乐高公司一阶倒立摆系统一阶倒立摆控制器设计课程设计论文
- 格式:doc
- 大小:1.57 MB
- 文档页数:17
H a r b i n I n s t i t u t e o f T e c h n o l o g y课程设计说明书(论文)课程名称:控制系统课程设计设计题目:一阶倒立摆控制器设计院系:航天学院控制科学与工程系班级:设计者:学号:指导教师:罗晶周乃馨设计时间:2011年8月21日至2011年9月9日哈尔滨工业大学教务处哈尔滨工业大学课程设计任务书姓名:王院(系):专业:班号:任务起至日期:2011年8月21 日至2011年9月9 日课程设计题目:一阶倒立摆控制器设计已知技术参数和设计要求:本课程设计的被控对象采用固高公司的一阶倒立摆系统GIP-100-L。
系统内部各相关参数为:M小车质量0.5 Kg ;m摆杆质量0.2 Kg ;b小车摩擦系数0.1 N/m/sec ;l摆杆转动轴心到杆质心的长度0.3 m ;I摆杆惯量0.006 kg*m*m ;T采样时间0.005秒。
设计要求:1.推导出系统的传递函数和状态空间方程。
用Matlab进行脉冲输入仿真,验证系统的稳定性。
2.设计PID控制器,使得当在小车上施加1N的脉冲信号时,闭环系统的响应指标为:(1)稳定时间小于5秒(2)稳态时摆杆与垂直方向的夹角变化小于0.1 弧度工作量:1. 建立一阶倒立摆的线性化数学模型;2. 倒立摆系统的PID控制器设计、MATLAB仿真及实物调试;3. 倒立摆系统的极点配置控制器设计、MATLAB仿真及实物仿真调试。
工作计划安排:第17周:建模研究和确定控制系统方案;第18周:控制系统设计和试验调试;第17周:撰写论文、答辩。
同组设计者及分工:独立完成。
指导教师签字___________________年月日教研室主任意见:教研室主任签字___________________年月日一、一阶倒立摆动力学建模倒立摆系统其本身是自不稳定的系统,实验建模存在着一定的困难。
在忽略掉一些次要的因素之后,倒立摆系统就是一个典型的运动的刚体系统,可以在惯性坐标系中应用经典力学理论建立系统动力学方程。
摘要一阶直线倒立摆是一个典型的“快速、多变量、非线性、自不稳定系统”,对一阶倒立摆系统的稳定性研究在理论上和方法上具有深远的意义。
对一阶倒立摆的研究可以归结为对非线性、多变量、不稳定系统的研究。
在应用上,一阶倒立摆广泛应用于控制理论研究、航空航天控制等领域,在自动化领域中具有重要的价值。
本文首先是建立一阶倒立摆的数学模型,并且采用的是双闭环控制系统,通过对一阶倒立摆的双闭环控制系统数学模型的分析,将模糊控制方法应用于一阶倒立摆的控制问题,其中,内环控制倒立摆的摆角,外环控制倒立摆的位置。
采用模糊控制器的设计包括隶属函数及模糊控制规则、解模糊,最后利用MATLAB软件进行仿真实验。
模糊控制方法应用于一阶倒立摆系统的控制中,能够发挥模糊控制在非线性系统的控制、复杂对象系统控制方面的优势,简化设计,提高系统的鲁棒性。
关键词:一阶倒立摆,数学模型,模糊控制,MATLABAbstractThe first-order linear inverted pendulum is a typical “fast, multivariable, nonlinear, unstable system”, for an inverted pendulum system stability research in theory and method has the profound significance. For an inverted pendulum can boil down to the research on nonlinear, multivariable, unstable system research. In application, an inverted pendulum is widely used in control theory, aerospace control and other fields, in the field of automation has important value.This paper is to establish a mathematical model of the inverted pendulum, and using the double closed-loop control system, through the inverted pendulum double closed-loop control mathematical model analysis, a fuzzy control method is applied to an inverted pendulum control, Wherein, the inner control of the inverted pendulum swing angle, the outer loop controls the position of inverted pendulum. Fuzzy controller design including the membership function and fuzzy control rule, fuzzy solution, finally using the Matlab software simulation. The fuzzy control method is applied to an inverted pendulum control system, fuzzy control can play in the control of nonlinear system, complex object systems control advantages, simplify the design, improve the stability of system.Key words: Inverted pendulum,Mathematical model,Fuzzy control,Matlab目录摘要 (I)Abstract.............................................................................................................................................. I I 1 绪论 (1)一阶倒立摆系统研究的意义 (1)一阶倒立摆系统在国内外研究综述 (1)本论文的研究内容和所用方法 (2)2 一阶倒立摆数学模型的建立与控制系统 (3)一阶倒立摆的数学模型 (3)一阶倒立摆系统的动力学分析 (4)系统微分方程的线性化 (5)系统微分方程状态空间表示 (6)一阶倒立摆定性分析 (7)系统的稳定性、能控性和能观测性判据 (7)基于状态方程的系统定性分析 (8)一阶倒立摆控制系统 (11)一阶倒立摆控制系统硬件 (11)一阶倒立摆系统总体控制框图 (11)3 模糊控制的基本原理 (15)模糊控制理论的基本概念 (15)模糊逻辑操作 (16)模糊规则与模糊推理 (16)模糊控制系统 (16)模糊控制系统的组成 (17)模糊控制系统的特点 (18)模糊控制器 (18)模糊控制器的组成 (18)模糊控制器的结构 (19)4 双闭环模糊控制系统设计 (21)建立双闭环模糊控制系统 (21)模糊控制器的设计 (21)隶属函数的确定 (21)模糊控制规则 (23)输出向量的解模糊 (24)建立模糊控制查询表 (25)5 一阶倒立摆系统仿真及其分析 (28)MATLAB及其模糊工具箱的介绍 (28)MATLAB的主要特点 (28)MATLAB的基本组成 (29)一阶倒立摆模糊控制系统仿真实验 (30)利用GUI编辑FIS结构文件,即设计模糊控制器 (30)建立一阶倒立摆模糊控制系统的仿真模型图 (33)6 结论与展望 (38)参考文献 (39)致谢 (40)系统总体框图 (41)系统总体原理图 (42)1 绪论一阶倒立摆系统研究的意义一阶倒立摆在稳定性控制问题中具有成本低廉,结构简单,形象直观,物理参数和结构易于调整的优点。
单级倒立摆系统课程设计一、课程目标知识目标:1. 理解单级倒立摆系统的基本原理,掌握其数学模型和动力学特性;2. 学会分析单级倒立摆系统的稳定性,并掌握相应的控制策略;3. 掌握利用传感器和执行器实现单级倒立摆系统的实时控制方法。
技能目标:1. 能够运用所学的理论知识,设计并搭建单级倒立摆实验系统;2. 能够编写程序,实现对单级倒立摆系统的实时控制,使系统保持稳定;3. 能够分析实验数据,优化控制参数,提高系统性能。
情感态度价值观目标:1. 培养学生对物理系统控制原理的兴趣,激发学生探索科学技术的热情;2. 培养学生的团队协作意识和解决问题的能力,增强学生的自信心;3. 引导学生关注科技创新,认识到所学知识在实际应用中的价值。
课程性质:本课程为理论与实践相结合的课程,旨在帮助学生将所学的理论知识应用于实际系统中,提高学生的实践能力和创新能力。
学生特点:学生具备一定的物理、数学基础,对控制原理有一定了解,但实践经验不足。
教学要求:注重理论与实践相结合,鼓励学生动手实践,培养解决实际问题的能力。
在教学过程中,注重引导学生自主学习,培养学生的创新意识和团队协作精神。
通过本课程的学习,使学生能够将所学知识应用于实际系统,提高自身综合素质。
二、教学内容1. 理论知识:- 单级倒立摆系统的基本原理及数学模型;- 单级倒立摆系统的稳定性分析;- 控制策略及控制算法在单级倒立摆系统中的应用;- 传感器和执行器在单级倒立摆系统中的作用及选型。
2. 实践操作:- 搭建单级倒立摆实验系统;- 编写程序实现实时控制;- 调试优化控制参数;- 分析实验数据,提高系统性能。
3. 教学大纲:- 第一周:介绍单级倒立摆系统基本原理,学习数学模型,进行稳定性分析;- 第二周:学习控制策略及控制算法,探讨其在单级倒立摆系统中的应用;- 第三周:了解传感器和执行器,学习其在单级倒立摆系统中的作用及选型;- 第四周:分组搭建单级倒立摆实验系统,进行程序编写和实时控制;- 第五周:调试优化控制参数,分析实验数据,提高系统性能。
一阶倒立摆控制仿真摘要:倒立摆系统是一个典型的快速、多变量、非线性、不稳定系统,研究倒立摆的精确控制对工业复杂对象的控制有着重要的工程应用价值。
本文对仿真的分类、过程、发展、应用及仿真环境等作了简单的介绍,同时也介绍了倒立摆系统的特性、分类、应用、发展等基本情况。
文中采用牛顿-欧拉方法建立一阶倒立摆的数学模型,对精确模型在工作点附件进行线性化和降价处理,利用固高公司的一阶倒立摆参数,计算出传递函数。
在数学模型的基础上进行了PID 控制的理论分析。
利用MATLAB中的Simulink仿真工具对一阶倒立摆的单回路PID控制进行仿真分析,在仿真中整定出合理的PID参数。
仿真证实,单回路PID控制方案能满足对倒立摆摆杆角度的控制要求。
关键词:倒立摆;PID控制;仿真;MATLAB-Simulink---------Simulation of single inverted pendulum Abstract: The inverted pendulum system is characterized as a fast multi-variable nonlinear essentially unsteady system.The research on precise control of the inverted pendulum is of great practical engineering value for control problems of complicated industrial object.In this paper, the classification, process, development, application of simulation and simulation environment are simply introduced. The basic situation include Characteristics, classification application development and so on of the inverted pendulum system is introduced.This text uses the Newton-the Eule method to establishing the mathematical model of single inverted pendulum, carries on the linearization and fall step processing to the precise model nearby the work-point, uses the parameters of googol’s single inverted pendulum, calculate s its transferred functions. And do theoretical analysis of the PID control based on the mathematical model. This text uses the MA TLAB Simulink simulation tools to do simulation analysis of the single inverted pen dulum’s single loop PID control, collated reasonable PID controlled parameters in simulation. Simulation proves that the single loop PID controlled plans can satisfied to the control of the angle of pendulum rod.Keywords:inverted pendulum; PID control; simulation; MATLAB-Simulink目录1 绪论 (1)1.1 仿真技术的简介 (1)1.1.1 仿真概念 (1)1.1.2 仿真分类 (1)1.1.3 仿真过程 (1)1.1.4 系统建模 (2)1.1.5 模型验证 (2)1.2 倒立摆系统介绍 (3)1.2.1 倒立摆的分类 (3)1.2.2 倒立摆的特性 (4)1.2.3 倒立摆的发展 (5)1.2.4 倒立摆的应用 (5)1.3 本论文研究的主要内容 (6)2 一阶倒立摆系统的建模 (7)2.1 一阶倒立摆的物理模型 (7)2.2 一阶倒立摆的数学模型 (7)2.3 一阶倒立摆的实际模型 (11)3 PID控制器简介 (12)3.1 PID控制原理 (12)3.2 PID控制器的参数整定 (13)4 一阶倒立摆PID控制器系统的仿真研究 (16)4.1 MATLAB/SIMULINK仿真环境 (16)4.2 一阶倒立摆的PID控制理论分析 (17)4.3 一阶倒立摆的PID控制仿真分析 (18)5 结论 (23)致谢 (24)参考文献 (25)1 绪论1.1 仿真技术的简介1.1.1仿真概念自动控制系统是由被控对象、测量变送装置、执行器和控制器所组成,当选定测量变送装置和执行器后,对自动控制系统进行设计和分析研究,也就是对被控对象的动态特性进行分析和研究,然后根据被控对象的动态特性进行控制器的设计,以求获得能满足性能指标要求的最优控制系统。
倒立摆系统的控制器设计1(含5篇)第一篇:倒立摆系统的控制器设计1刘翰林倒立摆系统的控制器设计引言1.1 问题的提出生活在大千世界里,摆无处不在。
何为摆?支点在下,重心在上,恒不稳定的系统或装置的叫倒立摆。
相反,支点在上而重心在下的则称为顺摆。
现实生活中,旋转着的芭蕾舞演员,杂技的顶伞,墙上挂钟的钟摆,工作中的吊车等都可被看作是一个摆。
倒立摆的种类繁多,其中包括悬挂式、直线、环形、平面倒立摆等。
一级、二级、三级、四级乃至多级倒立摆。
1.2 倒立摆系统简介倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。
最初研究开始于二十世纪50年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级立摆实验设备。
近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。
倒立摆系统作为控制理论究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。
由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控和一般工业应用等方面具有广阔的利用开发前景。
平面倒立摆可以比较真实的模拟火箭的飞行控制和步行机器人的稳定控制等方面的研究。
1.3 倒立摆的分类倒立摆已经由原来的直线一级倒立摆扩展出很多种类,典型的有直线倒立摆,环形倒立摆,平面倒立摆和复合倒立摆等,倒立摆系统是在运动模块上装有倒立摆装置,由于在相同的运动模块上可以装载不同的倒立摆装置,倒立摆的种类由此而丰富很多,按倒立摆的结构来分,有以下类型的倒立摆: 1)直线倒立摆系列直线倒立摆是在直线运动模块上装有摆体组件,直线运动模块有一个自由度,小车可以沿导轨水平运动,在小车上装载不同的摆体组件,可以组成很多类别的倒立摆,直线柔性倒立摆和一般直线倒立摆的不同之处在于,柔性倒立摆有两个可以沿导轨滑动的小车,并且在主动小车和从动小车之间增加了一个弹簧,作为柔性关节。
一阶直线倒立摆系统姓名:班级:学号:目录摘要 (3)第一部分单阶倒立摆系统建模 (4)(一) 对象模型 (4)(二)电动机、驱动器及机械传动装置的模型 (6)第二部分单阶倒立摆系统分析 (7)第三部分单阶倒立摆系统控制 (11)(一)内环控制器的设计 (11)(二)外环控制器的设计 (14)第四部分单阶倒立摆系统仿真结果 (16)系统的simulink仿真 (16)摘要:该问题源自对于娱乐型”独轮自行车机器人"的控制,实验中对该系统进行系统仿真,通过对该实物模型的理论分析与实物仿真实验研究,有助于实现对独轮自行车机器人的有效控制。
控制理论中把此问题归结为“一阶直线倒立摆控制问题”。
另外,诸如机器人行走过程中的平衡控制、火箭发射中的垂直度控制、卫星飞行中的姿态控制、海上钻井平台的稳定控制、飞机安全着陆控制等均涉及到倒立摆的控制问题。
实验中通过检测小车位置与摆杆的摆动角,来适当控制驱动电动机拖动力的大小,控制器由一台工业控制计算机(IPC)完成.实验将借助于“Simulink封装技术——子系统”,在模型验证的基础上,采用双闭环PID控制方案,实现倒立摆位置伺服控制的数字仿真实验。
实验过程涉及对系统的建模、对系统的分析以及对系统的控制等步骤,最终得出实验结果。
仿真实验结果不仅证明了PID方案对系统平衡控制的有效性,同时也展示了它们的控制品质和特性。
第一部分单阶倒立摆系统建模(一) 对象模型由于此问题为"单一刚性铰链、两自由度动力学问题",因此,依据经典力学的牛顿定律即可满足要求。
如图1。
1所示,设小车的质量为0m ,倒立摆均匀杆的质量为m ,摆长为2l ,摆的偏角为θ,小车的位移为x ,作用在小车上的水平方向上的力为F ,1O 为摆杆的质心。
图1。
1 一阶倒立摆的物理模型根据刚体绕定轴转动的动力学微分方程,转动惯量与角加速度乘积等于作用于刚体主动力对该轴力矩的代数和,则1)摆杆绕其重心的转动方程为sin cos y x l F J F l θθθ=- (1-1)2)摆杆重心的水平运动可描述为22(sin )x d F m x l dtθ=+ (1-2) 3)摆杆重心在垂直方向上的运动可描述为22(cos )y d F mg m l dtθ-= (1—3) 4)小车水平方向运动可描述为202x d x F F m dt-= (1—4)由式(1-2)和式(1—4)得20()(cos sin )m m x ml F θθθθ++⋅-⋅= (1—5)由式(1-1)、式(1-2)和式(1-3)得2()cos lgsin J ml ml x m θθθ++⋅= (1-6)整理式(1—5)和式(1-6),得2222222220222022220()()sin sin cos ()()cos cos sin cos ()lgsin cos ()()J ml F lm J ml m l g x J ml m m m l ml F m l m m m m l m m J ml θθθθθθθθθθθθ⎧+++⋅-=⎪++-⎪⎨⋅+⋅-+⎪=⎪-++⎩(1-7) 因为摆杆是匀质细杆,所以可求其对于质心的转动惯量。
课程设计说明书课程名称:控制系统课程设计设计题目:一阶倒立摆控制器设计院系:信息与电气工程学院班级:设计者:学号:指导教师:设计时间:2013年2月25日到2013年3月8号课程设计(论文)任务书指导教师签字:系(教研室)主任签字:2013年3月5日目录一、建立一阶倒立摆数学模型 (4)1. 一阶倒立摆的微分方程模型 (4)2. 一阶倒立摆的传递函数模型 (6)3. 一阶倒立摆的状态空间模型 (7)二、一阶倒立摆matlab仿真 (9)三、倒立摆系统的PID控制算法设计 (13)四、倒立摆系统的最优控制算法设计 (23)五、总结 (28)六、参考文献 (29)一、建立一阶倒立摆数学模型首先建立一阶倒立摆的物理模型。
在忽略空气阻力和各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图1所示。
系统内部各相关参数定义如下:M 小车质量m 摆杆质量b 小车摩擦系数l 摆杆转动轴心到杆质心的长度I 摆杆惯量F 加在小车上的力x 小车位置φ摆杆与垂直向上方向的夹角θ摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)1.一阶倒立摆的微分方程模型对一阶倒立摆系统中的小车和摆杆进行受力分析,其中,N和 P为小车与摆杆相互作用力的水平和垂直方向的分量。
图1-2 小车及摆杆受力图分析小车水平方向所受的合力,可以得到以下方程:(1-1)由摆杆水平方向的受力进行分析可以得到下面等式:(1-2)即:(1-3)把这个等式代入式(1-1)中,就得到系统的第一个运动方程:(1-4)为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得到下面方程:(1-5)即:(1-6)力矩平衡方程如下:(1-7)由于所以等式前面有负号。
合并这两个方程,约去 P 和 N ,得到第二个运动方程:(1-8)设,(φ是摆杆与垂直向上方向之间的夹角),假设φ <<1弧度, 则可以进行近似处理:0)(,sin ,1cos 2=-=-=dtd θφθθ。
一阶倒立摆控制系统设计首先,设计一阶倒立摆控制系统需要明确系统的参数和模型。
一阶倒立摆通常由一个平衡杆和一个摆组成。
平衡杆的长度、摆的质量和位置等都是系统的参数。
根据平衡杆的转动原理和摆的运动方程,可以得到一阶倒立摆的数学模型。
接下来,根据系统的数学模型,进行系统的稳定性分析。
稳定性分析是判断一阶倒立摆控制系统是否能够保持平衡的重要步骤。
常用的稳定性分析方法有判据法和根轨迹法。
判据法通过计算特征方程的根来判断系统的稳定性,根轨迹法则通过特征方程的根随一些参数变化的路径来分析系统的稳定性。
在进行稳定性分析的基础上,选择合适的控制策略。
常见的控制策略有比例控制、积分控制和微分控制等。
比例控制通过将系统的输出与期望值之间的差异放大一定倍数来控制系统;积分控制通过积分系统误差来进行控制;微分控制通过对系统误差的微分来进行控制。
在选择控制策略时,需要考虑系统的动态响应、稳态误差和鲁棒性等指标。
在选定控制策略后,进行控制器的设计和参数调节。
控制器是实现控制策略的核心部分。
控制器可以是传统的PID控制器,也可以是现代控制理论中的模糊控制器、神经网络控制器等。
控制器的参数需要通过试探法、经验法或者系统辨识等方法进行调节,以使系统达到最佳的控制效果。
最后,进行实验验证和性能评估。
在实验中,需要将控制器与倒立摆系统进行连接,并输入一定的控制信号。
通过测量系统的输出响应和误差,可以评估控制系统的性能,并进行调整和改进。
综上所述,一阶倒立摆控制系统设计的步骤包括系统参数和模型确定、稳定性分析、控制策略选择、控制器设计和参数调节、实验验证和性能评估等。
在设计过程中,需要综合考虑系统的稳定性、动态响应和鲁棒性等因素,以实现一个稳定可靠、性能优良的一阶倒立摆控制系统。
一阶倒立摆控制设计与实现一阶倒立摆是一种常见的控制系统模型,它由一个垂直的支柱和一个质量为m 的物体组成,物体通过支柱与地面相连。
在控制系统中,我们需要设计一个控制器来控制物体的位置和速度,使其保持在垂直位置上。
本文将介绍一阶倒立摆控制设计与实现的相关内容。
一、一阶倒立摆模型一阶倒立摆模型可以用以下方程描述:m*d^2y/dt^2 = -mg*sin(y) + u其中,y是物体的位置,u是控制器的输出,m是物体的质量,g是重力加速度,t是时间。
该方程可以通过拉普拉斯变换转换为传递函数:G(s) = Y(s)/U(s) = 1/(ms^2 + mg)二、控制器设计为了控制一阶倒立摆,我们需要设计一个控制器来产生控制信号u。
常见的控制器包括比例控制器、积分控制器和微分控制器,它们可以组合成PID控制器。
在本文中,我们将使用比例控制器来控制一阶倒立摆。
比例控制器的输出与误差成正比,误差越大,输出越大。
比例控制器的传递函数为:Gc(s) = Kp其中,Kp是比例增益。
三、闭环控制系统将控制器和一阶倒立摆模型组合起来,得到闭环控制系统的传递函数:G(s) = Y(s)/R(s) = Kp/(ms^2 + mg + Kp)其中,R(s)是参考信号,表示我们期望物体保持的位置。
四、控制系统实现在实现控制系统之前,我们需要对一阶倒立摆进行建模和仿真。
我们可以使用MATLAB等工具进行建模和仿真。
在MATLAB中,我们可以使用Simulink模块来建立一阶倒立摆模型和控制器模型。
在建立模型之后,我们可以进行仿真,观察系统的响应和稳定性。
在实现控制系统时,我们需要选择合适的硬件平台和控制器。
常见的硬件平台包括Arduino和Raspberry Pi等,常见的控制器包括PID控制器和模糊控制器等。
在实现控制系统之后,我们需要进行调试和优化,以达到最佳控制效果。
五、总结本文介绍了一阶倒立摆控制设计与实现的相关内容,包括一阶倒立摆模型、控制器设计、闭环控制系统和控制系统实现。
一阶倒立摆控制设计与实现以一阶倒立摆控制设计与实现为题,本文将介绍倒立摆控制系统的设计原理和实现过程。
倒立摆是一种经典的控制系统问题,它涉及到动力学建模、控制算法设计和实时控制等多个方面。
本文将从这些方面逐步展开,为读者介绍一阶倒立摆控制的基本知识。
1. 动力学建模倒立摆是一个复杂的动力学系统,它由一个可以旋转的杆和一个连接在杆末端的质点组成。
杆的旋转可以由一个电机控制,质点则受到重力和杆的作用力。
为了建立倒立摆的动力学模型,我们需要考虑杆的旋转角度和质点的位置。
2. 控制算法设计一阶倒立摆的控制目标是使杆保持竖直位置,即旋转角度为零,并且使质点保持在某个给定的位置上。
为了实现这个目标,我们可以设计一个控制器来控制杆的旋转角度和质点的位置。
常用的控制算法有PID控制算法、模糊控制算法和神经网络控制算法等。
PID控制算法是一种经典的控制算法,它通过调节比例、积分和微分三个参数来实现控制效果。
模糊控制算法则利用模糊逻辑的思想,将输入和输出之间的关系用模糊集合表示。
神经网络控制算法则利用神经网络的学习能力,通过训练网络来实现控制效果。
3. 实时控制倒立摆的控制需要实时采集传感器数据,并根据这些数据计算控制信号。
在实际应用中,我们可以使用编码器来测量杆的旋转角度,使用加速度计来测量质点的加速度,然后通过控制器来计算电机的控制信号。
为了实现实时控制,我们可以使用嵌入式系统来实现。
嵌入式系统是一种专门设计用于控制和处理实时数据的计算机系统,它通常由微处理器、存储器和输入输出设备组成。
通过将控制算法和传感器接口集成到嵌入式系统中,我们可以实现倒立摆的实时控制。
总结本文介绍了一阶倒立摆控制的基本原理和实现方法。
倒立摆是一个复杂的动力学系统,控制它需要建立动力学模型,并设计合适的控制算法。
通过实时采集传感器数据并计算控制信号,我们可以实现倒立摆的控制。
希望本文对读者理解一阶倒立摆控制有所帮助,同时也希望读者能够进一步探索和研究这个有趣的控制问题。
H a r b i n I n s t i t u t e o f T e c h n o l o g y课程设计说明书(论文)课程名称:控制系统课程设计设计题目:一阶倒立摆控制器设计院系:航天学院控制科学与工程系班级:设计者:学号:指导教师:罗晶周乃馨设计时间:2011年8月21日至2011年9月9日哈尔滨工业大学教务处哈尔滨工业大学课程设计任务书姓名:王院(系):专业:班号:任务起至日期:2011年8月21 日至2011年9月9 日课程设计题目:一阶倒立摆控制器设计已知技术参数和设计要求:本课程设计的被控对象采用固高公司的一阶倒立摆系统GIP-100-L。
系统内部各相关参数为:M小车质量0.5 Kg ;m摆杆质量0.2 Kg ;b小车摩擦系数0.1 N/m/sec ;l摆杆转动轴心到杆质心的长度0.3 m ;I摆杆惯量0.006 kg*m*m ;T采样时间0.005秒。
设计要求:1.推导出系统的传递函数和状态空间方程。
用Matlab进行脉冲输入仿真,验证系统的稳定性。
2.设计PID控制器,使得当在小车上施加1N的脉冲信号时,闭环系统的响应指标为:(1)稳定时间小于5秒(2)稳态时摆杆与垂直方向的夹角变化小于0.1 弧度工作量:1. 建立一阶倒立摆的线性化数学模型;2. 倒立摆系统的PID控制器设计、MATLAB仿真及实物调试;3. 倒立摆系统的极点配置控制器设计、MATLAB仿真及实物仿真调试。
工作计划安排:第17周:建模研究和确定控制系统方案;第18周:控制系统设计和试验调试;第17周:撰写论文、答辩。
同组设计者及分工:独立完成。
指导教师签字___________________年月日教研室主任意见:教研室主任签字___________________年月日一、一阶倒立摆动力学建模倒立摆系统其本身是自不稳定的系统,实验建模存在着一定的困难。
在忽略掉一些次要的因素之后,倒立摆系统就是一个典型的运动的刚体系统,可以在惯性坐标系中应用经典力学理论建立系统动力学方程。
下面采用牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型。
在忽略了空气阻力和各种摩擦力之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图1所示:图1:直线一级倒立摆模型系统的相关参数定义如下:M小车质量m摆杆质量b 小车摩擦系数l摆杆转动轴心到杆质心的长度I摆杆质量F加在小车上的力x小车位置Φ摆杆与垂直方向上方向的夹角θ摆杆与垂直方向下方向的夹角(摆杆的初始位置为竖直向下)图2为小车和摆杆的受力分析图。
其中,N和P为小车与摆杆相互作用力的水平和垂直方向的分量。
图2:小车和摆杆受力分析图应用牛顿方法来建立系统的动力学方程过程如下: 分析小车水平方向所受的合力,可以得到以下的方程:M x F b x N ∙∙=--由摆杆水平方向的受力进行分析可以得到下面的等式:22(sin )d N m x l dtθ=+将此等式代入上述等式中,可以得到系统的第一个运动方程:2()cos sin M m x b x ml ml F θθθθ∙∙∙∙∙∙+++-=为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得到下面的方程:22(cos )d P mg m l dtθ-=-力矩平衡方程如下:sin cos Pl Nl I θθθ∙∙--=因为此方程中力矩的方向,由于cos cos sin sin θπφφθφθ=+=-=- 故等式前面有负号。
合并这两个方程,约去P 和N ,得到第二个运动方程:2()sin cos I ml mgl ml x θθθ∙∙∙∙++=-微分方程模型设θ=π+φ,当摆杆与垂直向上方向之间的夹角φ与1(单位是弧度)相比很小时,即Φ<<1时,则可以进行如下近似处理:2cos 1sin ()0d dtθθφθ=-=-= 线性化后得到该系统数学模型的微分方程表达式:2()()I ml mgl ml xM m x b x ml uφφφ∙∙∙∙∙∙∙∙⎧+-=⎪⎨⎪++-=⎩ 传递函数模型对上述方程组进行拉氏变换后得到:22222()()()()()()()()()I ml s s mgl s mlX s s M m X s s bX s ml s s U s φφ⎧+-=⎪⎨++-Φ=⎪⎩ 解上述方程可得输入量为加速度,输出量为摆杆摆角的传递函数:22()()()s mlV s I ml s mglφ=+-其中v x ∙∙=。
输入量为力,输出量为摆角的传递函数:22432()()()()ml ss qb I ml M m mgl bmgl U s s s s sq q qφ=+++-- 其中22[()()()]q M m I ml ml =++-状态空间数学模型控制系统的状态空间方程可写成如下形式:X AX Bu Y CX Du∙=+=+ 解代数方程可得如下解:2222222222()()()()()()()()()x xI ml b m gl I ml x x u I M m Mml I M m Mml I M m Mml mlb mgl M m ml x u I M m Mml I M m Mml I M m Mml φφφφφ∙∙∙∙∙∙∙∙∙∙⎧=⎪⎪-++=++⎪++++++⎪⎨⎪=⎪-+⎪=++⎪++++++⎩整理后可得系统的状态空间方程:22222222220100()00()()()00010()00()()()x x I ml bm gl I ml x x I M m Mml I M m Mml I M m Mml mlbmgl M m ml I M m Mml I M m Mml I M m Mml φφφφ∙∙∙∙∙∙∙∙⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥++++++⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-+⎢⎥⎢⎥⎣⎦⎢⎥⎢⎢⎥⎣⎦++++++⎣⎦⎣⎦u ⎥1000000100x x x y u φφφ∙∙⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤==+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦对于质量均匀分布的摆杆,其转动惯量为:213I ml =代入微分方程模型中得:221()3ml ml mgl ml x φφ∙∙∙∙+-= 化简后可得:3344g x l lφφ∙∙∙∙=+设[],TX x x u x φφ∙∙∙∙==则有:'010000000100010330441000000100x x x x u g ll x x x y u φφφφφφφ∙∙∙∙∙∙∙∙∙∙⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤==+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦实际系统参数如下: M 小车质量,0.5Kg; m 摆杆质量,0.2Kg;b 小车摩擦系数,0.1N/m/sec ;l 摆杆转动轴心到杆质心的长度,0.3m; I 摆杆质量,0.006Kg ·m ·m ; T 采样时间,0.005s 。
将上述系统参数代入可得系统实际模型。
摆杆角度和小车位移的传递函数:22()0.06()0.0240.588s s X s s φ=- 摆杆角度和小车加速度之间的传递函数:2()0.06()0.0240.588s V s s φ=- 摆杆角度和小车所受外界作用力的传递函数:2432()4.545()0.18231.18 4.45s s U s s s s sφ=+-- 以外界作用力作为输入的系统状态方程:0100000.182 2.67270 1.81820001000.454531.1820 4.5454x x x x u φφφφ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦1000000100x x x y u φφφ⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦以小车加速度作为输入的系统状态方程:'0100000001000100024.50 2.5x x x x u φφφφ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦'1000000100x x x y u φφφ⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦在固高科技提供的控制器设计和程序中,采用的是以小车的加速度作为系统的输入,如果采用力矩控制的方法,可以参考以上把外界作用力作为输入的格式。
二、一阶倒立摆控制系统设计和数字仿真2.1阶跃响应分析由上面得到的系统状态方程,对其进行阶跃响应分析。
得到如下的阶跃响应结果:图3:直线一级倒立摆单位阶跃响应仿真由阶跃响应曲线可以看出在单位阶跃响应作用下,小车位置和摆杆角度都是发散的。
2.2直线一级倒立摆PID 控制器设计PID 控制器是一种线性控制器,它根据给定值与实际输出值构成偏差值。
将偏差的比例、积分、微分通过线性组合构成控制量,对被控对象进行控制,故称为PID 控制器。
其控制律为:1()()()()tP DI de t u t K e t e t dt T T dt ⎡⎤=++⎢⎥⎣⎦⎰K P 比例系数; K I 积分系数;T D 微分时间常数。
PID 控制器设计要求:设计PID 控制器,使得当在小车上施加0.1N 的阶跃信号时,闭环系统的响应指标为:(1)稳定时间小于5秒;(2)稳态时摆杆与垂直方向的夹角变化小于0.1弧度。
图4:直线一级倒立摆PID 控制MATLAB 仿真模型通过不断地调整PID 控制器的参数可得,当K P =100,K I =100,K D =15时,系统的指标如下:系统的飞升时间tp=0.07s ;系统的调整时间ts=0.92s(Δ=5%);系统的调整时间ts=1.5s(Δ=2%);系统的超调量δ=19%。
图5:直线一级倒立摆PID控制仿真结果图(K P=100,K I=100,K D=15)如图5所示为摆杆角度响应曲线,在0.07s时其超调量δ=19%;当Δ=5%时,其调整时间ts=0.92s;当Δ=2%时,其调整时间ts=1.5s。
由以上系统指标分析可知,当K P=100,K I=100,K D=15时系统可以较好地稳定,其调整时间在5s以内,10s之后在系统稳态时摆杆与垂直方向的夹角变化在0.1rad附近,其稳态误差较小。
由以上可以看出,整个系统性能基本上满足设计要求。
图6:直线一级倒立摆PID控制仿真—小车位置曲线由图6可以看出,由于PID 控制器为单输入单输出系统,所以只能控制摆杆的角度,并不能控制小车的位置,所以小车会朝一个方向运动。