《高校自主招生考试》数学真题完整版分类解析(打包9套真题完整版试卷解析) Word版含解斩
- 格式:doc
- 大小:3.28 MB
- 文档页数:113
自主招生数学试题及答案一、选择题(每题5分,共20分)1. 若函数f(x) = x^2 - 4x + 3,求f(2)的值。
A. 1B. 3C. 5D. 7答案:B2. 已知等差数列{a_n}的首项a_1 = 3,公差d = 2,求a_5的值。
A. 13B. 15C. 17D. 19答案:A3. 计算定积分∫(0到1) x^2 dx的值。
A. 1/3B. 1/2C. 2/3D. 1答案:B4. 设A = {1, 2, 3},B = {3, 4, 5},求A∩B的值。
A. {1, 2}B. {3}C. {4, 5}D. 空集答案:B二、填空题(每题5分,共20分)5. 已知函数f(x) = 2x - 1,求f(-1)的值。
答案:-36. 计算等比数列1, 2, 4, ...的第5项。
答案:167. 已知圆的半径为5,求圆的面积。
答案:25π8. 已知向量a = (3, 4),向量b = (-4, 3),求向量a与向量b的点积。
答案:-7三、解答题(共60分)9. 已知函数f(x) = x^3 - 6x^2 + 11x - 6,求f(x)的导数。
答案:f'(x) = 3x^2 - 12x + 1110. 已知直线l1: y = 2x + 1和直线l2: y = -x + 3,求两直线的交点坐标。
答案:交点坐标为(1, 3)11. 已知圆心在原点,半径为5的圆,求圆的方程。
答案:x^2 + y^2 = 2512. 已知函数f(x) = x^2 - 6x + 8,求函数的最小值。
答案:函数的最小值为2,当x = 3时取得。
2016年清华大学自主招生暨领军计划试题1.已知函数x e a x x f )()(2+=有最小值,则函数a x x x g ++=2)(2的零点个数为( ) A .0 B .1 C .2 D .取决于a 的值 【答案】C【解析】注意)()(/x g e x f x=,答案C .2. 已知ABC ∆的三个内角C B A ,,所对的边为c b a ,,.下列条件中,能使得ABC ∆的形状唯一确定的有( )A .Z c b a ∈==,2,1B .B bC a C c A a A sin sin 2sin sin ,1500=+=C .060,0sin cos )cos(cos sin cos ==++C C B C B C B A D .060,1,3===A b a【答案】AD .3.已知函数x x g x x f ln )(,1)(2=-=,下列说法中正确的有( ) A .)(),(x g x f 在点)0,1(处有公切线B .存在)(x f 的某条切线与)(x g 的某条切线平行C .)(),(x g x f 有且只有一个交点D .)(),(x g x f 有且只有两个交点【答案】BD【解析】注意到1-=x y 为函数)(x g 在)0,1(处的切线,如图,因此答案BD .4.过抛物线x y 42=的焦点F 作直线交抛物线于B A ,两点,M 为线段AB 的中点.下列说法中正确的有( )A .以线段AB 为直径的圆与直线23-=x 一定相离 B .||AB 的最小值为4 C .||AB 的最小值为2D .以线段BM 为直径的圆与y 轴一定相切 【答案】AB【解析】对于选项A ,点M 到准线1-=x 的距离为||21|)||(|21AB BF AF =+,于是以线段AB 为直径的圆与直线1-=x 一定相切,进而与直线23-=x 一定相离;对于选项B ,C ,设)4,4(2a a A ,则)1,41(2aa B -,于是2414||22++=aa AB ,最小值为4.也可将||AB 转化为AB 中点到准线的距离的2倍去得到最小值;对于选项D ,显然BD 中点的横坐标与||21BM 不一定相等,因此命题错误.5.已知21,F F 是椭圆)0(1:2222>>=+b a by a x C 的左、右焦点,P 是椭圆C 上一点.下列说法中正确的有( ) A .b a 2=时,满足02190=∠PF F 的点P 有两个 B .b a 2>时,满足02190=∠PF F 的点P 有四个C .21F PF ∆的周长小于a 4D .21F PF ∆的面积小于等于22a【答案】ABCD .【解析】对于选项A ,B ,椭圆中使得21PF F ∠最大的点P 位于短轴的两个端点;对于选项C ,21PF F ∆的周长为ac a 422<+;选项D ,21PF F ∆的面积为22212121212||||21sin ||||21a PF PF PF F PF PF =⎪⎭⎫ ⎝⎛+≤∠⋅. 6.甲、乙、丙、丁四个人参加比赛,有两花获奖.比赛结果揭晓之前,四个人作了如下猜测: 甲:两名获奖者在乙、丙、丁中; 乙:我没有获奖,丙获奖了; 丙:甲、丁中有且只有一个获奖; 丁:乙说得对.已知四个人中有且只有两个人的猜测是正确的,那么两个获奖者是( ) A .甲B .乙C .丙D .丁【答案】BD【解析】乙和丁同时正确或者同时错误,分类即可,答案:BD .7.已知AB 为圆O 的一条弦(非直径),AB OC ⊥于C ,P 为圆O 上任意一点,直线PA 与直线OC 相交于点M ,直线PB 与直线OC 相交于点N .以下说法正确的有( ) A .P B M O ,,,四点共圆 B .N B M A ,,,四点共圆 C .N P O A ,,,四点共圆D .以上三个说法均不对【答案】AC【解析】对于选项A ,OPM OAM OBM ∠=∠=∠即得;对于选项B ,若命题成立,则MN 为直径,必然有MAN ∠为直角,不符合题意;对于选项C ,MAN MOP MBN ∠=∠=∠即得.答案:AC . 8.C B A C B A cos cos cos sin sin sin ++>++是ABC ∆为锐角三角形的( ) A .充分非必要条件 B .必要非充分条件 C .充分必要条件D .既不充分也不必要条件【答案】B【解析】必要性:由于1cos sin )2sin(sin sin sin >+=-+>+B B B B C B π,类似地,有1sin sin ,1sin sin >+>+A B A C ,于是C B A C B A cos cos cos sin sin sin ++>++. 不充分性:当4,2ππ===C B A 时,不等式成立,但ABC ∆不是锐角三角形.9.已知z y x ,,为正整数,且z y x ≤≤,那么方程21111=++z y x 的解的组数为( ) A .8B .10C .11D .12【答案】B 【解析】由于xz y x 311121≤++=,故63≤≤x . 若3=x ,则36)6)(6(=--z y ,可得)12,12(),15,10(),18,9(),24,8(),42,7(),(=z y ; 若4=x ,则16)4)(4(=--z y ,可得)8,8(),12,6(),20,5(),(=z y ; 若5=x ,则6,5,320,211103=≤≤+=y y y z y ,进而解得)10,5,5(),,(=z y x ; 若6=x ,则9)3)(3(=--z y ,可得))6,6(),(=z y . 答案:B .10.集合},,,{21n a a a A Λ=,任取A a a A a a A a a n k j i i k k j j i ∈+∈+∈+≤<<≤,,,1这三个式子中至少有一个成立,则n 的最大值为( ) A .6B .7C .8D .9【答案】B11.已知000121,61,1===γβα,则下列各式中成立的有( ) A .3tan tan tan tan tan tan =++αγγββαB .3tan tan tan tan tan tan -=++αγγββαC .3tan tan tan tan tan tan =++γβαγβαD .3tan tan tan tan tan tan -=++γβαγβα【答案】BD【解析】令γβαtan ,tan ,tan ===z y x ,则3111=+-=+-=+-zxzx yz y z xy x y ,所以)1(3),1(3),1(3zx z x yz y z xy z y +=-+=-+=-,以上三式相加,即有3-=++zx yz xy .类似地,有)11(311),11(311),11(311+=-+=-+=-zxx z yz z y xy y x ,以上三式相加,即有3111-=++=++xyzzy x zx yz xy .答案BD . 12.已知实数c b a ,,满足1=++c b a ,则141414+++++c b a 的最大值也最小值乘积属于区间( )A .)12,11(B .)13,12(C .)14,13(D .)15,14(【答案】B【解析】设函数14)(+=x x f ,则其导函数142)(/+=x x f ,作出)(x f 的图象,函数)(x f 的图象在31=x 处的切线321)31(7212+-=x y ,以及函数)(x f 的图象过点)0,41(-和)7,23(的割线7174+=x y ,如图,于是可得321)31(7212147174+-≤+≤+x x x ,左侧等号当41-=x 或23=x 时取得; 右侧等号当31=x 时取得.因此原式的最大值为21,当31===c b a 时取得;最小值为7,当23,41=-==c b a 时取得,从而原式的最大值与最小值的乘积为)169,144(37∈.答案B .13.已知1,1,,,222=++=++∈z y x z y x R z y x ,则下列结论正确的有( ) A .xyz 的最大值为0 B .xyz 的最大值为274- C .z 的最大值为32D .z 的最小值为31-【答案】ABD14.数列}{n a 满足)(6,2,1*1221N n a a a a a n n n ∈-===++,对任意正整数n ,以下说法中正确的有( ) A .n n n a a a 221++-为定值 B .)9(mod 1≡n a 或)9(mod 2≡n aC .741-+n n a a 为完全平方数D .781-+n n a a 为完全平方数 【答案】ACD 【解析】因为2112221122213226)6(++++++++++++-=--=-n n n n n n n n n n n a a a a a a a a a a a n n n n n n n a a a a a a a 22121122)6(++++++-=+-=,选项A 正确;由于113=a ,故76)6(2121121221-=+-=--=-++++++n n n n n n n n n n n a a a a a a a a a a a ,又对任意正整数恒成立,所以211211)(78,)(74n n n n n n n n a a a a a a a a +=--=-++++,故选项C 、D 正确.计算前几个数可判断选项B 错误.说明:若数列}{n a 满足n n n a pa a -=++12,则n n n a a a 221++-为定值.15.若复数z 满足11=+zz ,则z 可以取到的值有( )A .21 B .21-C .215- D .215+ 【答案】CD 【解析】因为11||1||=+≤-zz z z ,故215||215+≤≤-z ,等号分别当i z 215+=和i z 215-=时取得.答案CD .16. 从正2016边形的顶点中任取若干个,顺次相连构成多边形,若正多边形的个数为( ) A .6552 B .4536 C .3528 D .2016 【答案】C【解析】从2016的约数中去掉1,2,其余的约数均可作为正多边形的边数.设从2016个顶点中选出k 个构成正多边形,这样的正多边形有k2016个,因此所求的正多边形的个数就是2016的所有约数之和减去2016和1008.考虑到732201625⨯⨯=,因此所求正多边形的个数为352810082016)71)(931)(32168421(=--++++++++.答案C .17.已知椭圆)0(12222>>=+b a b y a x 与直线x y l x y l 21:,21:21-==,过椭圆上一点P 作21,l l 的平行线,分别交21,l l 于N M ,两点.若||MN 为定值,则=ba( ) A .2B .3C .2D .5【答案】C【解析】设点),(00y x P ,可得)2141,21(),2141,21(00000000y x y x N y x y x M +--++,故意2020441||y x MN +=为定值,所以2,1641422===b a b a ,答案:C .说明:(1)若将两条直线的方程改为kx y ±=,则kb a 1=;(2)两条相交直线上各取一点N M ,,使得||MN 为定值,则线段MN 中点Q 的轨迹为圆或椭圆.18. 关于y x ,的不定方程yx 21652=+的正整数解的组数为( )A .0B .1C .2D .3【答案】B19.因为实数的乘法满足交换律与结合律,所以若干个实数相乘的时候,可以有不同的次序.例如,三个实数c b a ,,相乘的时候,可以有Λ),(),(,)(,)(ca b ab c c ba c ab 等等不同的次序.记n 个实数相乘时不同的次序有n I 种,则( )A .22=IB .123=IC .964=ID .1205=I 【答案】B【解析】根据卡特兰数的定义,可得1121221)!1(!1------=⋅==n n n n nn n n C n n C nA C I .答案:AB . 关于卡特兰数的相关知识见《卡特兰数——计数映射方法的伟大胜利》.20.甲乙丙丁4个人进行网球淘汰赛,规定首先甲乙一组、丙丁一组进行比赛,两组的胜者争夺冠军.4个人相互比赛的胜率如表所示:表中的每个数字表示其所在的选手击败其所在列的选手的概率,例如甲击败乙的概率是0.3,乙击败丁的概率是0.4.那么甲刻冠军的概率是 . 【答案】0.165【解析】根据概率的乘法公式 ,所示概率为165.0)8.05.03.05.0(3.0=⨯+⨯.21.在正三棱锥ABC P -中,ABC ∆的边长为1.设点P 到平面ABC 的距离为x ,异面直线CP AB ,的距离为y .则=∞→y x lim .【答案】23【解析】当∞→x 时,CP 趋于与平面ABC 垂直,所求极限为ABC ∆中AB 边上的高,为23. 22.如图,正方体1111D C B A ABCD -的棱长为1,中心为A A E A BC BF O 1141,21,==,则四面体OEBF 的体积为 .【答案】196【解析】如图,EBF G EBF O OEBF V V V --==21961161212111=⋅==--B BCC E GBF E V V .23.=+-⎰-dx x x n n )sin 1()(22012ππ .【答案】0【解析】根据题意,有0)sin 1()sin 1()(21222012=+=+-⎰⎰---dx x x dx x x n n n n ππππ.24.实数y x ,满足223224)(y x y x =+,则22y x +的最大值为 . 【答案】1【解析】根据题意,有22222322)(4)(y x y x y x +≤=+,于是122≤+y x ,等号当2122==y x 时取得,因此所求最大值为1.25.z y x ,,均为非负实数,满足427)23()1()21(222=+++++z t x ,则z y x ++的最大值与最小值分别为 . 【答案】2322-【解析】由柯西不等式可知,当且仅当)0,21,1(),,(=z y x 时,z y x ++取到最大值23.根据题意,有41332222=+++++z y x z y x ,于是,)(3)(4132y z y x z y x +++++≤解得2322-≥++z y x .于是z y x ++的最小值当)2322,0,0(),(-=yz x 时取得,为2322-. 26.若O 为ABC ∆内一点,满足2:3:4::=∆∆∆COA BOC AOB S S S ,设AC AB AO μλ+=,则=+μλ .【答案】23【解析】根据奔驰定理,有329492=+=+μλ. 27.已知复数32sin32cos ππi z +=,则=+++2223z z z z . 【答案】1322i - 【解析】根据题意,有i i z z z z z z 232135sin 35cos 122223-=+=-=+=+++ππ. 28.已知z 为非零复数,zz 40,10的实部与虚部均为不小于1的正数,则在复平面中,z 所对应的向量OP 的端点P 运动所形成的图形的面积为 . 【答案】20010033003π+-【解析】设),(R y x yi x z ∈+=,由于2||4040z z z =,于是⎪⎪⎩⎪⎪⎨⎧≥+≥+≥≥,140,140,110,1102222y x y y x x y x 如图,弓形面积为开心快乐每一天 1003100)6sin 6(20212-=-⋅⋅πππ,四边形ABCD的面积为100310010)10310(212-=⋅-⋅. 于是所示求面积为30031003200)1003100()1003100(2-+=-+-ππ. 29.若334tan =x ,则=+++xx x x x x x x x x x cos sin cos 2cos sin 2cos 4cos 2sin 4cos 8cos 4sin . 【答案】3【解析】根据题意,有xx x x x x x x x x x cos sin cos 2cos sin 2cos 4cos 2sin 4cos 8cos 4sin +++ 38tan tan )tan 2(tan )2tan 4(tan )4tan 8(tan ==+-+-+-=x x x x x x x x .30.将16个数:4个1,4个2,4个3,4个4填入一个44⨯的数表中,要求每行、每列都恰好有两个偶数,共有 种填法.【答案】44100031.设A 是集合}14,,3,2,1{Λ的子集,从A 中任取3个元素,由小到大排列之后都不能构成等差数列,则A 中元素个数的最大值为 .【答案】8【解析】一方面,设},,,{21k a a a A Λ=,其中141,*≤≤∈k N k .不妨假设k a a a <<<Λ21.若9≥k ,由题意,7,33513≥-≥-a a a a ,且1335a a a a -≠-,故715≥-a a .同理759≥-a a .又因为1559a a a a -≠-,所以1519≥-a a ,矛盾!故8≤k .另一方面,取}14,13,11,10,5,4,2,1{=A ,满足题意.综上所述,A 中元素个数的最大值为8.。
2024年浙江省温州市重点高中自主招生数学试卷一、选择题:本题共8小题,每小题4分,共32分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.对正整数n,记n!…,则1!!!…!的末尾数为()A.0B.1C.3D.52.在分别标有号码2、3、4、…10的9个球中,随机取出两个球,记下它们的标号,则较大标号被较小标号整除的概率是()A. B. C. D.3.已知关于x的方程恰有一个实根,则满足条件的实数a的值的个数为()A.1B.2C.3D.44.函数与的图象可能是()A. B.C. D.5.十进制数278,记作,其实,二进制数有一个为整数进制数,把它的三个数字顺序颠倒得到的k进制数是原数的3倍,则()A.10B.9C.8D.76.正方形ABCD,正方形BEFG和正方形PKRF的位置如图所示,点G在线段DK上,正方形BEFG的边长为2,则的面积为()A.4B.2C.3D.7.两个等腰直角、如图放置,,,,DE与AC交于点H,连接BH,若,下列结论错误的是()A.≌B.为等边三角形C.D.8.如图,在圆内接四边形ABCD中,,,为圆心,,,,,则此四边形的面积为用含a、b、c、d表示四边形ABCD的面积A.B.C.D.二、填空题:本题共8小题,每小题4分,共32分。
9.已知a是64的立方根,是a的平方根,则的算术平方根为______.10.关于x的函数符合以下条件:函数在处无意义;当x取非零实数时都有如当时,有,可以求得则的函数表达式是______.11.如图,在“镖形”ABCD中,,,,则点D到AB的距离为______.12.已知正整数a,b,c满足,,则abc的最大值为______.13.AB为半圆O的直径,C为半圆弧的一个三等分点,过B,C两点的半圆O的切线交于点P,则______.14.矩形ABCD的边长,,E为AB的中点,F在线段BC上,F在线段BC上,且BF::2,AF分别与DE,DB交于点M,N,则______.15.实数a,b,c,d满足:一元二次方程的两根为a,b,一元二次方程的两根为c,d,则所有满足条件的数组为______.16.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元.则他至少卖出了______支圆珠笔.三、解答题:本题共4小题,共56分。
自主招生数学试题及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(自主招生数学试题及答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为自主招生数学试题及答案的全部内容。
2017年自主招生数学试题(分值: 100分 时间:90分钟)一、选择题(本大题共6小题,每小题5分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1、若对于任意实数a ,关于x 的方程0222=+--b a ax x 都有实数根,则实数b 的取值范围是( )A b ≤0B b ≤21-C b ≤81- D b ≤—12、如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE ∥AC ,已知S △BDE ∶S △CDE =1∶3,则S △DOE ∶S △AOC 的值为( )A .1∶3B .1∶4C .1∶9D .1∶163、某校吴老师组织九(1)班同学开展数学活动,带领同学们测量学校附近一电线杆的高(如图所示)。
已知电线杆直立于地面上,某天在太阳光的照射下,电线杆的影子(折线BCD)恰好落在水平地面和斜坡上,在D 处测得电线杆顶端A 的仰角为300,在C 处测得电线杆顶端A 得仰角为450,斜坡与地面成600角,CD=4m,则电线杆的高(AB)是( ) A .)344(+m B .)434(-m C .)326(+m D .12m4、如图,矩形ABCD 中,AB=8,AD=3.点E 从D 向C 以每秒1个单位的速度运动,以AE 为一边在AE 的右下方作正方形AEFG .同时垂直于CD 的直线MN 也从C 向D 以每秒2个单位的速度运动,当经过( )秒时,直线MN 和正方形AEFG 开始有公共点. A .53B .12C .43D .23(第2题图) (第3题图) (第4题图)5、如图,在反比例函数xy 2-=的图象上有一动点A,连接AO 并延长交图象的另一支于点B ,在第一象限内有一点C ,满足AC=BC ,当点A 运动时,点C 始终在函数xk y =的图 象上运动,若tan ∠CAB=2,则k 的值为( )A 。
6.如图,点A 在函数=y x6-)0(<x 的图象上,过点A 作AE 垂直x 轴,垂足为E ,过点A 作AF 垂直y 轴,垂足为F ,则矩形AEOF 的面积是……( A.2 B.3C.6D.不能确定7.用大小和形状完全相同的小正方体木块搭成 一个几何体,使得它的正视图和俯视图如图所示,则搭成这样的一个几何体至少需要小 正方体木块的个数为………………( ) A.22个 B.19个C.16个D.13个8.用半径为cm 6、圆心角为︒120的扇形做成一个圆锥的侧面, 则这个圆锥的底面半径是……………………………………………………………………( ) A.2cm B.3cm C.4cm D.6cm 9.若n 为整数,则能使11-+n n 也为整数的n 的个数有 ……………………( ) A.1个 B.2个 C.3个 D.4个10.已知a 为实数,则代数式221227a a +-的最小值为………………( ) A.0 B.3 C.33 D.9 14.如图,正方形ABCD 的边长为4cm ,正方形AEFG 的边长为1cm .如果正方形AEFG 绕点A 旋转,那么C 、F 两点之间的最小距离为 cm .15.若规定:①{} m 表示大于m 的最小整数,例如:{}4 3 =,{}2 4.2-=-;②[] m 表示不大于m 的最大整数,例如:[]5 5 =,[]4 6.3-=-.则使等式{}[]4 2=-x x 成立的整数..=x . 16.如图,E 、F ABCD 的边AB 、CD 上 的点,AF 与DE 相交于点P ,BF 与CE 相交于 点Q ,若S △APD 15=2cm ,S △BQC 25=2cm , 则阴影部分的面积为 2cm . . (第6题图) (正视图) (俯视图) (第7题图)(第16题图)19.将背面相同,正面分别标有数字1、2、3、4的四张卡片洗匀后,背面朝上放在桌面上. (1)从中随机抽取一张卡片,求该卡片正面上的数字是偶数的概率; (2)先从中随机抽取一张卡片(不放回...),将该卡片正面上的数字作为十位上的数字;再随机抽取一张,将该卡片正面上的数字作为个位上的数字,则组成的两位数恰好是4的倍数的概率是多少?请用树状图或列表法加以说明.20.为配合我市“创卫”工作,某中学选派部分学生到若干处公共场所参加义务劳动.若每处安排10人,则还剩15人;若每处安排14人,则有一处的人数不足14人,但不少于10人.求这所学校选派学生的人数和学生所参加义务劳动的公共场所个数.21.如图,四边形ABCD 是正方形,点N 是CD 的中点,M 是AD 边上不同于点A 、D 的点,若1010sin =∠ABM ,求证:MBC NMB ∠=∠.(第21题图)N22.如图,抛物线的顶点坐标是⎪⎭⎫ ⎝⎛8925,-,且经过点) 14 , 8 (A .(1)求该抛物线的解析式;(2)设该抛物线与y 轴相交于点B ,与x 轴相交于C 、D 两点(点C 在点D 的左边), 试求点B 、C 、D 的坐标;(3)设点P 是x 轴上的任意一点,分别连结AC 、BC . 试判断:PB PA +与BC AC +的大小关系,并说明理由.23.如图,AB 是⊙O 的直径,过点B 作⊙O 的切线BM ,点P 在右半圆上移动点P 与点A 、B 不重合),过点P 作PC ⊥AB ,垂足为C ;点Q 在射线BM 上移动(点M 在点B 的右边),且在移动过程中保持OQ ∥AP .(1)若PC 、QO 的延长线相交于点E ,判断是否存在点P ,使得点E 恰好在⊙O 上? 若存在,求出APC ∠的大小;若不存在,请说明理由; (2)连结AQ 交PC 于点F ,设PC PFk =,试问:k 的值是否随点P 的移动而变化?证明你的结论.(第22题图) Q ABC EFPO(第23题图).1、若匀速行驶的汽车速度提高40%,则行车时间可节省( )%(精确至1%) A 、6 0 B 、40 C 、 29 D 、252、如图,一个正方形被5条平行于一组对边的直线和3条平行于另一组对边的直线分成24个(形状不一定相同的)长方形,如果这24个长方形的周长的和为24,则原正方形的面积为( ).A 、1B 、9/4C 、4D 、36/25 3、已知:2)3(3322=+-+x x xx ,x 2+3x 为( ) A 、1 B 、-3和1 C 、3 D 、-1或34、四边形ABCD 的对角线AC 、BD 交于点O ,且S △AOB =4,S △COD =9,则四边形A B CD 面积有( )A 、最小值12B 、最大值12C 、.最小值25D 、最大值255、二个天平的盘中,形状相同的物体质尊相等,如图(1)图(2)所示的两个天平处于平街状态,要使第三个天平也保持平衡,则需在它的右盘中放置( )A 、 3个球B 、4个球C 、5个球D 、6个球 5、9人分24张票,每人至少1张,则( )A 、至少有3人票数相等B 、至少有4人票数无异C 、不会有5人票数一致D 、不会有6人票数同样2、半径为10的圆0内有一点P ,OP=8,过点P 所有的弦中长是整数的弦有 条。
可编辑修改精选全文完整版重点高中自主招生考试数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.).1.(3分)若不等式组的解集是x>3,则m的取值范围是()A.m>3 B.m≥3 C.m≤3 D.m<3解答:解:由x+7<4x﹣2移项整理得:﹣3x<﹣9,∴x>3,∵x>m,又∵不等式组的解集是x>3,∴m≤3.故选C.2.(3分)如图,在△ABC中.∠ACB=90°,∠ABC=15°,BC=1,则AC=()A.B.C.0.3 D.分析:本题中直角三角形的角不是特殊角,故过A作AD交BC于D,使∠BAD=15°,根据三角形内角和定理可求出∠DAC及∠ADC的度数,再由特殊角的三角函数值及勾股定理求解即可.解答:解:过A作AD交BC于D,使∠BAD=15°,∵△ABC中.∠ACB=90°,∠ABC=15°,∴∠BAC=75°,∴∠DAC=∠BAC﹣∠BAD=75°﹣15°=60°,∴∠ADC=90°﹣∠DAC=90°﹣60°=30°,∴AC=AD,又∵∠ABC=∠BAD=15°∴BD=AD,∵BC=1,∴AD+DC=1,设CD=x,则AD=1﹣x,AC=(1﹣x),∴AD2=AC2+CD2,即(1﹣x)2=(1﹣x)2+x2,解得:x=﹣3+2,∴AC=(4﹣2)=2﹣故选B.3.(3分)(2011•南漳县模拟)如图,AB为⊙O的一固定直径,它把⊙O分成上,下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A,B两点)上移动时,点P()A.到CD的距离保持不变B.位置不变C.D.随C点移动而移动等分分析:连OP,由CP平分∠OCD,得到∠1=∠2,而∠1=∠3,所以有OP∥CD,则OP⊥AB,即可得到OP平分半圆APB.解答:解:连OP,如图,∵CP平分∠OCD,∴∠1=∠2,而OC=OP,有∠1=∠3∴∠2=∠3,∴OP∥CD,又∵弦CD⊥AB,∴OP⊥AB,∴OP平分半圆APB,即点P是半圆的中点.故选B.4.(3分)已知y=+(x,y均为实数),则y的最大值与最小值的差为()A.2﹣1 B.4﹣2C.3﹣2D.2﹣2分析:首先把y=+两边平方,求出定义域,然后利用函数的单调性求出函数的最大值和最小值,最后求差.解答:解:∵y=+,∴y2=4+2=4+2×,∵1≤x≤5,当x=3时,y的最大值为2,当x=1或5时,y的最小值为2,故当x=1或5时,y 取得最小值2,当x取1与5中间值3时,y取得最大值,故y的最大值与最小值的差为2﹣2,故选D.5.(3分)(2010•泸州)已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A.B.C.D.考点:线段的性质:两点之间线段最短;几何体的展开图.分析:此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.解答:解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D 的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选D.点评:本题考核立意相对较新,考核了学生的空间想象能力.6.(3分)已知一正三角形的边长是和它相切的圆的周长的两倍,当这个圆按箭头方向从某一位置沿正三角形的三边做无滑动的旋转,直至回到原出发位置时,则这个圆共转了()A.6圈B.6.5圈C.7圈D.8圈分析:根据直线与圆相切的性质得到圆从一边转到另一边时,圆心要绕其三角形的顶点旋转120°,则圆绕三个顶点共旋转了360°,即它转了一圈,再加上在三边作无滑动滚动时要转6圈,这样得到它回到原出发位置时共转了7圈.解解:圆按箭头方向从某一位置沿正三角形的三边做无滑动的旋转,∵等边三角形的边长是和它相切的圆的周长的两倍,∴圆转了6圈,而圆从一边转到另一边时,圆心绕三角形的一个顶点旋转了三角形的一个外角的度数,圆心要绕其三角形的顶点旋转120°,∴圆绕三个顶点共旋转了360°,即它转了一圈,∴圆回到原出发位置时,共转了6+1=7圈.故选C.点评:本题考查了直线与圆的位置关系,弧长公式:l=(n为圆心角,R为半径);也考查了旋转的性质.7.(3分)二次函数y=ax2+bx+c的图象如下图,则以下结论正确的有:①abc>0;②b <a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1,m为实数)()A.2个B.3个C.4个D.5个解答:解:①由图象可知:a<0,b>0,c>0,abc<0,错误;②当x=﹣1时,y=a﹣b+c <0,即b>a+c,错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m 时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b >am 2+bm ,即a+b >m (am+b ),正确.③④⑤正确.故选B . 8.(3分)如图,正△ABC 中,P 为正三角形内任意一点,过P 作PD ⊥BC ,PE ⊥AB ,PF ⊥AC 连结AP 、BP 、CP ,如果,那么△ABC 的内切圆半径为( )A . 1B .C . 2D .解答: 解:如图,过P 点作正△ABC 的三边的平行线,则△MPN ,△OPQ ,△RSP 都是正三角形,四边形ASPM ,四边形NCOP ,四边形PQBR 是平行四边形,故可知黑色部分的面积=白色部分的面积,又知S △AFP +S △PCD +S △BPE =,故知S △ABC =3,S △ABC =AB 2sin60°=3,故AB=2,三角形ABC 的高h=3,△ABC 的内切圆半径r=h=1.故选A .二、填空题(本大题共8小题,每小题3分,共24分) 9.(3分)与是相反数,计算=.解答:解:∵与|3﹣a ﹣|互为相反数,∴+|3﹣a ﹣|=0,∴3﹣a ﹣=0,解得a+=3,∴a+2+=3+2,根据题意,a >0,∴(+)2=5,∴+=.答案为:.10.(3分)若[x ]表示不超过x 的最大整数,,则[A ]=﹣2 .分析: 先根据零指数幂和分母有理化得到A=﹣,而≈1.732,然后根据[x ]表示不超过x的最大整数得到,[A ]=﹣2. 解答:解:∵A=++1=++1=+1=+1=﹣1﹣+1=﹣,∴[A ]=[﹣]=﹣2.故答案为﹣2.点本题考查了取整计算:[x ]表示不超过x 的最大整数.也考查了分母有理化和零指数幂.评:11.(3分)如图,M、N分别为△ABC两边AC、BC的中点,AN与BM交于点O,则=.分析:连接MN,设△MON的面积是s,由于M、N分别为△ABC两边AC、BC的中点,易知MN是△ABC的中位线,那么MN∥AB,MN=AB,根据平行线分线段成比例定理可得△MON∽△BOA,于是OM:OB=MN:AB=1:2,易求△BON的面积是2s,进而可知△BMN的面积是3s,再根据中点性质,可求△BCM的面积等于6s,同理可求△ABC的面积是12s,从而可求S△BON:S△ABC.解答:解:连接MN,设△MON的面积是s,∵M、N分别为△ABC两边AC、BC的中点,∴MN是△ABC的中位线,∴MN∥AB,MN=AB,∴△MON∽△BOA,∴OM:OB=MN:AB=1:2,∴△BON的面积=2s,∴△BMN的面积=3s,∵N是BC的中点,∴△BCM的面积=6s,同理可知△ABC的面积=12s,∴S△BON:S△ABC=2s:12s=1:6,故答案是.点评:本题考查了相似三角形的判定和性质、三角形中位线定理,解题的关键是连接MN,构造相似三角形.12.(3分)如图,已知圆O的面积为3π,AB为直径,弧AC的度数为80°,弧BD的度数为20°,点P为直径AB上任一点,则PC+PD的最小值为3.考点:轴对称-最短路线问题;勾股定理;垂径定理;圆心角、弧、弦的关系.专题:探究型.分析:先设圆O的半径为r,由圆O的面积为3π求出R的值,再作点C关于AB的对称点C′,连接OD,OC′,DC′,则DC′的长即为PC+PD的最小值,由圆心角、弧、弦的关系可知==80°,故BC′=100°,由=20°可知=120°,由OC′=OD可求出∠ODC′的度数,进而可得出结论.解答:解:设圆O的半径为r,∵⊙O的面积为3π,∴3π=πR2,即R=.作点C关于AB的对称点C′,连接OD,OC′,DC′,则DC′的长即为PC+PD的最小值,∵的度数为80°,∴==80°,∴=100°,∵=20°,∴=+=100°+20°=120°,∵OC′=OD,∴∠ODC′=30°∴DC′=2OD•cos30°=2×=3,即PC+PD的最小值为3.故答案为:3.13.(3分)从1,2,3,5,7,8中任取两数相加,在不同的和数中,是2的倍数的个数为a,是3的倍数的个数为b,则样本6、a、b、9的中位数是 5.5.分析:首先列举出所有数据的和,进而利用已知求出a,b的值,再利用中位数是一组数据重新排序后之间的一个数或之间两个数的平均数,由此即可求解.解答:解:根据从1,2,3,5,7,8中任取两数相加,可以得出所有可能:1+2=3,1+3=4,1+5=6,1+7=8,1+8=9,2+3=5,2+5=7,2+7=9,2+8=10,3+5=8,3+7=10,3+8=11,5+7=12,5+8=13,7+8=15,它们和中所有不同数据为:3,4,5,6,7,8,9,10,11,12,13,15,故是2的倍数的个数为a=5,是3的倍数的个数为b=5,则样本6、5、5、9按大小排列为:5,5,6,9,则这组数据的中位数是:=5.5,故答案为:5.5.14.(3分)由直线y=kx+2k﹣1和直线y=(k+1)x+2k+1(k是正整数)与x轴及y轴所围成的图形面积为S,则S的最小值是.分析:首先用k表示出两条直线与坐标轴的交点坐标,然后表示出围成的面积S,根据得到的函数的取值范围确定其最值即可.解答:解:y=kx+2k﹣1恒过(﹣2,﹣1),y=(k+1)x+2k+1也恒过(﹣2,﹣1),k为正整数,那么,k≥1,且k∈Z如图,直线y=kx+2k﹣1与X轴的交点是A(,0),与y轴的交点是B (0,2k﹣1)直线y=(k+1)x+2k+1与X轴的交点是C(,0),与y轴的交点是D (0,2k+1),那么,S四边形ABDC=S△COD﹣S△AOB,=(OC•OD﹣OA•OB),=[﹣],=(4﹣),=2﹣又,k≥1,且k∈Z,那么,2﹣在定义域k≥1上是增函数,因此,当k=1时,四边形ABDC的面积最小,最小值S=2﹣=.点评:本题考查了两条指向相交或平行问题,解题的关键是用k表示出直线与坐标轴的交点坐标并用k表示出围成的三角形的面积,从而得到函数关系式,利用函数的知识其最值问题.15.(3分)(2010•随州)如图,在矩形纸片ABCD中,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过P作PF⊥AD交BC于F,将纸片折叠,使P点与E点重合,折痕与PF交于Q点,则PQ的长是cm.分析:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,根据折叠及矩形的性质,用含x的式子表示Rt△EGQ的三边,再用勾股定理列方程求x即可.解答:解:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,由折叠及矩形的性质可知,EQ=PQ=x,QG=PD=3,EG=x﹣2,在Rt△EGQ中,由勾股定理得EG2+GQ2=EQ2,即:(x﹣2)2+32=x2,解得:x=,即PQ=.16.(3分)(2010•随州)将半径为4cm的半圆围成一个圆锥,在圆锥内接一个圆柱(如图示),当圆柱的侧面的面积最大时,圆柱的底面半径是1cm.分析:易得扇形的弧长,除以2π也就得到了圆锥的底面半径,再加上母线长,利用勾股定理即可求得圆锥的高,利用相似可求得圆柱的高与母线的关系,表示出侧面积,根据二次函数求出相应的最值时自变量的取值即可.解答:解:扇形的弧长=4πcm,∴圆锥的底面半径=4π÷2π=2cm,∴圆锥的高为=2cm,设圆柱的底面半径为rcm,高为Rcm.=,解得:R=2﹣r,∴圆柱的侧面积=2π×r×(2﹣r)=﹣2πr2+4πr(cm2),∴当r==1cm时,圆柱的侧面积有最大值.三、解答题(72)17.(14分)已知抛物线y=﹣x2+bx+c(c>0)过点C(﹣1,0),且与直线y=7﹣2x只有一个交点.(1)求抛物线的解析式;(2)若直线y=﹣x+3与抛物线相交于两点A、B,则在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出Q点坐标;若不存在,说明理由.分析:(1)将C点坐标代入y=﹣x2+bx+c得c=b+1,联立抛物线y=﹣x2+bx+b+1与直线y=7﹣2x,转化为关于x的二元一次方程,令△=0求b的值即可;(2)直线y=﹣x+3与(1)中抛物线求A、B两点坐标,根据抛物线解析式求对称轴,根据线段AB为等腰三角形的腰或底,分别求Q点的坐标.解答:解:(1)把点C(﹣1,0)代入y=﹣x2+bx+c中,得﹣1﹣b+c=0,解得c=b+1,联立,得x2﹣(b+2)x+6﹣b=0,∵抛物线与直线只有一个交点,∴△=(b+2)2﹣4(6﹣b)=0,解得b=﹣10或2,∵c=b+1>0,∴b=2,∴抛物线解析式为y=﹣x2+2x+3;(2)存在满足题意的点Q.联立,解得或,则A(0,3),B(3,0),由抛物线y=﹣x2+2x+3,可知抛物线对称轴为x=1,由勾股定理,得AB=3,当AB为腰,∠A为顶角时,Q(1,3+)或(1,3﹣);当AB为腰,∠B为顶角时,Q(1,)或(1,﹣);当AB为底时,Q(1,1).故满足题意的Q点坐标为:(1,3+)或(1,3﹣)或(1,)或(1,﹣)或(1,1).18.(14分)有一河堤坝BCDF为梯形,斜坡BC坡度,坝高为5m,坝顶CD=6m,现有一工程车需从距B点50m的A处前方取土,然后经过B﹣C﹣D放土,为了安全起见,工程车轮只能停在离A、D处1m的地方即M、N处工作,已知车轮半经为1m,求车轮从取土处到放土处圆心从M到N所经过的路径长.分析:作出圆与BA,BC相切时圆心的位置G,与CD相切时圆心的位置P,与CD相切时圆心的位置I,分别求得各段的路径的长,然后求和即可.解答:解:当圆心移动到G的位置时,作GR⊥AB,GL⊥BC分别于点R,L.∵,∴∠CBF=30°,∴∠RGB=15°,∵直角△RGB中,tan∠RGB=,∴BR=GR•tan∠RGB=2﹣,则BL=BR=2﹣,则从M移动到G的路长是:AB﹣BR﹣1=50﹣(2﹣)﹣1=47+m,BC=2×5=10m,则从G移动到P的位置(P是圆心在C,且与BC相切时圆心的位置),GP=10﹣BL=10﹣(2﹣)=8+m;圆心从P到I(I是圆心在C,且与CD相切时圆心的位置),移动的路径是弧,弧长是:=m;圆心从I到N移动的距离是:6﹣1=5m,则圆心移动的距离是:(47+)+(8+)+5+=60+2+(m).19.(14分)如图,过正方形ABCD的顶点C在形外引一条直线分别交AB、AD延长线于点M、N,DM与BN交于点H,DM与BC交于点E,BN△AEF与DC交于点F.(1)猜想:CE与DF的大小关系?并证明你的猜想.(2)猜想:H是△AEF的什么心?并证明你的猜想.分析:(1)利用正方形的性质得到AD∥BC,DC∥AB,利用平行线分线段成比例定理得到,,从而得到,然后再利用AB=BC即可得到CE=DF;(2)首先证得△ADF≌△DCE,从而得到∠DAF=∠FDE,再根据∠DAF+∠ADE=90°得到AF⊥DE,同理可得FB⊥AE,进而得到H为△AEF的垂心.解答:解:(1)CE=DF;证明:∵正方形ABCD∴AD∥BC,DC∥AB∴,(∴∴又AB=BC∴CE=DF;(2)垂心.在△ADF与△DCE中,,∴△ADF≌△DCE(SAS),∴∠DAF=∠FDE,∵∠DAF+∠ADE=90°,∴AF⊥DE,同理FB⊥AE.H为△AEF的垂心.20.(15分)如图,已知菱形ABCD边长为,∠ABC=120°,点P在线段BC延长线上,半径为r1的圆O1与DC、CP、DP分别相切于点H、F、N,半径为r2的圆O2与PD延长线、CB延长线和BD分别相切于点M、E、G.(1)求菱形的面积;(2)求证:EF=MN;(3)求r1+r2的值.解答:(1)解:∵菱形ABCD边长为,∠ABC=120°,∴△ADC和△DBC都是等边三角形,∴菱形的面积=2S△DBC=2××(6)2=54;(2)证明:∵PM与PE都是⊙O2的切线,∴PM=PE,又∵PN与PF都是⊙O1的切线,∴PN=PF,∴PM﹣PN=PE﹣PB,即EF=MN;(3)解:∵BE与BG都是⊙O2的切线,∴BE=BG,∠O2BE=∠O2BG,O2E⊥BE,而∠EBG=180°﹣∠DBC=180°﹣60°=120°,∴∠O2BE=60°,∠EO2B=30°,∴BE=O2E=r2,∴BG=r2,∴DM=DG=6﹣r2,同理可得CF=r1,DN=DH=6﹣r1,∴MN=DM+DN=12﹣(r1+r2),∵EF=EB+BC+CF=r2+6+r1=6+(r1+r2),而EF=MN,∴6+(r1+r2)=12﹣(r1+r2),∴r1+r2=9.21.(15分)(2012•黄冈)如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE 相似?若存在,求m的值;若不存在,请说明理由.解答:解:(1)依题意,将M(2,2)代入抛物线解析式得:2=﹣(2+2)(2﹣m),解得m=4.(2)令y=0,即(x+2)(x﹣4)=0,解得x1=﹣2,x2=4,∴B(﹣2,0),C(4,0)在C1中,令x=0,得y=2,∴E(0,2).∴S△BCE=BC•OE=6.(3)当m=4时,易得对称轴为x=1,又点B、C关于x=1对称.如解答图1,连接EC,交x=1于H点,此时BH+EH最小(最小值为线段CE的长度).设直线EC:y=kx+b,将E(0,2)、C(4,0)代入得:y=x+2,当x=1时,y=,∴H(1,).(4)分两种情形讨论:①当△BEC∽△BCF时,如解答图2所示.则,∴BC2=BE•BF.由函数解析式可得:B(﹣2,0),E(0,2),即OB=OE,∴∠EBC=45°,∴∠CBF=45°,作FT⊥x 轴于点T,则∠BFT=∠TBF=45°,∴BT=TF.∴可令F(x,﹣x﹣2)(x>0),又点F在抛物线上,∴﹣x﹣2=﹣(x+2)(x﹣m),∵x+2>0,∵x>0,∴x=2m,F(2m,﹣2m﹣2).此时BF==2(m+1),BE=,BC=m+2,又∵BC2=BE•BF,∴(m+2)2=•(m+1),∴m=2±,∵m>0,∴m=+2.②当△BEC∽△FCB时,如解答图3所示.则,∴BC2=EC•BF.∵△BEC∽△FCB∴∠CBF=∠ECO,∵∠EOC=∠FTB=90°,∴△BTF∽△COE,∴,∴可令F(x,(x+2))(x>0)又∵点F在抛物线上,∴(x+2)=﹣(x+2)(x ﹣m),∵x>0,∴x+2>0,∴x=m+2,∴F(m+2,(m+4)),EC=,BC=m+2,又BC2=EC•BF,∴(m+2)2=•整理得:0=16,显然不成立.综合①②得,在第四象限内,抛物线上存在点F,使得以点B、C、F为顶点的三角形与△BCE相似,m=+2.。
自主招生数学试题及答案同学们都在忙碌地复习自己的功课,为了帮助大家能够在考前对自己多学的知识点有所巩固,下文整理了这篇数学试题及答案,希望可以帮助到大家!2019年清华等五校自主招生英语试题及答案1.以和为两根的有理系数多项式的次数最小是多少?A.2B.3C.5D.6解析:显然为满足要求的多项式,其次数为5.若存在次有理系数多项式以和为两根,则必含有因式,即最小次数为5.故选C.2.在的棋盘中停放着3个红色車和3个黑色車,每一行、每一列都只有一个車,共有多少种停放方法?A.720B.20C.518400D.14400解析:先排3个红色車,从6行中任取3行,有种取法;在选定的3行中第一行有6种停法,第一行选定后第二行有5种停法,第二行选定后第三行有4种停法;红車放定后,黑車只有6种停法.故停放方法共种.故选D.3.已知,求的值.解析:∵又由,有或当时,有当时,4.如图,△ABC中,AD为BC边上的中线,DM、DN分别为ADB、ADC的角平分线,试比较BM+CN与MN的大小关系,并说明理由.解析:延长ND至E,使ND=ED,连结BE、ME,则△BED≌△CND,△MED≌△MND,ME=MN,由BM+BEEM,得BM+CNMN.5.设数列满足,前项和为,求解析:∵由,有时,,于是特征方程有重根2,可设将代入上式,得于是6.模长为1的复数满足,求解析:取,便能得到=1.下面给出证明,=1.7.最多有多少个两两不等的正整数,满足其中任意三数之和都为素数.解析:设满足条件的正整数为个.考虑模3的同余类,共三类,记为则这个正整数需同时满足①不能三类都有;②同一类中不能有3个和超过3个.否则都会出现三数之和为3的倍数.故当时,取1,3,7,9,其任意三数之和为11,13,17,19均为素数,满足题意,所以满足要求的正整数最多有4个.8.已知为2019个实数,满足,且,求证解析:设若,则于是,进而若这2019个数去掉绝对值号后只能取和两值,又即这2019个数去掉绝对值号后取和两值的个数相同,这不可能.9.对于任意的,求的值.解析:各式相加,得10.已知有个实数,排列成阶数阵,记作使得数阵的每一行从左到右都是递增的,即对任意的,当时,有;现将的每一列原有的各数按照从上到下递增的顺序排列,形成一个新的阶数阵,记作,即对任意的,当时,有,试判断中每一行的各数的大小关系,并加以证明.解析:数阵中的中每一行的各数仍是递增的.下面用反证法给出证明. 若在第行存在,令,其中,则当时,即在第列中至少有个数小于,也就是在数阵中的第列中至少排在第行,这与排在第行矛盾.所以数阵中的中每一行的各数仍是递增的.这篇数学试题及答案就为大家分享到这里了。
历年《高校自主招生考试》数学真题专题分类解析(共九大专题)目录:专题一:不等式 01~11页专题二:复数、平面向量 12~20页专题三:三角函数 21~27页专题四:创新与综合题 28~33页专题五:概率 34~43页专题六:数列与极限 44~55页专题七:解析几何 56~74页专题八:平面几何 75~83页专题九:排列、组合与二项式定理 84~88页历年《高校自主招生考试》数学真题分类解析专题一:不等式一、选择题。
1.(复旦大学)若实数x满足对任意实数a>0,均有x2<1+a,则x的取值范围是( )A.(-1,1)B.[-1,1]C.(-,)D.不能确定【答案】B【解析】对任意实数a>0,函数f(a)=1+a的值域是(1,+∞),因此只要x2≤1即可.由x2≤1,解得x∈[-1,1].2.(复旦大学)已知点A(-2,0),B(1,0),C(0,1),如果直线y=kx将△ABC分割为两个部分,则当k= 时,这两个部分的面积之积最大. ( )A.-B.-C.-D.-【答案】A【解析】3.(复旦大学)将同时满足不等式x-ky-2≤0(k>0),2x+3y-6≥0,x+6y-10≤0的点(x,y)组成的集合D称为可行域,将函数z=称为目标函数,所谓规划问题就是求解可行域内的点(x,y),使目标函数达到在可行域内的最小值.如果这个规划问题有无穷多个解,则( ) A.k≥1 B.k≤2 C.k=2 D.k=1【答案】C【解析】可行域如图中阴影部分所示,目标函数z=的几何意义是可行域内的点与点(0,-1)连线的斜率,如果要使其取得最小值的点有无穷多个,则直线x-ky-2=0必过点(0,-1),即k=2.选C. 在解含有参数的平面区域问题时要注意含有参数的直线系的特点,本题的突破点是直线系x-ky-2=0过定点(2,0).4.(复旦大学)设n是一个正整数,则函数y=x+在正实半轴上的最小值是( )A. B. C. D.【答案】C【解析】题中函数为非常规函数,可利用导数求其最值.因为y=x+=x+x-n,所以y'=1-x-n-1=1-,令y'=0得x=1,且函数y在(0,1)上递减,在(1,+∞)上递增,故函数y在正实半轴上的最小值为1+=.5.(复旦大学)若对一切实数x,都有|x-5|+|x-7|>a,则实数a的取值范围是( )A.a<12B.a<7C.a<5D.a<2【答案】D【解析】可先求出函数y=|x-5|+|x-7|的最小值,然后根据不等式恒成立的条件求得a的取值范围.由于|x-5|+|x-7|≥|5-7|=2,即函数y=|x-5|+|x-7|的最小值等于2,所以要使|x-5|+|x-7|>a恒成立,应有a<2.6.(2011年清华大学等七校联考)已知向量a=(0,1),b=(-,-),c=(,-),xa+yb+zc=(1,1),则x2+y2+z2的最小值为( )A.1B.C.D.2【答案】B 【解析】方法二∵xa+yb+zc=(1,1),∴-y+z=1,x-y-z=1,∴-y+z=,y+z=2x-2,∴z=+x-1,y=-+x-1,∴x2+(-+x-1)2+(+x-1)2=3x2-2(+1)x+(+1)2+2(-1)x+(-1)2=3x2-4x++2=3(x2-x+)++2-=3(x-)2+≥,当且仅当x=,z=,y=时等号成立.二、填空题。
实验高中自主招生数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确答案的选项填到二卷答题纸的指定位置处)1.如图,数轴上点A表示数a,则|a﹣1|是()A.1B.2C.3D.﹣22.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k>﹣1B.k>﹣1且k≠0C.k<﹣1D.k<﹣1或k=03.在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数(n)和芍药的数量规律,那么当n=11时,芍药的数量为()A.84株B.88株C.92株D.121株4.某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()A.﹣=4B.﹣=4C.﹣=4D.﹣=45.如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A.B.C.D.6.如图在水平地面上有一幢房屋BC与一棵树DE,在地面观测点A处测得屋顶C与树稍的仰角分别是45°与60°,∠DCA=90°,在屋顶C处测得∠DCA=90°,若房屋的高BC=5米,则高DE的长度是()A.6米B.6米C.5米D.12米7.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是()A.参加本次植树活动共有30人B.每人植树量的众数是4棵C.每人植树量的中位数是5棵D.每人植树量的平均数是5棵8.如图,在矩形ABCD中,AB=4,AD=2,分别以点A、C为圆心,AD、CB为半径画弧,交AB 于点E,交CD于点F,则图中阴影部分的面积是()A.4﹣2πB.8﹣C.8﹣2πD.8﹣4π9.如图,是由若干个相同的小立方体搭成的几何体的俯视图和左视图.则小立方体的个数可能是()A.5或6B.5或7C.4或5或6D.5或6或710.如图,在平面直角坐标系中,△ABC的顶点坐标为A(﹣1,1)、B(0,﹣2)、C(1.0),点P(0,2)绕点A旋转180得到点P1,点P1绕点B旋转180°得到点P2,点P2绕点C旋转180°得到点P3,点P3绕点A旋转180°得到点P4,…,按此作法进行下去,则点P2018的坐标为()A.(2,﹣4)B.(0,4)C.(﹣2,﹣2)D.(2,﹣2)二、填空题(本大题共5小题,每小题5分,共25分,把答案填到二卷答题纸的指定位置处)11.若实数a满足a2﹣2a﹣1=0,则2a3﹣7a2+4a﹣2018=12.学校“百变魔方”社团准备购买A、B两种魔方.已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同,则购买一套魔方(A、B两种魔方各1个)需元.13.如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A、点C 分别在x 轴、y 轴的正半轴上,函数y =2x 的图象与CB 交于点D ,函数y =(k 为常数,k ≠0)的图象经过点D ,与AB 交于点E ,与函数y =2x 的图象在第三象限内交于点F ,连接AF 、EF ,则△AEF 的面积为 .14.如图,已平行四边形OABC 的三个顶点A 、B 、C 在以O 为圆心的半圆上,过点C 作CD ⊥AB ,分别交AB 、AO 的延长线于点D 、E ,AE 交半圆于点F ,连接CF ,若半圆O 的半径为12,则阴影部分的周长为 .15.庄子说:“一尺之椎,日取其半,万世不竭”.这句话(文字语言)表达了古人将事物无限分割的思想,用图形语言表示为图1,按此图分割的方法,可得到一个等式(符号语言):1=+++…++….图2也是一种无限分割:在△ABC 中,∠C =90°,∠B =30°,过点C 作CC 1⊥AB 于点C 1,再过点C 1作C 1C 2⊥BC 于点C 2,又过点C 2作C 2C 3⊥AB 于点C 3,如此无限继续下去,则可将利△ABC 分割成△ACC 1、△CC 1C 2、△C 1C 2C 3、△C 2C 3C 4、…、△C n ﹣2C n ﹣1∁n 、….假设AC =2,这些三角形的面积和可以得到一个等式是 .三、解答题(共7道题,合计65分,解答应写出文字说明、证明过程或推演步骤,并把答案写在二卷答题纸的指定位置处)16.(7分)先简化,再求值:(),其中x=2,y=.17.(8分)从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.如图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同)他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示)18.(9分)鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售量为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?19.(9分)在四边形ABCD中,∠B+∠D=180°,对角线AC平分∠BAD.(1)如图1,若∠DAB=120°,且∠B=90°,试探究边AD、AB与对角线AC的数量关系并说明理由.(2)如图2,若将(1)中的条件“∠B=90°”去掉,(1)中的结论是否成立?请说明理由.(3)如图3,若∠DAB=90°,探究边AD、AB与对角线AC的数量关系并说明理由.20.(10分)服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元,计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)条件下,该服装店在5月1日当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?21.(10分)(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.22.(12分)如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y 轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.2018年山东省枣庄实验高中自主招生数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确答案的选项填到二卷答题纸的指定位置处)1.【分析】根据数轴上A点的位置得出a表示的数,利用绝对值的意义计算.【解答】解:根据数轴得:a=﹣2,∴|a﹣1|=|﹣2﹣1|=|﹣3|=3,故选:C.【点评】此题考查了数轴,以及绝对值,熟练掌握绝对值的意义是解本题的关键.2.【分析】利用一元二次方程的定义和判别式的意义得到k≠0且△=(﹣2)2﹣4k•(﹣1)>0,然后其出两个不等式的公共部分即可.【解答】解:根据题意得k≠0且△=(﹣2)2﹣4k•(﹣1)>0,解得k>﹣1且k≠0.故选:B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.3.【分析】根据题目中的图形,可以发现其中的规律,从而可以求得当n=11时的芍药的数量.【解答】解:由图可得,芍药的数量为:4+(2n﹣1)×4,∴当n=11时,芍药的数量为:4+(2×11﹣1)×4=4+(22﹣1)×4=4+21×4=4+84=88,故选:B.【点评】本题考查规律型:图形的变化类,解答本题的关键是明确题意,发现题目中图形的变化规律.4.【分析】由设第一次买了x本资料,则设第二次买了(x+20)本资料,由等量关系:第二次比第一次每本优惠4元,即可得到方程.【解答】解:设他上月买了x本笔记本,则这次买了(x+20)本,根据题意得:﹣=4.故选:D.【点评】此题考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.5.【分析】根据特殊点的实际意义即可求出答案.【解答】解:因为该做水池就是一个连通器.开始时注入甲池,乙池无水,当甲池中水位到达与乙池的连接处时,乙池才开始注水,所以A、B不正确,此时甲池水位不变,所有水注入乙池,所以水位上升快.当乙池水位到达连接处时,所注入的水使甲乙两个水池同时升高,所以升高速度变慢.在乙池水位超过连通部分,甲和乙部分同时升高,但蓄水池底变小,此时比连通部分快.故选:D.【点评】主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.6.【分析】首先解直角三角形求得表示出AC,AD的长,进而利用直角三角函数,求出答案.【解答】解:如图,在Rt△ABC中,∠CAB=45°,BC=6m,∴AC==5(m);在Rt△ACD中,∠CAD=60°,∴AD==10(m);在Rt△DEA中,∠EAD=60°,DE=AD•sin60°=5,答:树DE的高为5米.故选:C.【点评】此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.7.【分析】A、将人数进行相加,即可得出结论A正确;B、由种植4棵的人数最多,可得出结论B 正确;C、由4+10=14,可得出每人植树量数列中第15、16个数为5,即结论C正确;D、利用加权平均数的计算公式,即可求出每人植树量的平均数约是4.73棵,结论D错误.此题得解.【解答】解:A、∵4+10+8+6+2=30(人),∴参加本次植树活动共有30人,结论A正确;B、∵10>8>6>4>2,∴每人植树量的众数是4棵,结论B正确;C、∵共有30个数,第15、16个数为5,∴每人植树量的中位数是5棵,结论C正确;D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),∴每人植树量的平均数约是4.73棵,结论D不正确.故选:D.【点评】本题考查了条形统计图、中位数、众数以及加权平均数,逐一分析四个选项的正误是解题的关键.8.【分析】用矩形的面积减去半圆的面积即可求得阴影部分的面积.【解答】解:∵矩形ABCD,∴AD=CB=2,∴S阴影=S矩形﹣S半圆=2×4﹣π×22=8﹣2π,故选:C.【点评】本题考查了扇形的面积的计算及矩形的性质,能够了解两个扇形构成半圆是解答本题的关键,难度不大.9.【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由左视图可得第二层最多和最少小立方体的个数,相加即可.【解答】解:由俯视图易得最底层有4个小立方体,由左视图易得第二层最多有3个小立方体和最少有1个小立方体,那么小立方体的个数可能是5个或6个或7个.故选:D.【点评】本题考查了由三视图判断几何体,也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.注意俯视图中有几个正方形,底层就有几个小立方体.10.【分析】画出P1~P6,寻找规律后即可解决问题.【解答】解:如图所示,P1(﹣2,0),P2(2,﹣4),P3(0,4),P4(﹣2,﹣2),P5(2,﹣2),P6(0,2),发现6次一个循环,∵2018÷6=336…2,∴点P2018的坐标与P2的坐标相同,即P2018(2,﹣4),故选:A.【点评】本题考查坐标与图形的性质、点的坐标等知识,解题的关键是循环探究问题的方法,属于中考常考题型.二、填空题(本大题共5小题,每小题5分,共25分,把答案填到二卷答题纸的指定位置处)11.【分析】由题意可得a2=2a+1,代入代数式可求值.【解答】解:∵a2﹣2a﹣1=0∴a2=2a+1∴2a3﹣7a2+4a﹣2018=2a(2a+1)﹣7(2a+1)+4a﹣2018=4a2+2a﹣14a﹣7+4a﹣2018=4(2a+1)﹣8a﹣2025=﹣2021故答案为:﹣2021【点评】本题考查了代数式求值,个体代入是本题的关键.12.【分析】设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:购买一套魔方(A、B两种魔方各1个)需35元.故答案为:35.【点评】本题考查了二元一次方程组的应用,解题的关键是找准等量关系,列出关于x、y的二元一次方程组.13.【分析】根据正方形的性质,以及函数上点的坐标特征可求点D的坐标为(1,2),根据待定系数法可求反比例函数表达式,进一步得到E、F两点的坐标,过点F作FG⊥AB,与AB的延长线交于点G,根据两点间的距离公式可求AE=1,FG=3,再根据三角形面积公式可求△AEF的面积.【解答】解:∵正方形OABC的边长为2,∴点D的纵坐标为2,即y=2,将y=2代入y=2x,得x=1,∴点D的坐标为(1,2),∵函数y=的图象经过点D,∴2=,解得k=2,∴反比例函数的表达式为y=,∴E(2,1),F(﹣1,﹣2);过点F作FG⊥AB,与BA的延长线交于点G,∵E(2,1),F(﹣1,﹣2),∴AE=1,FG=2﹣(﹣1)=3,∴△AEF的面积为:AE•FG=×1×3=,故答案为.【点评】本题主要考查了待定系数法求函数解析式,以及正方形的性质,解题的关键是求得D、E、F点的坐标.14.【分析】根据菱形的判定定理得到四边形OABC为菱形,得到∴△COF为等边三角形,求出∠OCF=60°,根据弧长公式求出的长,根据直角三角形的性质求出EF、CE,得到答案.【解答】解:∵四边形OABC为平行四边形,OA=OC,∴四边形OABC为菱形,∴BA=BC,∴∠CFA=∠COA,∵BC∥AF,∴∠A=∠CFA,∴∠A=∠COA,又∠A+∠COA=180°,∴∠A=60°,∴∠COF=60°,∴△COF为等边三角形,∴∠OCF=60°,∴的长==4π,∵CD⊥AB,∠BDC=60°,∴∠BCD=30°,∴∠ECO=90°,又∠COE=60°,∴∠E=30°,∴OE=2OC=24,∴EF=12,EC==12,∴阴影部分的周长=12+12+4π,故答案为:12+12+4π.【点评】本题考查的是弧长的计算,掌握弧长公式:l=是解题的关键.15.【分析】先根据AC=2,∠B=30°,CC1⊥AB,求得S=;进而得到=△ACC1×,=×()2,=×()3,根据规律可知=×()n﹣1,再根据S=AC×BC=×2×2=2,即可得到等式.△ABC【解答】解:如图2,∵AC=2,∠B=30°,CC1⊥AB,∴Rt△ACC1中,∠ACC1=30°,且BC=2,∴AC1=AC=1,CC1=AC1=,=•AC1•CC1=×1×=;∴S△ACC1∵C1C2⊥BC,∴∠CC1C2=∠ACC1=30°,∴CC2=CC1=,C1C2=CC2=,∴=•CC2•C1C2=××=×,同理可得,=×()2,=×()3,…∴=×()n﹣1,又∵S=AC×BC=×2×2=2,△ABC∴2=+×+×()2+×()3+…+×()n﹣1+…∴2=.故答案为:2=.【点评】本题主要考查了图形的变化类问题,解决问题的关键是找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.三、解答题(共7道题,合计65分,解答应写出文字说明、证明过程或推演步骤,并把答案写在二卷答题纸的指定位置处)16.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x、y的值代入计算可得.【解答】解:原式=[﹣]÷=(﹣)•=[﹣]•=•=﹣,当x=2,y=时,原式=﹣=﹣=﹣.【点评】本题主要考查分式的混合运算﹣化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.17.【分析】(1)根据图表将2016年七个重点领域的交易额从小到大罗列出来,根据中位数的定义即可得;(2)将(2016年的资金﹣2015年的资金)÷2015年的资金可分别求得两领域的增长率,结合增长率提出合理的认识即可;(3)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)由图可知,2016年七个重点领域的交易额分别为70、245、610、2038、3300、7233、20863,2016年交易额的中位数是2038亿元,故答案为:2038;(2)“知识技能”的增长率为:×100%=205%,“资金”的增长率为:≈109%,由此可知,“知识技能”领域交易额较小,其增长率最高,达到200%以上,其发展速度惊人.(3)画树状图为:共有12种等可能的结果数,其中抽到“共享出行”和“共享知识”的结果数为2,所以抽到“共享出行”和“共享知识”的概率==.【点评】本题主要考查条形统计图、折线统计图和列表法与树状图法求概率,根据条形图得出解题所需数据及画树状图列出所有等可能结果是解题的关键.18.【分析】(1)根据题意,由售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个,可得销售量y个与降价x元之间的函数关系式;(2)根据题意结合每周获得的利润W=销量×每个的利润,进而利用二次函数增减性求出答案;(3)根据题意,由利润不低于5200元列出不等式,进一步得到销售量的取值范围,从而求出答案.【解答】解:(1)依题意有:y=10x+160;(2)依题意有:W=(80﹣50﹣x)(10x+160)=﹣10(x﹣7)2+5290,因为x为偶数,所以当销售单价定为80﹣6=74元或80﹣8=72时,每周销售利润最大,最大利润是5280元;(3)依题意有:﹣10(x﹣7)2+5290≥5200,解得4≤x≤10,则200≤y≤260,200×50=10000(元).答:他至少要准备10000元进货成本.【点评】此题主要考查了二次函数的应用以及一元二次方程的应用等知识,正确利用销量×每个的利润=W得出函数关系式是解题关键.19.【分析】(1)结论:AC=AD+AB,只要证明AD=AC,AB=AC即可解决问题;(2)(1)中的结论成立.以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,只要证明△DAC≌△BEC即可解决问题;(3)结论:.过点C作CE⊥AC交AB的延长线于点E,只要证明△ACE是等腰直角三角形,△DAC≌△BEC即可解决问题;【解答】解:(1)AC=AD+AB.理由如下:如图1中,在四边形ABCD中,∠D+∠B=180°,∠B=90°,∴∠D=90°,∵∠DAB=120°,AC平分∠DAB,∴∠DAC=∠BAC=60°,∵∠B=90°,∴,同理.∴AC=AD+AB.(2)(1)中的结论成立,理由如下:以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,∵∠BAC=60°,∴△AEC为等边三角形,∴AC=AE=CE,∵∠D+∠ABC=180°,∠DAB=120°,∴∠DCB=60°,∴∠DCA=∠BCE,∵∠D+∠ABC=180°,∠ABC+∠EBC=180°,∴∠D=∠CBE,∵CA=CE,∴△DAC≌△BEC,∴AD=BE,∴AC=AD+AB.(3)结论:.理由如下:过点C作CE⊥AC交AB的延长线于点E,∵∠D+∠B=180°,∠DAB=90°,∴DCB=90°,∵∠ACE=90°,∴∠DCA=∠BCE,又∵AC平分∠DAB,∴∠CAB=45°,∴∠E=45°.∴AC=CE.又∵∠D+∠ABC=180°,∠D=∠CBE,∴△CDA≌△CBE,∴AD=BE,∴AD+AB=AE.在Rt△ACE中,∠CAB=45°,∴,∴.【点评】本题考查四边形综合题、等边三角形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.20.【分析】(1)设甲种服装购进x件,则乙种服装购进(100﹣x)件,然后根据购进这100件服装的费用不得超过7500元,列出不等式解答即可;(2)首先求出总利润W的表达式,然后针对a的不同取值范围进行讨论,分别确定其进货方案.【解答】解:(1)设购进甲种服装x件,由题意可知:80x+60(100﹣x)≤7500 解得:x≤75答:甲种服装最多购进75件.(2)设总利润为w元,因为甲种服装不少于65件,所以65≤x≤75,W=(40﹣a)x+30(100﹣x)=(10﹣a)x+3000方案1:当0<a<10时,10﹣a>0,w随x的增大而增大,所以当x=75时,w有最大值,则购进甲种服装75件,乙种服装25件;方案2:当a=10时,所有方案获利相同,所以按哪种方案进货都可以;方案3:10<a<20时,10﹣a<0,w随x的增大而减小,所以当x=65时,w有最大值,则购进甲种服装65件,乙种服装35件.【点评】本题考查了一元一次方程的应用,不等式组的应用,以及一次函数的性质,正确利用x 表示出利润是关键.21.【分析】(1)延长AD至E,使DE=AD,由SAS证明△ACD≌△EBD,得出BE=AC=6,在△ABE中,由三角形的三边关系求出AE的取值范围,即可得出AD的取值范围;(2)延长FD至点M,使DM=DF,连接BM、EM,同(1)得△BMD≌△CFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在△BME中,由三角形的三边关系得出BE+BM>EM即可得出结论;(3)延长AB至点N,使BN=DF,连接CN,证出∠NBC=∠D,由SAS证明△NBC≌△FDC,得出CN=CF,∠NCB=∠FCD,证出∠ECN=70°=∠ECF,再由SAS证明△NCE≌△FCE,得出EN=EF,即可得出结论.【解答】(1)解:延长AD至E,使DE=AD,连接BE,如图①所示:∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案为:2<AD<8;(2)证明:延长FD至点M,使DM=DF,连接BM、EM,如图②所示:同(1)得:△BMD≌△CFD(SAS),∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三边关系得:BE+BM>EM,∴BE+CF>EF;(3)解:BE+DF=EF;理由如下:延长AB至点N,使BN=DF,连接CN,如图3所示:∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,∴∠NBC=∠D,在△NBC和△FDC中,,∴△NBC≌△FDC(SAS),∴CN=CF,∠NCB=∠FCD,∵∠BCD=140°,∠ECF=70°,∴∠BCE+∠FCD=70°,∴∠ECN=70°=∠ECF,在△NCE和△FCE中,,∴△NCE≌△FCE(SAS),∴EN=EF,∵BE+BN=EN,∴BE+DF=EF.【点评】本题考查了三角形的三边关系、全等三角形的判定与性质、角的关系等知识;本题综合性强,有一定难度,通过作辅助线证明三角形全等是解决问题的关键.22.【分析】(1)根据二次函数性质,求出点A、B、D的坐标;(2)如何证明∠AEO=∠ADC?如答图1所示,我们观察到在△EFH与△ADF中:∠EHF=90°,有一对对顶角相等;因此只需证明∠EAD=90°即可,即△ADE为直角三角形,由此我们联想到勾股定理的逆定理.分别求出△ADE三边的长度,再利用勾股定理的逆定理证明它是直角三角形,由此问题解决;(3)依题意画出图形,如答图2所示.由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.利用二次函数性质求出EP2最小时点P的坐标,并进而求出点Q的坐标.【解答】方法一:(1)解:顶点D的坐标为(3,﹣1).令y=0,得(x﹣3)2﹣1=0,解得:x1=3+,x2=3﹣,∵点A在点B的左侧,∴A(3﹣,0),B(3+,0).(2)证明:如答图1,过顶点D作DG⊥y轴于点G,则G(0,﹣1),GD=3.令x=0,得y=,∴C(0,).∴CG=OC+OG=+1=,∴tan∠DCG=.设对称轴交x轴于点M,则OM=3,DM=1,AM=3﹣(3﹣)=.由OE⊥CD,易知∠EOM=∠DCG.∴tan∠EOM=tan∠DCG==,解得EM=2,∴DE=EM+DM=3.在Rt△AEM中,AM=,EM=2,由勾股定理得:AE=;在Rt△ADM中,AM=,DM=1,由勾股定理得:AD=.∵AE2+AD2=6+3=9=DE2,∴△ADE为直角三角形,∠EAD=90°.设AE交CD于点F,∵∠AEO+∠EFH=90°,∠ADC+∠AFD=90°,∠EFH=∠AFD(对顶角相等),∴∠AEO=∠ADC.(3)解:依题意画出图形,如答图2所示:由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.设点P坐标为(x,y),由勾股定理得:EP2=(x﹣3)2+(y﹣2)2.∵y=(x﹣3)2﹣1,∴(x﹣3)2=2y+2.∴EP2=2y+2+(y﹣2)2=(y﹣1)2+5当y=1时,EP2有最小值,最小值为5.将y=1代入y=(x﹣3)2﹣1,得(x﹣3)2﹣1=1,解得:x1=1,x2=5.又∵点P在对称轴右侧的抛物线上,∴x1=1舍去.∴P(5,1).∵△EQ2P为直角三角形,∴过点Q2作x轴的平行线,再分别过点E,P向其作垂线,垂足分别为M点和N点.由切割线定理得到Q2P=Q1P=2,EQ2=1设点Q2的坐标为(m,n)则在Rt△MQ2E和Rt△Q2NP中建立勾股方程,即(m﹣3)2+(n﹣2)2=1①,(5﹣m)2+(n ﹣1)2=4②①﹣②得n=2m﹣5③将③代入到①得到m1=3(舍,为Q1)m2=再将m=代入③得n=,∴Q2(,)此时点Q坐标为(3,1)或(,).方法二:(1)略.(2)∵C(0,),D(3,﹣1),∴KCD=,∵OE⊥CD,∴K CD×K OE=﹣1,∴K OE=,∴l OE:y=x,把x=3代入,得y=2,∴E(3,2),∵A(3﹣,0),D(3,﹣1),∴K EA==,∵K AD=,∴K EA×K AD=﹣1,∴EA⊥AD,∠EHD=∠EAD,∵∠EFH=∠AFD,∴∠AEO=∠ADC.(3)由⊙E的半径为1,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小,设点P坐标为(x,y),EP2=(x﹣3)2+(y﹣2)2,∵y=(x﹣3)2﹣1,∴(x﹣3)2=2y+2,∴EP2=2y+2+(y﹣2)2=(y﹣1)2+5,∴当y=1时,EP2有最小值,将y=1代入y=(x﹣3)2﹣1得:x1=1,x2=5,又∵点P在对称轴右侧的抛物线上,∴x1=1舍去,∴P(5,1),显然Q1(3,1),∵Q1Q2被EP垂直平分,垂足为H,∴K Q1Q2×K EP=﹣1,∴K EP==﹣,K Q1Q2=2,∵Q1(3,1),∴l Q1Q2:y=2x﹣5,∵l EP:y=﹣x+,∴x=,y=,∴H(,),∵H为Q1Q2的中点,∴H x=,H Y=,∴Q2(x)=2×﹣3=,Q2(Y)=2×﹣1=,∴Q2(,).【点评】本题是二次函数压轴题,涉及考点众多,难度较大.第(2)问中,注意观察图形,将问题转化为证明△ADE为直角三角形的问题,综合运用勾股定理及其逆定理、三角函数(或相似形)求解;第(3)问中,解题关键是将最值问题转化为求EP2最小值的问题,注意解答中求EP2最小值的具体方法.。
全国各重点大学自主招生数学试题及答案分类汇总一.集合与命题 (2)二.不等式 (9)三.函数 (20)四.数列 (27)五.矩阵、行列式、排列组合,二项式定理,概率统计 (31)六.排列组合,二项式定理,概率统计(续)复数 (35)七.复数 (39)八.三角 (42)近年来自主招生数学试卷解读第一讲集合与命题第一部分近年来自主招生数学试卷解读一、各学校考试题型分析:交大:题型:填空题10题,每题5分;解答题5道,每题10分;考试时间:90分钟,满分100分;试题难度:略高于高考,比竞赛一试稍简单;考试知识点分布:基本涵盖高中数学教材高考所有内容,如:集合、函数、不等式、数列(包括极限)、三角、复数、排列组合、向量、二项式定理、解析几何和立体几何复旦:题型:试题类型全部为选择题(四选一);全考试时间:总的考试时间为3小时(共200道选择题,总分1000分,其中数学部分30题左右,,每题5分);试题难度:基本相当于高考;考试知识点分布:除高考常规内容之外,还附加了一些内容,如:行列式、矩阵等;考试重点:侧重于函数和方程问题、不等式、数列及排列组合等同济:题型:填空题8题左右,分数大约40分,解答题约5题,每题大约12分;考试时间:90分钟,满分100分;试题难度:基本上相当于高考;考试知识点分布:常规高考内容二、试题特点分析:1. 突出对思维能力和解题技巧的考查。
关键步骤提示:2. 注重数学知识和其它科目的整合,考查学生应用知识解决问题的能力。
关键步骤提示:()()()4243222342(2)(2)(1)(2)(1)f a x x a x x xx x x a x x x =--++-=+-+++-111(,),(,),(,)nnni i i ii i i i i i id u w a d v w b d u v a b a b a b ======-+≥-∑∑∑由绝对值不等式性质,三、 应试和准备策略1.注意知识点的全面数学题目被猜中的可能性很小,一般知识点都是靠平时积累,因此,要求学生平时要把基础知识打扎实。
2015《高校自主招生》高考数学真题专题试卷分类解析打包9套下载,含答案!目录2015年《高校自主招生考试》数学真题分类解析之1、不等式2015年《高校自主招生考试》数学真题分类解析之2、复数、平面向量2015年《高校自主招生考试》数学真题分类解析之3、三角函数2015年《高校自主招生考试》数学真题分类解析之4、创新与综合题2015年《高校自主招生考试》数学真题分类解析之5、概率2015年《高校自主招生考试》数学真题分类解析之6、数列与极限2015年《高校自主招生考试》数学真题分类解析之7、解析几何2015年《高校自主招生考试》数学真题分类解析之8、平面几何2015年《高校自主招生考试》数学真题分类解析之9、排列、组合与二项式定理专题之1、不等式一、选择题。
1.(2009年复旦大学)若实数x满足对任意实数a>0,均有x2<1+a,则x的取值范围是( ) A.(-1,1) B.[-1,1]C.(-错误!未找到引用源。
,错误!未找到引用源。
)D.不能确定2.(2010年复旦大学)已知点A(-2,0),B(1,0),C(0,1),如果直线y=kx将△ABC分割为两个部分,则当k= 时,这两个部分的面积之积最大. ( )A.-错误!未找到引用源。
B.-错误!未找到引用源。
C.-错误!未找到引用源。
D.-错误!未找到引用源。
3.(2010年复旦大学)将同时满足不等式x-ky-2≤0(k>0),2x+3y-6≥0,x+6y-10≤0的点(x,y)组成的集合D称为可行域,将函数z=错误!未找到引用源。
称为目标函数,所谓规划问题就是求解可行域内的点(x,y),使目标函数达到在可行域内的最小值.如果这个规划问题有无穷多个解,则( )A.k≥1B.k≤2C.k=2D.k=14.(2011年复旦大学)设n是一个正整数,则函数y=x+错误!未找到引用源。
在正实半轴上的最小值是( )A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
5.(2011年复旦大学)若对一切实数x,都有|x-5|+|x-7|>a,则实数a的取值范围是( ) A.a<12 B.a<7 C.a<5 D.a<26.(2011年清华大学等七校联考)已知向量a=(0,1),b=(-错误!未找到引用源。
,-错误!未找到引用源。
),c=(错误!未找到引用源。
,-错误!未找到引用源。
),xa+yb+zc=(1,1),则x2+y2+z2的最小值为( )A.1B.错误!未找到引用源。
C.错误!未找到引用源。
D.2二、填空题。
7.(2010年中南财经政法大学)已知实数a,b满足a>b,ab=1,则错误!未找到引用源。
的最小值是 .8.(2009年华中科技大学) 对任意的a>0,b>0,错误!未找到引用源。
的取值范围是 .三、解答题。
9.(2009年中国科技大学)求证:∀x,y∈R,不等式x2+xy+y2≥3(x+y-1)恒成立.10.(2009年南京大学)P为△ABC内一点,它到三边BC,CA,AB的距离分别为d1,d2,d3,S为△ABC 的面积,求证:错误!未找到引用源。
+错误!未找到引用源。
+错误!未找到引用源。
≥错误!未找到引用源。
.11.(2010年南京大学)(a+b)2+3a+2b=(c+d)2+3c+2d. (*)证明:(1)a=c,b=d的充分必要条件是a+b=c+d;(2)若a,b,c,d∈N*,则(*)式成立的充要条件是a=c,b=d.12.(2010年浙江大学)有小于1的n(n≥2 )个正数:x1,x2,x3,…,x n,且x1+x2+x3+…+x n=1.求证:错误!未找到引用源。
+错误!未找到引用源。
+错误!未找到引用源。
+…+错误!未找到引用源。
>4.13.(2009年清华大学)设a=错误!未找到引用源。
(n∈N*),S n=(x1-a)(x2-a)+(x2-a)(x3-a)+…+(x n-1-a)(x n-a),求证:S3≤0.14.(2009年清华大学)(1)x,y为正实数,且x+y=1,求证:对于任意正整数n,x n+y n≥错误!未找到引用源。
;(2)a,b,c为正实数,求证:错误!未找到引用源。
+错误!未找到引用源。
+错误!未找到引用源。
≥3,其中x,y,z为a,b,c的一种排列.15.(2009年北京大学)∀x∈R都有acos x+bcos 2x≥-1恒成立,求a+b的最大值. 16.(2011年北京大学等十三校联考)求f(x)=|x-1|+|2x-1|+…+|2 011x-1|的最小值.17.(2012年北京大学等十一校联考)求错误!未找到引用源。
+错误!未找到引用源。
=1的实数根的个数.1.B【解析】对任意实数a>0,函数f(a)=1+a的值域是(1,+∞),因此只要x2≤1即可.由x2≤1,解得x∈[-1,1].3.C【解析】可行域如图中阴影部分所示,目标函数z=错误!未找到引用源。
的几何意义是可行域内的点与点(0,-1)连线的斜率,如果要使其取得最小值的点有无穷多个,则直线x-ky-2=0必过点(0,-1),即k=2.选C. 在解含有参数的平面区域问题时要注意含有参数的直线系的特点,本题的突破点是直线系x-ky-2=0过定点(2,0).4.C【解析】题中函数为非常规函数,可利用导数求其最值.因为y=x+错误!未找到引用源。
=x+错误!未找到引用源。
x-n,所以y'=1-x-n-1=1-错误!未找到引用源。
,令y'=0得x=1,且函数y在(0,1)上递减,在(1,+∞)上递增,故函数y在正实半轴上的最小值为1+错误!未找到引用源。
=错误!未找到引用源。
.5.D【解析】可先求出函数y=|x-5|+|x-7|的最小值,然后根据不等式恒成立的条件求得a的取值范围.由于|x-5|+|x-7|≥|5-7|=2,即函数y=|x-5|+|x-7|的最小值等于2,所以要使|x-5|+|x-7|>a恒成立,应有a<2.方法二∵xa+yb+zc=(1,1),∴-错误!未找到引用源。
y+错误!未找到引用源。
z=1,x-错误!未找到引用源。
y-错误!未找到引用源。
z=1,∴-y+z=错误!未找到引用源。
,y+z=2x-2,∴z=错误!未找到引用源。
+x-1,y=-错误!未找到引用源。
+x-1,∴x2+(-错误!未找到引用源。
+x-1)2+(错误!未找到引用源。
+x-1)2=3x2-2(错误!未找到引用源。
+1)x+(错误!未找到引用源。
+1)2+2(错误!未找到引用源。
-1)x+(错误!未找到引用源。
-1)2=3x2-4x+错误!未找到引用源。
+2=3(x2-错误!未找到引用源。
x+错误!未找到引用源。
)+错误!未找到引用源。
+2-错误!未找到引用源。
=3(x-错误!未找到引用源。
)2+错误!未找到引用源。
≥错误!未找到引用源。
,当且仅当x=错误!未找到引用源。
,z=错误!未找到引用源。
,y=错误!未找到引用源。
时等号成立.9.x2+xy+y2-3(x+y-1)=错误!未找到引用源。
(x+y)2+错误!未找到引用源。
x2+错误!未找到引用源。
y2-3x-3y+3=错误!未找到引用源。
(x+y)2+错误!未找到引用源。
(x-3)2+错误!未找到引用源。
(y-3)2-6≥错误!未找到引用源。
(x+y)2+错误!未找到引用源。
(x+y-6)2-6=错误!未找到引用源。
(x+y)2-3(x+y)+3=[错误!未找到引用源。
(x+y)-错误!未找到引用源。
]2≥0,故∀x,y∈R,不等式x2+xy+y2≥3(x+y-1)恒成立.10.2S=2(S△PBC+S△PCA+S△PAB),2S=ad1+bd2+cd3.要证错误!未找到引用源。
+错误!未找到引用源。
+错误!未找到引用源。
≥错误!未找到引用源。
成立,即证(ad1+bd2+cd3)(错误!未找到引用源。
+错误!未找到引用源。
+错误!未找到引用源。
)≥(a+b+c)2成立.由柯西不等式可得上面不等式成立,当且仅当d1=d2=d3时等号成立.11.(1)由a=c,b=d得到a+b=c+d是显然的;反之,把a+b=c+d代入(*)式可得a=c,于是b=d.因此,a=c,b=d的充要条件是a+b=c+d.(2)充分性是显然的,下面证明必要性.当a+b=c+d时,由(1)可知:a=c,b=d,即必要性成立.当a+b>c+d时,有a-c>d-b,设a-c=d-b+p(p≥1),由(*)式得(a+b+1)2+a=(c+d+1)2+c,∴(a+b-c-d)(a+b+c+d+2)+a-c=0,∴[(a-c)-(d-b)](a+b+c+d+2)+a-c=0.∴a-c+p(a+b+c+d+2)=0,∴(1+p)a+pb+(p-1)c+pd+2p=0,这与p≥1相矛盾,于是a+b>c+d不能成立.同理可证a+b<c+d也不能成立.综上可知:必要性成立.12.∵0<x i<1,∴错误!未找到引用源。
>错误!未找到引用源。
(i=1,2,3,…,n).∴错误!未找到引用源。
+错误!未找到引用源。
+错误!未找到引用源。
+…+错误!未找到引用源。
>错误!未找到引用源。
+错误!未找到引用源。
+错误!未找到引用源。
+…+错误!未找到引用源。
≥错误!未找到引用源。
,又∵1=x1+x2+x3+…+x n≥n错误!未找到引用源。
,∴错误!未找到引用源。
≥n,又∵n≥2,∴错误!未找到引用源。
+错误!未找到引用源。
+错误!未找到引用源。
+…+错误!未找到引用源。
>n2≥4.13.S3=(x1-错误!未找到引用源。
)(x2-错误!未找到引用源。
)+(x2-错误!未找到引用源。
)(x3-错误!未找到引用源。
)=(x2-错误!未找到引用源。
)(x1-错误!未找到引用源。
+x3-错误!未找到引用源。
)=错误!未找到引用源。
·错误!未找到引用源。
=-错误!未找到引用源。
(x1+x3-2x2)2≤0.14.(1)设x=错误!未找到引用源。
+a,则y=错误!未找到引用源。
-a,其中-错误!未找到引用源。
<a<错误!未找到引用源。
,于是x n+y n=(错误!未找到引用源。
+a)n+(错误!未找到引用源。
-a)n=(错误!未找到引用源。
)n+错误!未找到引用源。
(错误!未找到引用源。
)n-1·a+错误!未找到引用源。
(错误!未找到引用源。
)n-2·a2+…+错误!未找到引用源。
a n+(错误!未找到引用源。
)n-错误!未找到引用源。
(错误!未找到引用源。
)n-1·a+错误!未找到引用源。