三极管的基本知识讲解
- 格式:docx
- 大小:32.21 KB
- 文档页数:4
二极管三极管的基础知识
1、二极管是一种双极型半导体器件,是由一个n型半导体和一个p型半导体夹层而成,并且由两个电极连接起来,形成了一个半导体导通元件。
二极管的特点是在正反向作用下具有很大的电阻性。
2、二极管有自发型和电控型。
自发型二极管可以单独工作,而电控型二极管依靠外加电压进行工作,又分半导体二极管、隔离二极管和中继二极管。
3、二极管的基本功能:
(1)可以作为电路的一个开关或分流器;
(2)可以对输入电压的放大作用;
(3)可以实现电子电路与电器的互联;
(4)可以实现信号的保护。
二、三极管
1、三极管是由三个电极(收集极、基极和发射极)连接而成的一种半导体器件,它们三个电极间的关系可以控制电子的流动,从而改变电路的电流。
三极管的特点是在正反向作用下具有很大的电阻性,但其中收发极处的电阻值要小于中间基极处的电阻值。
2、三极管通常以晶体管的形式出现,并可分为双极型晶体管和三极型晶体管两种。
3、三极管的基本功能:
(1)可以实现电子电路的功率放大;
(2)可以对输入信号进行阻塞和增益;
(3)可以实现电子电路的解耦;
(4)可以实现电子电路的节流;
(5)可以实现电子电路的低成本放大和控制。
三极管基础知识详解嘿,朋友们!今天咱们来唠唠三极管这个神奇的小玩意儿。
三极管啊,就像是一个微观世界里的小班长。
你看,它有三个电极,这就好比小班长有三个得力助手,分别是基极、集电极和发射极。
基极呢,就像是班长的小喇叭,是个指挥中心,只要它稍微有点动静,整个三极管的工作状态就跟着变了。
这个集电极可不得了,就像是个超级大力士。
它能承受很大的电流,就像大力士能扛起很重的东西一样夸张。
而发射极呢,就像是个快递员,把电流从三极管里快速地送出去。
三极管的工作模式啊,那也是超级有趣。
当基极这个小喇叭喊出微弱的信号时,就像轻轻吹了口气,集电极这个大力士就会做出很大的反应,就好像大力士听到小班长一声令下,就开始疯狂干活。
这就是三极管的放大作用,能把小信号变成大信号,简直像变魔术一样。
如果把三极管比作一个小剧团的话,基极就是导演,它决定着整个剧团的表演风格。
集电极和发射极就是演员,按照导演的指示,表演出放大或者其他的功能。
在电路里,三极管就像是个多面手。
有时候它是个信号放大器,把那些微弱得像小蚂蚁一样的信号,放大成强壮得像大象一样的信号。
有时候呢,它又像个开关,就像一个超级灵活的闸门,要么让电流通过,要么把电流拦住,比孙悟空的金箍棒还听话。
要是把电流比作一群小绵羊的话,三极管就能把这群小绵羊管得服服帖帖的。
基极就是那个拿着小皮鞭的牧羊人,轻轻一挥鞭,集电极和发射极就把小绵羊们赶到该去的地方。
而且啊,三极管的种类也很多,就像人有各种各样的性格一样。
有PNP 型的,有NPN型的,它们的工作方式就像两个性格迥异的小伙伴,虽然有点不同,但都能在电路这个大舞台上发挥自己的作用。
你可别小看这个小小的三极管,它可是现代电子设备里的大明星。
没有它,那些炫酷的电子产品可能就像没了灵魂一样,就像超级英雄没了超能力,啥都干不了啦。
所以说,三极管虽然小,但是能量超级大,就像一颗小小的种子,能长成参天大树呢!。
三极管种类与定义三极管是一种重要的电子器件,广泛应用于电子电路中。
根据不同的工作原理和结构特点,可以分为多种类型的三极管。
本文将介绍几种常见的三极管种类及其定义。
1. NPN型三极管NPN型三极管是一种常见的三极管类型。
它由三个掺杂不同类型的半导体材料组成,中间的P型区域被夹在两个N型区域之间。
NPN 型三极管的基极(B)连接到一个输入信号源,发射极(E)连接到地,而集电极(C)连接到输出负载。
当输入信号施加在基极时,控制电流将流经基极-发射极结,从而控制从集电极到发射极的电流,实现信号放大功能。
2. PNP型三极管PNP型三极管是另一种常见的三极管类型。
与NPN型三极管相比,PNP型三极管的掺杂类型相反。
PNP型三极管的基极(B)连接到一个输入信号源,发射极(E)连接到电源正极,而集电极(C)连接到输出负载。
当输入信号施加在基极时,控制电流将流经基极-发射极结,从而控制从集电极到发射极的电流,实现信号放大功能。
PNP型三极管与NPN型三极管在工作原理上相反,但其放大功能原理相同。
3. MOSFET三极管MOSFET(金属-氧化物-半导体场效应晶体管)是一种基于金属氧化物半导体技术的三极管。
它由金属栅极、绝缘氧化层和半导体基底组成。
MOSFET的工作原理是通过调节栅极电压来控制源极和漏极之间的电流。
MOSFET具有输入电阻高、功耗低、速度快等优点,广泛应用于各种电子设备中。
4. JFET三极管JFET(结型场效应晶体管)是一种基于PN结的三极管。
它由P型或N型半导体材料形成的两个反向偏置的PN结组成。
JFET的工作原理是通过控制栅极-源极电压来控制源极和漏极之间的电流。
JFET 具有输入电阻高、噪音低、线性度好等特点,广泛应用于放大、开关和稳压等电路中。
5. IGBT三极管IGBT(绝缘栅双极型晶体管)是一种结合了MOSFET和双极型晶体管特点的三极管。
它具有MOSFET的输入电阻高、功耗低和速度快的特点,同时又具有双极型晶体管的控制性好和承受大电流的特点。
三极管知识及测量方法三极管(transistor)是一种常用的电子器件,广泛应用于电子电路中。
本文将介绍三极管的基本知识和测量方法。
一、三极管基础知识1.三极管的基本结构三极管由两个PN结组成,有三个引脚:基极(B)、发射极(E)和集电极(C)。
三极管主要分为NPN型和PNP型两种。
2.三极管的工作原理三极管在不同的工作状态下有不同的功能,主要有以下三个状态:-放大状态:在放大状态下,基极电流较小,只有微弱的信号,但输出在集电极上得到放大。
-关断状态:在关断状态下,基极电流为零,三极管完全截断,没有任何输出。
-饱和状态:在饱和状态下,集电极电流最大,基极电流较大,信号被完全放大。
3.三极管参数表达-电流放大倍数(β):指的是输入电流变化到输出电流的变化比例。
- 输入电阻(Rin):指的是输入电阻与基极之间的电阻。
- 输出电阻(Rout):指的是输出电阻与集电极之间的电阻。
- 横向导通电压(Vbe):指的是基极与发射极之间的电压。
二、三极管的测量方法1. 测量三极管灵敏度(hfe)-步骤一:将万用表(电流档)的电位器旋钮完全逆时针旋转为最低电流档。
-步骤二:将测试引脚与三极管的E(发射极)和B(基极)相连,并测量电流。
-步骤三:将测试引脚与三极管的C(集电极)和B(基极)相连,并测量电流。
- 步骤四:计算hfe值,hfe = Ic / Ib,其中Ic为集电极电流,Ib 为基极电流。
2.测量三极管的共射输入电阻-步骤一:将测试引脚与三极管的E(发射极)相连,并测量电阻。
-步骤二:将测试引脚与三极管的B(基极)相连,并测量电阻。
- 步骤三:计算输入电阻,输入电阻 = Ube / Ib,其中Ube为基极与发射极之间的电压,Ib为基极电流。
3.测量三极管的共射输出电阻-步骤一:将测试引脚与三极管的E(发射极)和C(集电极)相连,并测量电阻。
-步骤二:将测试引脚与三极管的E(发射极)相连,并测量电阻。
- 步骤三:计算输出电阻,输出电阻 = Uce / Ic,其中Uce为集电极与发射极之间的电压,Ic为集电极电流。
三极管基础知识1.三极管的封装形式和管脚识别方法一:常用三极管的封装形式有金属封装和塑料封装两大类,引脚的排列方式具有一定的规律,如图对于小功率金属封装三极管,按图示底视图位置放置,使三个引脚构成等腰三角形的顶点上,从左向右依次为e b c;对于中小功率塑料三极管按图使其平面朝向自己,三个引脚朝下放置,则从左到右依次为e b c。
方法二:测判三极管的口诀四句口诀:“三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准,动嘴巴。
”释吧。
一、三颠倒,找基极二、 PN结,定管型(NPN還是PNP)三、顺箭头,偏转大(1) 对于NPN型三极管,用万用电表的黑、红表笔颠倒测量两极间的正、反向电阻Rce和Rec,虽然两次测量中万用表指针偏转角度都很小,但仔细观察,总会有一次偏转角度稍大(電阻小),此时电流的流向一定是:黑表笔→c极→b极→e极f9.8→红表笔,电流流向正好与三极管符号中的箭头方向一致(“顺箭头”),所以此时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。
(2) 对于PNP型的三极管,道理也类似于NPN型,其电流流向一定是:黑表笔→e极→b极→c 极→红表笔,其电流流向也与三极管符号中的箭头方向一致,所以此时黑表笔所接的一定是发射极e,红表笔所接的一定是集电极c。
四、测不出,动嘴巴:是一步,若由于颠倒前后的两次测量指针偏转均太小难以区分时,就要“动嘴巴”了。
具体方法是:在“顺箭头,偏转大”的两次测量中,用两只手分别捏住两表笔与管脚的结合部,用嘴巴含住(或用舌头抵住)基电极b,仍用“顺箭头,偏转大”的判别方法即可区分开集电极c与发射极e。
其中人体起到直流偏置电阻的作用,目的是使效果更加明显。
2.晶体三极管具有电流放大作用,其实质是三极管能以基极电流微小的变化量来控制集电极电流较大的变化量。
这是三极管最基本的和最重要的特性。
我们将ΔIc/ΔIb的比值称为晶体三极管的电流放大倍数,用符号“β”表示。
如何选择合适的三极管三极管是一种重要的电子元件,在电路设计和应用中起到至关重要的作用。
合适地选择三极管可以确保电路的正常运行和性能的优化。
本文将为你介绍如何选择合适的三极管。
一、了解三极管的基本知识三极管是固态电子学中的一种重要元件,主要由三个区域构成,即发射极(Emitter)、基极(Base)和集电极(Collector)。
不同种类的三极管具有不同的电性能和特征,因此在选择三极管之前,我们需要了解以下基本知识:1. NPN型和PNP型三极管:三极管可以分为NPN型和PNP型两种。
NPN型三极管的发射区域为N型,基区为P型,集电区域为N型;PNP型三极管则相反,发射区域为P型,基区为N型,集电区域为P 型。
2. 三极管的最大电压和最大电流:三极管具有最大电压和最大电流的额定值,超过这些值可能会导致损坏。
在选择三极管时,需要根据电路要求来确定最大电压和最大电流的额定值。
3. 三极管的放大系数:三极管的放大系数(也称为β值或hFE值)决定了它的放大能力。
β值越大,说明三极管的放大能力越强。
根据需要,我们可以选择高β值的三极管来提高电路的放大效果。
二、确定应用场景和需求在选择合适的三极管之前,我们需要确定具体的应用场景和需求。
不同的电路应用对三极管的要求也不同。
比如,放大电路需要选择具有较高放大系数的三极管,而开关电路需要选择具有较高开关速度和饱和电流的三极管。
三、查找数据手册和参数筛选了解了三极管的基本知识和应用需求之后,我们可以通过查找数据手册来获取更详细的参数信息。
数据手册通常包含了三极管的详细规格和性能参数,如最大电压、最大电流、放大系数、封装类型等。
根据应用需求,可以通过筛选数据手册中的参数来缩小选择范围。
比如,如果需要一个 NPN型三极管,在查找数据手册时可以针对一些特定参数进行筛选,如最大电压和最大电流等。
四、考虑可靠性和成本因素选择合适的三极管不仅需要考虑技术性能,还需考虑可靠性和成本因素。
三极管的基本知识概念:半导体三极管也称双极型晶体管,晶体三极管,简称三极管,是一种电流控制电流的半导体器件。
作用:把微弱信号放大成辐值较大的电信号, 作无触点开关。
三极管工作原理半导体电子器件,有两个PN结组成,可以对电流起放大作用,有3个引脚,晶体三极管分别为集电极(c),基极(b),发射极(e),有PNP和NPN型两种,以材料分有硅材料和锗材料两种,两者除了电源极性不同外,其工作原理都是相同的。
三极管的三种工作状态截止状态:当加在三极管发射结的电压小于PN结的导通电压,基极电流为零,集电极电流和发射极电流都为零,三极管这时失去了电流放大作用,集电极和发射极之间相当于开关的断开状态,我们称三极管处于截止状态。
放大状态:当加在三极管发射结的电压大于PN结的导通电压,并处于某一恰当的值时,三极管的发射结正向偏置,集电结反向偏置,这时基极电流对集电极电流起着控制作用,使三极管具有电流放大作用,其电流放大倍数β=ΔIc/ΔIb,这时三极管处放大状态。
饱和导通状态:当加在三极管发射结的电压大于PN结的导通电压,并当基极电流增大到一定程度时,集电极电流不再随着基极电流的增大而增大,而是处于某一定值附近不怎么变化,这时三极管失去电流放大作用,集电极与发射极之间的电压很小,集电极和发射极之间相当于开关的导通状态。
三极管的这种状态我们称之为饱和导通状态。
主要参数特征频率f T当f= f T时,三极管完全失去电流放大功能.如果工作频率f大于f T,电路将不正常工作.工作电压/电流用这个参数可以指定该管的电压电流使用范围.h FE电流放大倍数.V CEO集电极发射极反向击穿电压,表示临界饱和时的饱和电压.P CM最大允许耗散功率.晶体三极管主要用于放大电路中起放大作用,在常见电路中有三种接法。
为了便于比较,将晶体管三种接法电路所具有的特点列于下表,供大家参考。
名称共发射极电路共集电极电路(射极输出器)共基极电路输入阻抗中(几百欧~几千欧)大(几十千欧以上)小(几欧~几十欧)输出阻抗中(几千欧~几十千欧)小(几欧~几十欧)大(几十千欧~几百千欧)电压放大倍数大小(小于1并接近于1)大电流放大倍数大(几十)大(几十)小(小于1并接近于1)功率放大倍数大(约30~40分贝)小(约10分贝)中(约15~20分贝)频率特性高频差好好应用多级放大器中间级低频放大输入级、输出级或作阻抗匹配用高频或宽频带电路及恒流源电路应用NPN型三极管相当于常闭型水龙头,在没有用力打开水闸时,水龙头是关着的,NPN型三极管在基极(b)没有电压或接地时,集电极(c)到发射极(e)是关掉的,处于断路状态。
三极管基础知识一、三极管的基本结构与原理1.1 三极管的构成三极管是由三个区域(P-N-P或者N-P-N型)的半导体材料制成,其中夹在中间的一块称为基区,两侧分别是发射区和集电区。
1.2 三极管的工作原理三极管根据基区控制电流的大小和方向来调节集电区电流的大小。
当基区的电流为零时,三极管处于截止状态;而当基区的电流为正时,三极管处于放大状态。
三极管的工作原理是基于本征型晶体管理论的基础上发展起来的。
二、三极管的分类与参数2.1 三极管的分类根据不同的工作方式和结构形式,三极管可以分为NPN型和PNP型两种。
NPN型三极管是以N型半导体为基础,P型半导体作为二极管,再以N型半导体作为封装;而PNP型三极管则相反。
2.2 三极管的参数三极管的常见参数包括最大集电极电流(IC)、最大发射极电流(IE)、最大反向电压(VCEO)等。
这些参数决定了三极管的工作范围和性能。
三、三极管的应用领域3.1 放大器电路三极管可以用作放大器电路的关键元件,通过控制输入信号的电流变化,实现对输出信号的放大。
3.2 开关电路三极管的开关特性使其在电路中经常被用作开关元件。
通过控制基极电流的通断,实现对电路的开关控制。
3.3 震荡电路三极管在震荡电路中可以产生正弦波、方波等信号,广泛应用于射频信号发生器、计算机时钟发生器等领域。
3.4 温度传感器三极管的温度特性可以用于温度测量和控制,如温度传感器。
四、三极管的基本特性与参数测量方法4.1 静态特性静态特性包括输入输出特性、直流放大特性等。
通过在不同的输入输出条件下测量电流、电压等参数,可以了解三极管的静态工作状态。
4.2 动态特性动态特性包括频率响应、输入阻抗、输出阻抗等。
通过在不同频率下测量电流和电压的关系,可以了解三极管的动态响应能力。
4.3 参数测量方法常见的参数测量方法包括基极电流测量、集电极电流测量、电压放大倍数测量等。
根据不同的测量需求,选择合适的测量方法来获取所需的三极管参数数据。
三极管基础知识及测量方法三极管基础知识及测量方法一、晶体管基础双极结型三极管相当于两个背靠背的二极管PN 结。
正向偏置的 EB 结有空穴从发射极注入基区,其中大部分空穴能够到达集电结的边界,并在反向偏置的 CB 结势垒电场的作用下到达集电区,形成集电极电流 IC 。
在共发射极晶体管电路中 ,发射结在基极电路中正向偏置 , 其电压降很小。
绝大部分的集电极和发射极之间的外加偏压都加在反向偏置的集电结上。
由于 VBE 很小,所以基极电流约为IB= 5V/50 k Ω = 0.1mA 。
如果晶体管的共发射极电流放大系数β = IC / IB =100, 集电极电流 IC=β*IB=10mA。
在500Ω的集电极负载电阻上有电压降VRC=10mA*500Ω=5V,而晶体管集电极和发射极之间的压降为VCE=5V,如果在基极偏置电路中叠加一个交变的小电流ib,在集电极电路中将出现一个相应的交变电流ic,有c/ib=β,实现了双极晶体管的电流放大作用。
金属氧化物半导体场效应三极管的基本工作原理是靠半导体表面的电场效应,在半导体中感生出导电沟道来进行工作的。
当栅 G 电压 VG 增大时,p 型半导体表面的多数载流子棗空穴逐渐减少、耗尽,而电子逐渐积累到反型。
当表面达到反型时,电子积累层将在 n+ 源区 S 和 n+ 漏区 D 之间形成导电沟道。
当VDS ≠ 0 时,源漏电极之间有较大的电流 IDS 流过。
使半导体表面达到强反型时所需加的栅源电压称为阈值电压 VT 。
当 VGS>VT 并取不同数值时,反型层的导电能力将改变,在相同的 VDS 下也将产生不同的 IDS , 实现栅源电压VGS 对源漏电流 IDS 的控制。
二、晶体管的命名方法晶体管:最常用的有三极管和二极管两种。
三极管以符号BG(旧)或(T)表示,二极管以D表示。
按制作材料分,晶体管可分为锗管和硅管两种。
按极性分,三极管有PNP和NPN两种,而二极管有P型和N型之分。
三极管基础知识三极管的工作原理三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。
分成NPN和PNP两种。
我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。
一、电流放大下面的分析仅对于NPN型硅三极管。
如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E 的电流叫做集电极电流Ic。
这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。
三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。
如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。
如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式 U=R*I 可以算得,这电阻上电压就会发生很大的变化。
我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。
二、偏置电路三极管在实际的放大电路中使用时,还需要加合适的偏置电路。
这有几个原因。
首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。
当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。
但实际中要放大的信号往往远比0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。
如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。
三极管的测量方法和管脚辨别教案引言。
三极管是电子电路中常用的一种元件,它具有放大、开关等功能,在电子设备中起着非常重要的作用。
因此,了解三极管的测量方法和管脚辨别是非常重要的。
本文将介绍三极管的基本知识,以及针对三极管的测量方法和管脚辨别的教案。
一、三极管的基本知识。
1. 三极管的结构。
三极管由基极、发射极和集电极组成,其中基极用来控制三极管的导通和截止,发射极是输入端,集电极是输出端。
2. 三极管的工作原理。
三极管是一种受控电流源,其工作原理是通过控制基极电流来控制集电极电流。
当基极电流为零时,三极管截止;当基极电流增大时,集电极电流也随之增大,三极管处于饱和状态。
3. 三极管的类型。
常见的三极管有NPN型和PNP型两种,它们的结构和工作原理略有不同,但测量方法和管脚辨别的步骤大致相同。
二、三极管的测量方法。
1. 使用万用表测量三极管的电压和电流。
首先,将万用表调至电压档位,分别将红表笔和黑表笔连接到三极管的基极和集电极上,测量基极和集电极之间的电压。
然后,将万用表调至电流档位,分别将红表笔和黑表笔连接到三极管的基极和发射极上,测量基极和发射极之间的电流。
2. 使用示波器观察三极管的工作状态。
将示波器的探头分别连接到三极管的基极和集电极上,观察示波器上的波形变化,可以判断三极管的工作状态和放大倍数。
3. 使用信号发生器和示波器测试三极管的频率响应。
将信号发生器的输出端连接到三极管的基极,示波器的探头连接到三极管的集电极,调节信号发生器的频率,观察示波器上的波形变化,可以测试三极管的频率响应。
三、三极管的管脚辨别教案。
1. 分辨NPN型和PNP型三极管。
NPN型三极管的基极与集电极之间的电阻较大,而PNP型三极管的基极与集电极之间的电阻较小。
可以利用万用表的电阻档位来辨别三极管的类型。
2. 确定三极管的基极、发射极和集电极。
通常,三极管的封装上会标有对应的管脚名称,但有时也会出现没有标注的情况。
二极管三极管的基础知识1. 引言二极管和三极管是电子学中最基本和常用的两种半导体器件。
它们在电路中起到了重要的作用,如信号调理、开关和放大等。
本文将介绍二极管和三极管的基本原理、结构和特性等重要知识。
2. 二极管二极管是一种由P型和N型半导体材料制成的器件。
它具有一个PN结,通过这个结可以实现电流的单向导通。
常见的二极管有普通二极管、肖特基二极管和光电二极管等。
2.1 基本原理二极管的导电性来自于PN结。
当PN结被正向偏置时,P型区域的空穴和N型区域的电子互相扩散,导致少数载流子的重组,形成一个导电通道。
这个导电通道使得电流可以流过二极管,称为正向工作状态。
当PN结被反向偏置时,少数载流子几乎无法通过结,电流基本上是断开的,称为反向工作状态。
2.2 特性曲线二极管的特性曲线是指其正向特性曲线和反向特性曲线。
正向特性曲线显示了二极管在不同正向偏置电压下的电流响应关系。
反向特性曲线显示了二极管在不同反向偏置电压下的电流响应关系。
这些特性曲线对于理解二极管的工作状态和限制条件非常重要。
2.3 应用二极管在电子电路中有广泛的应用。
它可以用作整流器转换交流电为直流电、用作信号调理器修正和稳定输入信号、用作开关控制电流流动方向等。
3. 三极管三极管是一种由三个掺杂不同的半导体材料制成的器件。
它由基极(B)、发射极(E)和集电极(C)组成,具有放大作用。
根据掺杂型号不同,三极管可以分为NPN和PNP两种类型。
3.1 基本原理三极管的放大作用来自于PNP或NPN结之间形成的电流控制区域。
在NPN三极管中,当基极正向偏置时,将使得发射极-基极间的电流增加,进而通过集电极-发射极间的电流放大。
这种放大作用使三极管成为一种强大的电流放大器。
3.2 特性曲线三极管的特性曲线是指其输出特性曲线、输入特性曲线和直流负载线等。
输出特性曲线显示了三极管的集电极电流与集电极-发射极电压之间的关系。
输入特性曲线显示了三极管的基极电流与基极-发射极电压之间的关系。
三极管的基本知识讲解
三极管的初步认识
三极管是一种很常用的控制和驱动器件,在数字电路和模拟电路中都有大量的应用,
常用的三极管根据材料分有硅管和锗管两种,原理相同,压降略有不同,硅管用的较
普遍,而锗管应用较少,以下以硅管为例进行讲解。
三极管有2种类型,分别是PNP
型和NPN型。
先来认识一下,如下图所示。
三极管一共有3个极,横向左侧的引
脚叫做基极(base),中间有一个箭头,一头连接基极,另外一头连接的是发射极
e(emitter),剩下的一个引脚就是集电极c(collector)。
9012
9013
三极管的原理
三极管有截止、放大、饱和三种工作状态。
放大状态主要应用于模拟电路中,且用法
和计算方法也比较复杂,我们暂时用不到。
而数字电路主要使用的是三极管的开关特
性,只用到了截止与饱和两种状态,所以我们也只来讲解这两种用法。
三极管的类型和用法有个总结:箭头朝内PNP,箭头朝外NPN,导通电压顺箭头过,电压导通,
电流控制。
三极管的用法特点,关键点在于b极(基极)和e级(发射极)之间
的电压情况,对于PNP而言,e极电压只要高于b级0.7V以上(硅三极管的PN 结道导通电压,如果是锗三极管,这个电压大概为0.3V),这个三极管e级和c级之间就可以顺利导通。
也就是说,控制端在b和e之间,被控制端是e和c之
间。
同理,NPN型三极管的导通电压是b极比e极高0.7V,总之是箭头的始端
比末端高0.7V就可以导通三极管的e极和c极。
这就是关于“导通电压顺箭头过,电压导通”的解释。
三极管的用法
以上图为例介绍一下三极管的用法。
三极管基极通过一个10K的电阻接到了单片机
的一个10 口上,假定是P1.0,发射极直接接到5V的电源上,集电极接了一个LED 小灯,并且串联了一个1K的限流电阻最终接到了电源负极GND上。
如果P1.0由
我们的程序给一个高电平1,那么基极b和发射极e都是5V,也就是说e到b
不会产生一个0.7V的压降,这个时候,发射极和集电极也就不会导通,那么竖着看这个电路在三极管处是断开的,没有电流通过, LED2小灯也就不会亮。
如果程序给
P1.0 一个低电平0,这时e极还是5V,于是e和b之间产生了压差,三极管e 和b之间也就导通了,三极管e和b之间大概有0.7V的压降,那还有(5-0.7)V 的电压会在电阻R47上。
这个时候,e和c之间也会导通了,那么LED小灯本
身有2V的压降,三极管本身e和c之间大概有0.2V的压降,我们忽略不计(三极管导通后本身的压降在开关作用时多忽略不计处理)。
那么在R41上就会有大概
3V的压降,可以计算出来,这条支路的电流大概是3mA,可以成功点亮LED。
最后一个概念,电流控制。
前边讲过,三极管有截止,放大,饱和三个状态,截止就不用说了,只要e和b之间不导通即可。
我们要让这个三极管处于饱和状态,就是我们所谓的开关特性,必须要满足一个条件。
三极管都有一个放大倍数B,要想处于饱和状态,b极电流就必须大于e和c之间电流值除以B。
这个B,对于常用的三极管大概可以认为是100。
那么就必须考虑R47的阻值了。
在上面的计算中,e和
c之间的电流是3mA ,那么b极电流最小就是3mA 除以100等于30uA ,大概有4.3V电压会落在基极电阻上,那么基极电阻最大值就是 4.3V/30uA = 143K 。
电阻值只要比这个值小就可以,当然也不能太小,太小会导致单片机的10 口电流过大烧坏三极管或者单片机,STC89C52的10 口输入电流最大理论值是25mA,利用电压和电流算一下,就可以算出来最小电阻值,上图取的是经验值。