厚壁圆筒中的应力情况以由弹性力学为基础推导得出的拉美公式较好地反映了其分布:由拉美公式:厚壁筒中存在的三个方面的应力,其中只有轴向应力是沿厚度均匀布的。
环向应力和径向应力均是非均匀分布的,且内壁处为最大值。
筒壁三向应力中,以周向应力最大,内壁处达最大值,外壁处为最小值,内外壁处的应力差值随K=D o /D i 增大而增大。
当K=1.5时,由薄壁公式按均匀分布假设计算的环向应力值比按拉美公式计算的圆筒内壁处的最大环向应力要偏低23%,存在较大的计算误差。
由于薄壁公式形式简单,计算方便、适于工程应用。
为了解决厚壁筒时薄壁公式引起的较大误差,由此采取增大计算内径,以适应增大应力计算值的要求。
为此将圆筒计算内径改为中径,即以(D i +δ)代替D i 代入薄壁内径公式中:则有:σθ=δδδδ22)(i c c c i p D p D p +=+ 经变形得:2σθδ-p c δ=p c D iδ(2σθ-p c )=p c ·D i当σθ控制在[σ]t ,且考虑接头系数ϕ时,即σθ取[σ]t ϕ时, 则δ=ci c ][2p D p t-ϕσ此即GB 150中的内压圆筒公式,称中径公式。
当K=1.5时,按此式计算的应力与拉美公式计算的最大环向应力仅偏小3.8%。
完全满足工程设计要求。
4)公式计算应力的意义:一次总体环向薄膜应力,控制值[σ]。
5)焊接接头系数,ϕ—指纵缝接头系数。
6)二次应力:当圆筒与半球形封头、椭圆形封头连接时二次应力很小,能自动满足3[σ]的强度条件,故可不予考虑。
2.球壳1)应力状况,各向薄膜应力相等 2)厚度计算式:δ=cic ][4p D p t-ϕσ称中径公式,适用范围p c ≤0.6[σ]t ϕ等价于K ≤1.3533)公式来由同圆筒轴向应力作用情况 4)计算应力的意义:一次总体、薄膜应力(环向、经向)控制值:[σ]t 。
5)焊缝接头系数:指所有拼缝接头系数(纵缝、环缝)。
注意包括球封与圆筒的连接环缝系数。
6)与圆筒的连接结构:见GB 150附录J图J1(d)、(e)、(f)。
原则:不能削薄圆筒,局部加厚球壳。
7)二次应力:当半球形封头与圆筒连接时二次应力很小,能自动满足3[σ]的强度条件,故可不予考虑。
3.椭圆封头A、内压作用下1)应力状况a.薄膜应力a)标准椭圆封头薄膜应力分布:经向应力:最大拉应力在顶点。
环向应力:最大拉应力在顶点,最大压应力在底边。
b) 变形特征:趋圆。
c) 计算对象意义:拉应力——强度计算压应力——稳定控制b.弯曲应力(与圆筒连接)a) 变形协调,形成边界力。
b) 产生二次应力c.椭圆封头的应力:薄膜应力加弯曲应力。
最大应力的发生部位、方向、组成。
d.形状系数K 的意义K 为封头上的最大应力与对接圆筒中的环向薄膜应力的比值,K =环σσmaxK 分布曲线可回归成公式:K =1/6[(a /b )2+2]=1/6[2+(ii 2h D )2] 不同a /b 的K 见GB 150表7-1。
标准椭圆封头K =1。
2)计算公式δ=ci c 5.0][2p D Kp t -ϕσ近似可理解为圆筒厚度的K 倍。
3)焊缝接头系数。
ϕ指拼缝,但不包括椭封与圆筒的连接环缝的接头系数。
4)内压稳定:a. a /b ≯2.6限制条件b.防止失稳,限制封头最小有效厚度: a /b 即K ≤1 δmin ≥0.15%D i a/b 即K >1 δmin ≥0.30% D iB.外压作用下:1)封头稳定计算是以薄膜应力为对象的: a.变形特征:趋扁。
b.计算对象过渡区——不存在稳定问题。
封头中心部分——“球面区”有稳定问题。
c.计算意义,按外压球壳。
当量球壳:对标准椭圆封头;当量球壳计算外半径:R o=0.9D o 。
D o ——封头外径。
2)对对接圆筒的影响。
外压圆筒计算长度L的意义:L为两个始终保持圆形的截面之间的距离。
椭圆封头曲面深度的1/3处可视为能保持圆形的截面,为此由两个椭圆封头与圆筒相连接的容器,该圆筒的外压计算长度L=圆筒长度+两个椭圆封头的直边段长度+两倍椭圆封头曲面深度的1/3。
3)圆筒失稳特点,a.周向失稳(外压作用)圆形截面变成波形截面,波数n从2个波至多个波。
n=2称长圆筒,n>2称短圆筒。
b.轴向失稳(轴向力及弯矩作用)塔在风弯、地震弯矩和重力载荷作用下的失稳。
轴线由直线变成波折线。
c 外压圆筒计算系数A—外压圆筒临界失稳时的周向压缩应变,与材料无关,只与结构尺寸相关(查图6—2)。
B—外压圆筒许用的周向压缩应力的2倍,与材料弹性模量有关(查图6—3至图6—10)。
d 外压圆筒许用外压的计算D×L×P=2δe×B/2×LD×P =δe×B[P]=δe×B/D0=B/(D/δe)———GB150中(6—1)式。
e 外压圆筒的计算外压圆筒既有稳定问题又有压缩强度问题,但对D/δe≥20的圆筒通常只有稳定问题,为此仅需按稳定进行计算,GB150中(6—1)式、(6—2)式即是。
(6—2)式是指在弹性阶段时的计算式。
对D/δe<20的圆筒稳定问题和压缩强度问题并存,为此需按稳定和强度分别进行计算,GB150中(6—4)式中的前一项即是按稳定计算的许用外压力,而第二项即是按压缩强度计算的许用外压力。
对D/δe<4的圆筒,其外压失稳都为长圆筒形式,故失稳时的临界应变A都直接按长圆筒计算,(6—3)式即是。
4.碟形封头受力、变形特征,应力分布,稳定,控制条件与椭封相似,只不过形状系数由K(椭封)改为M。
内容从略5.锥形封头1) 薄膜应力状态,a.计算模型:当量圆筒。
应力状况与圆筒相似,同处的环向应力等于轴向应力的两倍,但不同直径处应力不同。
b.计算公式:δ=αϕσcos 1][2cc c ⋅-p D p tD c ——计算直径。
c.计算应力的意义:一次、总体(大端)环向薄膜应力,控制值[σ]t 。
d.焊缝接头系数ϕ。
ϕ指锥壳纵缝的接头系数。
2)弯曲应力状态(发生于与圆筒连接部位)a.变形协调,产生边界力,可引起较大边缘应力,即二次应力,需考虑。
b.锥壳端部的应力。
端部应力由薄膜应力+边缘应力组成。
大端:最大应力为纵向(轴向)拉伸薄膜应力+轴向弯曲拉伸应力组成。
小端:起控制作用的应力为环向(局部)薄膜应力。
c.大、小端厚度的确定。
a) 大端:当轴向总应力超过3[σ]t 时,(由查图7-11确定),则需另行计算厚度,称大端加强段厚度。
计算公式:δr =ci c ][2p D Qp t-ϕσ其中:Q 称应力增值系数,其中体现了边缘应力的作用,并将许用应力控制值放宽至3[σ]t 。
b) 小端:当环向局部薄膜应力超过1.1[σ]t (由查图7-13确定)时,则需另行计算厚度,称小端加强段厚度。
计算公式:δr=ci c ][2p D Qp t-ϕσ其中:Q 也称应力增值系数,其中体现边界力作用引起的局部环向薄膜应力,并将许用应力控制值调至1.1[σ]t 。
d.加强段长度a) 锥壳大端加强段长度L 1:L 1=2αδcos 5.0ri D 与之相接的圆筒也同时加厚至δr ,称圆筒加强段其最小长度L =2r i 5.0δD 锥壳大端加强段长度的意义是当量圆筒在均布边界力作用下,圆筒中轴向弯曲应力的衰减长度。
b) 锥壳小端加强段长度L 1L 1=αδcos ri s D 与之相接的圆筒也同时加厚至δr ,称圆筒加强段,其最小长度L =r i δs D 。
锥壳小端加强段长度的意义是:当量圆筒在均布边界力作用下圆筒中局部环向薄膜应力的衰减长度。
c) 锥壳大小端加强段长度比较。
略去大端与小端直径的差异,大端轴向弯曲应力的衰减长度约为小端环向薄膜应力的衰减长度的2倍(1.414倍)。