马氏链案例
- 格式:ppt
- 大小:1.56 MB
- 文档页数:38
随机过程论文——马氏链的应用学院:东凌经济管理学院班级:金融0902班姓名:一、文献综述马氏链在日常生活诸多领域中有着广泛的应用0我引用了五篇文献,分别是刘家军的马氏链在无赔款优待模型中的应用;廖捷、陈功的叠加马尔科夫链模型在高原年降水量预测中的应用;郭小溪的借助于马尔柯夫链的无后效性性质,预测2000~ 2005年6年的8项支出量;吴加荣、谢明铎、何穗的一类马氏链的数据仿真与应用;肖定文、黄崇起的用马尔柯夫过程预测股市短期或中长期走势。
刘家军在2009年介绍了马氏链在无赔款优待模型中的应用,利用mat lab7. 0计算在未来几年中索赔事件发生的强度分布与被保险人所处折扣等级的分布以及两者的极限分布,并依此计算纯保费。
降水量的预测是气象学中一项重要的研究工作。
由于气象系统的复杂性、多样性,使得降水过程具有不确定性、较难精确预测的特点。
廖捷、陈功2010年引入了叠加马尔科夫链模型,以位于川西高原的小金站1961-2010年的全年降水量资料为例,探讨了叠加马尔科夫链模型在高原年降水量预测中的应用。
廖捷、陈功利用均值-均方差分级法对年降水量进行分级,并由此将小金站各年的全年降水量划分为5 个状态。
根据各年降水量的状态,可统计得到不同步长的概率转移矩阵。
在进行降水量的叠加预测时,主要考虑利用步长为1~4的概率转移矩阵进行计算。
首先利用1961〜2000长度为40年的降水量序列预测了2001年的降水量,之后去掉1961年降水量值,加入2001年实际观测降水量值,保持序列长度不变,预测2002年的降水量。
以此类推,利用叠加马尔科夫链模型预测了小金站200N2010共十年的降水量,并与该站实际观测降水量进行了对比。
2006年郭小溪利用长春市居民1998、1999连续两年的收、支数量变化,借助于马尔柯夫链的无后效性性质,建立居民消费性支出结构的概率转移矩阵,进而预测出自2000年至2005年6年的8项支出值;进一步分析居民消费性支出变化的基本规律和受控因素,并与经济发展条件一起探讨发展经济的人文环境影响作用。
离散时间马氏链例题离散时间马氏链(离散时间马尔科夫链)是一种随机过程,其中每个状态的未来转变仅依赖于其当前状态,而不依赖于过去的状态或转变。
以下是离散时间马氏链的一个简单例题:天气预报问题假设明天的天气仅与今天的天气有关,而与过去的天气无关。
如果今天下雨,那么明天下雨的概率为0.7;如果今天不下雨,那么明天下雨的概率为0.4。
我们要求出今天下雨并且四天后仍然下雨的概率(假设α=0.7,β=0.4)。
解:定义状态:我们可以定义两个状态,状态0表示不下雨,状态1表示下雨。
建立转移概率矩阵:根据题目描述,我们可以得到以下的转移概率矩阵P:P = [0.6 0.4; 0.3 0.7]其中,P(i, j)表示从状态i转移到状态j的概率。
3. 应用马氏链的性质:我们知道马氏链的性质是未来的状态只与当前状态有关,与过去的状态无关。
因此,我们可以使用转移概率矩阵来计算四天后仍然下雨的概率。
我们从今天下雨(状态1)开始,想要知道四天后仍然下雨的概率。
我们可以通过连续应用转移概率矩阵来计算这个概率:今天下雨并且四天后仍然下雨的概率= P(1, 1)^4但是这是错误的,因为我们不能直接取四次方。
正确的做法是,考虑所有可能的路径,即在这四天中,天气可能如何变化。
例如,它可能一直保持下雨,或者可能在中间某天下雨然后再次下雨等等。
我们需要考虑所有这些可能性。
但是,对于较大的n值,直接计算所有路径是不切实际的。
我们可以使用一种称为“稳态概率”的概念来简化计算。
稳态概率是指,当时间趋于无穷大时,马氏链处于某个特定状态的概率。
在这个例子中,我们可以计算出稳态概率,然后用它来估计四天后下雨的概率。
然而在这个特定的例子中,由于转移概率矩阵不是对称的,因此没有简单的公式可以直接计算出n步转移概率。
我们需要使用矩阵的n次幂来计算这个概率。
但是注意,我们不能简单地取P(1,1)的四次幂,因为那将假设每天都独立地下雨,而实际上每天的天气都依赖于前一天的天气。