无约束优化方法的二次收敛性
- 格式:ppt
- 大小:3.31 MB
- 文档页数:40
牛顿法无约束最优化证明牛顿法是一种常用的非线性优化方法,它通过逐步逼近最优解来求解无约束最优化问题。
本文将介绍牛顿法的数学原理及其证明过程。
首先,我们考虑一个无约束的最优化问题,即:min f(x)其中,f(x)为目标函数,x为优化变量。
我们的目标是找到一个x,使得f(x)最小。
牛顿法的基本思想是通过求解目标函数的局部二次近似来逐步逼近最优解。
具体来说,我们首先选取一个初始点x0,然后利用目标函数的一、二阶导数信息,计算出目标函数在x0处的局部二次近似:f(x) ≈ f(x0) + f(x0)·(x-x0) + 1/2(x-x0)T·H(x0)·(x-x0) 其中,f(x0)为目标函数在x0处的梯度,H(x0)为目标函数在x0处的黑塞矩阵。
我们将局部二次近似表示为:Q(x) = f(x0) + f(x0)·(x-x0) + 1/2(x-x0)T·H(x0)·(x-x0) 然后,我们将Q(x)的导数置为零,得到如下方程:H(x0)·(x-x0) = -f(x0)接着,我们解出上述方程的解x1,将x1作为新的近似点,重复上述步骤,迭代求解,直到收敛于最优解。
接下来,我们来证明牛顿法的收敛性。
我们假设目标函数f(x)满足如下条件:1. f(x)是二次可微的凸函数。
2. H(x)是正定的。
在这种情况下,我们可以证明牛顿法是线性收敛的。
具体来说,设xk为牛顿法第k次迭代的近似解,x*为最优解,则有:f(xk+1) - f(x*) ≤ C·(f(xk) - f(x*))2其中,C>0是一个常数。
这个式子表明,每次迭代后,算法的误差都会平方级别的减小。
证明过程比较复杂,需要利用函数的泰勒展开式、中值定理等工具。
具体证明过程可以参考相关数学文献。
综上所述,牛顿法是一种有效的无约束最优化方法,其收敛速度较快,但需要满足一定的条件才能保证收敛性。
word 教育资料优化设计复习题一、单项选择题(在每小题列出的选项中只有一个选项是符合题目要求的)1.多元函数F(X)在点X *附近偏导数连续, F ’(X *)=0且H(X *)正定,则该点为F(X)的( ) ①极小值点 ②极大值点 ③鞍点 ④不连续点 2.F(X)为定义在n 维欧氏空间中凸集D 上的具有连续二阶偏导数的函数,若H(X)正定,则称F(X)为定义在凸集D 上的( ) ①凸函数 ②凹函数 3.黄金分割法中,每次缩短后的新区间长度与原区间长度的比值始终是一个常数,此常数是( ) ①0.382 ②0.186 ③0.618 ④0.816 4.在单峰搜索区间[x 1,x 3](x 1<x 3)内,取一点x 2,用二次插值法计算得x 4(在[x 1,x 3]内),若x 2>x 4,并且其函数值F (x 4)<F(x 2),则取新区间为( ) ①[x 1,x 4] ②[x 2,x 3] ③[x 1,x 2] ④[x 4,x 3] 5.用变尺度法求一n 元正定二次函数的极小点,理论上需进行一维搜索的次数最多为( ) ①n 次 ②2n 次 ③n+1次 ④2次6.下列特性中,梯度法不具有的是( ) ①二次收剑性 ②要计算一阶偏导数 ③对初始点的要求不高 ④只利用目标函数的一阶偏导数值构成搜索方向 8.对于极小化F(X),而受限于约束g μ(X)≤0(μ=1,2,…,m)的优化问题,其内点罚函数表达式为( ) ① Ф(X,r (k))=F(X)-r(k)11/()gX u u m=∑② Ф(X,r (k))=F(X)+r(k)11/()gX u u m =∑③ Ф(X,r (k))=F(X)-r(k)max[,()]01gX u u m=∑④ Ф(X,r (k))=F(X)-r (k)min[,()]01g X u u m=∑9.外点罚函数法的罚因子为( ) ①递增负序列 ②递减正序列 ③递增正序列 ④递减负序列 10.函数F (X )为在区间[10,20]内有极小值的单峰函数,进行一维搜索时,取两点13和16,若F (13)<F (16),则缩小后的区间为( ) ①[10,16] ②[10,13] ③[13,16] ④[16,20] 11.多元函数F (X )在X *处存在极大值的充分必要条件是:在X *处的Hesse 矩阵( ) ①等于零 ②大于零 ③负定 ④正定 12.对于函数F (x )=x 21+2x 22,从初始点x (0)={1,1}T 出发,沿方向s (0)={-1,-2}T进行一维搜索,最优步长因子为( )①10/16 ②5/9 ③9/34 ④1/213.目标函数F (x )=x 21+x 22-x 1x 2,具有等式约束,其等式约束条件为h(x)=x 1+x 2-1=0,则目标函数的极小值为( ) ①1 ②0.5 ③0.25 ④0.1 14. 优化设计的自由度是指( )① 设计空间的维数 ② 可选优化方法数 ③ 所提目标函数数 ④ 所提约束条件数 15. 在无约束优化方法中,只利用目标函数值构成的搜索方法是( ) ①梯度法 ② Powell 法 ③共轭梯度法 ④变尺度法 17. 利用0.618法在搜索区间[a,b ]内确定两点a 1=0.382,b 1=0.618,由此可知区间[a,b ]的值是( ) ①[0,0.382] ② [0.382,1] ③ [0.618,1]④ [0,1]18. 已知函数F(X)=x 12+x 22-3x 1x 2+x 1-2x 2+1,则其Hesse 矩阵是( ) ① ⎥⎦⎤⎢⎣⎡--2332 ② ⎥⎦⎤⎢⎣⎡2332③ ⎥⎦⎤⎢⎣⎡2112 ④ ⎥⎦⎤⎢⎣⎡--3223 19. 对于求minF(X)受约束于g i (x)≤0(i=1,2,…,m)的约束优化设计问题,当取λi ≥0时,则约束极值点的库恩—塔克条件为( )①()i i 1F X g (X)mi λ=∇=∇∑,其中λi 为拉格朗日乘子② ()i i 1F X =g (X)mi λ=-∇∇∑,其中λi 为拉格朗日乘子③ ()i i 1F X g (X)qi λ=∇=∇∑,其中λi 为拉格朗日乘子,q 为该设计点X 处的约束面数④()i i 1F X g (X)qi λ=-∇=∇∑,其中λi 为拉格朗日乘子,q 为该设计点X 处的约束面数20. 在共轭梯度法中,新构造的共轭方向S (k+1)为( ) ① S (k+1)= ∇F(X (k+1))+β(k)S (K),其中β(k)为共轭系数② S (k+1)=∇F(X (k+1))-β(k)S (K),其中β(k)为共轭系数 ③ S (k+1)=-∇F(X (k+1))+β(k)S (K),其中β(k)为共轭系数④ S (k+1)=-∇F(X (k+1))-β(k)S (K),其中β(k)为共轭系数 21. 用内点罚函数法求目标函数F(X)=ax+b 受约束于g(X)=c-x ≤0的约束优化设计问题,其惩罚函数表达式为( ) ① (k)1ax b r c-x+-,r (k)为递增正数序列② (k)1ax b r c-x +-,r (k)为递减正数序列 ③ (k)1ax b r c-x ++,r (k)为递增正数序列word 教育资料④ (k)1ax b r c-x++,r (k)为递减正数序列22. f(x)在区间[x 1,x 3]上为单峰函数,x 2为区间中的一点,x 4为利用二次插值法求得的近似极值点,若x 4-x 2<0,且f(x 4)≥f(x 2),则新的搜索区间为( )① [x 1,x 4] ② [x 2,x 3] ③ [x 1,x 2] ④[x 4,x 3]23. 已知F(X)=x 1x 2+2x 22+4,则F(X)在点X (0)=⎭⎬⎫⎩⎨⎧-11的最大变化率为( )① 10 ② 4 ③ 2 ④ 1024.试判别矩阵1111⎡⎣⎢⎤⎦⎥,它是( )矩阵 ①单位 ②正定矩 ③负定 ④不定 ⑤半正定 ⑥半负定 25.约束极值点的库恩——塔克条件为:-∇=∇=∑F X g Xii qi()()**λ1,当约束函数是g i (X)≤0和λi>0时,则q 应为( )①等式约束数目 ②不等式约束数目 ③起作用的等式约束数目 ④起作用的不等式约束数目26.在图示极小化的约束优化问题中,最优点为( ) ①A ②B ③C ④D27.内点罚函数(X,r (k))=F(X)-r (k)101g X g X u u u m(),(())≤=∑,在其无约束极值点X ·(r (k))逼近原目标函数的约束最优点时,惩罚项中( ) ①r (k)趋向零,11g X u u m()=∑不趋向零 ②r (k)趋向零,11g X u u m()=∑趋向零 ③r (k)不趋向零,11g X u u m()=∑趋向零 ④r (k)不趋向零,11g X u u m()=∑不趋向零 29.0.618法在迭代运算的过程中,区间的缩短率是( )①不变的 ②任意变化的 ③逐渐变大 ④逐渐变小 30.对于目标函数F(X)受约束于g u (X) ≤0(u=1,2,…,m)的最优化设计问题,外点法惩罚函数的表达式是( )①()()(k)(k)2()1X,M F X M {max[(),0]},mk u u g X M =Φ=+∑为递增正数序列②()()(k)(k)2()1X,M F X M {max[(),0]},mk u u g X M =Φ=+∑为递减正数序列③()()(k)(k)2()1X,M F X M {min[(),0]},mk u u g x M =Φ=+∑为递增正数序列 ④()()(k)(k)2()1X,MF X M {min[(),0]},mk uu g x M=Φ=+∑为递减正数序列31.对于二次函数F(X)=12X T AX+b T X+c,若X *为其驻点,则▽F(X *)为( )①零 ②无穷大 ③正值 ④负值 32.在约束优化方法中,容易处理含等式约束条件的优化设计方法是( )①可行方向法 ②复合形法 ③内点罚函数法 ④外点罚函数法33.已知F(X)=(x 1-2)2+x 22,则在点X (0)=00⎧⎨⎩⎫⎬⎭处的梯度为( )①∇=⎧⎨⎩⎫⎬⎭F X ()()000 ②∇=-⎧⎨⎩⎫⎬⎭F X ()()020 ③∇=⎧⎨⎩⎫⎬⎭F X ()()040 ④∇=-⎧⎨⎩⎫⎬⎭F X ()()04034.Powell 修正算法是一种( )①一维搜索方法②处理约束问题的优化方法③利用梯度的无约束优化方法④不利用梯度的无约束优化方法 二、多项选择题(在每小题列出的多个选项中有两个以上选项是符合题目要求的,多选、少选、错选均无分) 35.下列矢量组中,关于矩阵A=105051--⎡⎣⎢⎤⎦⎥..共轭的矢量组是( )①s 1={0 1} ,s 2={1 0}T②s 1={-1 1}T ,s 2={1 1}T③s 1={1 0}T ,s 2={1 2}T④s 1={1 1}T ,s 2={1 2}T⑤.s 1={1 2}T ,s 2={2 1}T36. 对于只含不等式约束的优化设计问题,可选用的优化方法有( )① Powell 法 ② 变尺度法 ③ 内点罚函数法 ④ 外点罚函数法E. 混合罚函数法37. 根据无约束多元函数极值点的充分条件,已知驻点X*,下列判别正确的是( )①若Hesse矩阵H(X*)正定,则X*是极大值点②若Hesse矩阵H(X*)正定,则X*是极小值点③若Hesse矩阵H(X*)负定,则X*是极大值点④若Hesse矩阵H(X*)负定,则X*是极小值点⑤若Hesse矩阵H(X*)不定,则X*是鞍点38.下述Hesse矩阵中,正定矩阵为()①3335⎡⎣⎢⎤⎦⎥②313153337⎡⎤⎢⎥-⎢⎥-⎢⎥⎣⎦③3445⎡⎣⎢⎤⎦⎥④245434542⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⑤523222327⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦39.F(X)在区间[a,b]上为单峰函数,区间内函数情况如图所示:F1=F2。
现代设计方法试题题库1.无约束优化方法有()法。
A.梯度B.0.618C.牛顿法D.坐标轮换法E.鲍威尔法答案:A|C|D|E2.单元刚度矩阵元素的值与单元()有关。
A.形状B.节点数C.节点自由度D.物理性质E.化学性质答案:A|B|C|D3.提高有限元计算精度的方法有()。
A.提高单元阶次B.增加单元数量C.规则单元形状D.接近实际的边界条件E.减小计算规模答案:A|B|C|D|E4.元件之间连接的基本方式有()等。
A.串联B.并联C.待机D.表决E.混合答案:A|B|C|D5.余度技术可以采用()。
A.并联方式B.表决方式C.备用方式D.交叉方式E.直接方式答案:A|B|C6.能处理含等式约束条件的有约束设计优化方法有( )。
A.Powell法B.变尺度法C.内点罚函数法D.外点罚函数法E.混合罚函数法答案:D|E7.下面给出的数学模型中,属于线性规划的有( )。
A.B.C.D.E.答案:A|B|E8.下面关于梯度法的一些说法,正确的是( )。
A.只需求一阶偏导数B.在接近极小点位置时收敛速度很快C.在接近极小点位置时收敛速度很慢D.梯度法开始时的步长很小,接近极小点时的步长很大E.当目标函数的等值线为同心圆时,任一点处的负梯度都是全域的最速下降方向答案:A|C|E9.下述矩阵中,正定矩阵为( )。
A.B.C.D.E.答案:A|B|E10.当零件强度和应力均为正态分布时,提高零件可靠度的措施有( )。
A.提高强度的标准差B.降低强度的标准差C.提高应力的标准差D.降低应力的标准差E.增加强度的均值答案:B|D|E11.在描述机电设备中因局部失效而导致整体失效时,一般用()。
A.正态分布B.指数分布C.威布尔分布D.泊松分布答案:C12.对于二次函数,若为其驻点,则为()。
A.无穷大B.零C.正值D.负值答案:B13.已知,则在点处的梯度为()。
A.B.C.D.答案:C14.Powell改进算法是一种()。
《机械优化设计》复习问答1. 填空1.使用最速下降法求f(X)=100(x 2 - x 1 2 ) 2 +(1- x 1 ) 2的最优解时,设X (0) = [-0.5, 0.5] T ,第一次迭代的搜索方向是[-47;-50] 。
2.机械优化设计采用数学规划方法,其核心是确定搜索方向,其次是计算最优步长因子。
3.当优化问题是__凸规划__时,任何局部最优解都是全局最优解。
4 、应用进退法确定搜索区间时,最终得到的三个点分别为搜索区间的起点、中点和终点,其函数值形成高-低-高趋势。
5. 涉及 n 个设计变量的优化问题称为n 维优化问题。
6.C X B HX X T T ++21函数的梯度是HX+B 。
n 维空间中存在两个非零向量d 0和d 1 ,满足(d 0 ) T Gd 1 =0,则有_之间d 0和 d 1共轭_____ 关系。
8.设计变量、约束和目标函数是优化设计问题数学模型的基本要素。
9.对于一个无约束的二元函数),(21x x f ,如果),(x 20100x x 在某一点处得到最小值,则必要条件是梯度为零,充分条件是Hessian 矩阵是正定的。
10. Kuhn-Tucker 条件可以描述为目标函数在极值点的梯度是每个起作用的约束函数的梯度的非负线性组合。
1 1.用黄金分割法求一元函数的最小点]10,10[],[-=b a ,初始搜索区间3610)(2+-=x x x f ,第一次区间消去后得到的新区间为[-2.36,2.36] 。
的基本要素是设计变量、约束的目标函数、牛顿法的搜索方向为d k =,计算量大,需要初始点逼近最小值点的位置。
14、函数f(X)=x 1 2 + x 22 -x 1 x 2 -10x 1 -4x 2 +60 表示C X B HX X T T ++21为形式。
15.有一个矩阵 H 、一个向量 d 1 和一个向量 d 2 。
当满足(d 1 )TGd 2 =0时,向量d 1和向量d 2关于H 是共轭的。