指数与指数函数知识梳理
- 格式:doc
- 大小:867.54 KB
- 文档页数:11
高中数学必修1知识点总结—指数及指数函数1、 根式na (一般的,如果n x a =,那么x 叫做a 的n 次方根,其中*1,n n N >∈且.)35325325n n n ⎧=⎪⎨-=-⎪⎩正数的次方根是正数如当是奇数时,负数的次方根是负数如20,n a n an ⎧>±⎪⎨⎪⎩正数的次方根有个,且互为相反数如:则次方根为当是偶数时,负数没有偶次方根0的任何次方根都是0,记作0n2、nna的讨论 n nn a a =当是奇数时,;,0,0n n a a n a a a a ≥⎧==⎨-≤⎩当是偶数时, (2)分数指数幂的概念)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,mnmna a a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:11()()(0,,,m mmnnnaa m n N a a-+==>∈且1)n >.0的负分数指数幂没有意义.义. 注意口诀:底数取倒数,指数取相反数.底数取倒数,指数取相反数. (3)分数指数幂的运算性质)分数指数幂的运算性质①(0,,)rsr saa aa r s R +⋅=>∈ ②()(0,,)r s rsa a a r s R =>∈③()(0,0,)rr rab a b a b r R =>>∈一、 指数计算公式:()Q s r a ∈>,,0_____=⋅s r a a ________=sraa _____)(=s r a ______)(=r ab )1,,0_______(>∈>=*n N n m a anm,________=n na 练习 计算下列各式的值:计算下列各式的值:(1))4()3)((636131212132b a b a b a ÷- (2)()322175.003129721687064.0+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛---(3)421033)21(25.0)21()4(--⨯+-- (4)33)3(625π-+-2.已知31=+-x x ,则=+-22x x 已知23=a,513=b,则=-ba 23=____________. 3. 若21025x x =,则10x x-等于_________________【2.1.2】指数函数及其性质(4)指数函数)指数函数函数名称函数名称指数函数指数函数定义定义函数(0x y a a =>且1)a ≠叫做指数函数叫做指数函数图象图象1a >01a <<定义域定义域 R 值域值域(0,)+∞过定点过定点 图象过定点(0,1),即当0x=时,1y =.奇偶性奇偶性 非奇非偶非奇非偶单调性单调性在R 上是增函数上是增函数在R 上是减函数上是减函数函数值的函数值的 变化情况变化情况1(0)1(0)1(0)x x x a x a x a x >>==<< 1(0)1(0)1(0)x x x a x a x a x <>==>< a 变化对变化对 图象的影响图象的影响 在第一象限内,a 越大图象越高;在第二象限内,a 越大图象越低.越大图象越低.题型1、求函数经过的点 1、2)(f 1-=+x a x )10(≠>a a 且过定点______________2、函数y=4+a x -1的图象恒过定点P 的坐标是________________3.已知指数函数图像经过点)3,1(-p ,则=)3(f题型2、 图像问题1.下列说法中:下列说法中:①任取x ∈R 都有3x >2x ; ②当a >1时,任取x ∈R 都有a x >a -x ;③函数y =(3)-x 是增函数;④函数y =2|x |的最小值为1 ;⑤在同一坐标系中,y =2x 与y =2-x 的图象对称于y 轴。
指数与指数函数知识点数学中的指数与指数函数是非常重要且常见的概念。
在我们的日常生活中,指数和指数函数可以用来描述各种自然现象、科学问题以及经济趋势等。
本文将详细介绍指数与指数函数的定义、性质以及一些常见应用,以加深读者对这一概念的理解。
一、指数的定义和性质在数学中,指数是一种表示幂次方的数学运算。
指数是由两个数构成,其中一个为底数,另一个为指数。
底数表示要进行幂运算的数字,指数表示底数要乘以自身多少次。
例如,2的3次方即为2的指数为3的结果,即2x2x2=8。
指数函数是指数的一种特殊形式,即以常数为底数的幂函数。
指数函数的一般形式为y=a^x,其中a是底数,x是指数,y是指数函数的值。
指数函数的图像通常具有特定的特征,例如,当底数大于1时,指数函数呈现递增趋势;当底数在0和1之间时,指数函数呈现递减趋势。
指数有一些基本的性质。
首先,任何数的0次方都等于1,即a^0=1。
其次,任何非零数的负指数都是倒数,即a^(-n)=1/(a^n)。
此外,指数相乘等于底数不变指数相加,即a^m * a^n = a^(m+n)。
二、指数函数的应用指数函数在各个领域都有广泛的应用。
以下是指数函数在生活和科学中的一些常见应用:1. 经济增长:经济学家常常使用指数函数来描述一个国家或地区的经济增长趋势。
经济增长往往呈现指数增长的形式,即以固定的增长率逐渐增加。
指数函数可以帮助经济学家预测未来的经济趋势和制定相应的政策。
2. 生物衰变:在生物学的研究中,指数函数可以用来描述物种的衰变过程。
例如,放射性物质的衰变速度可以用指数函数进行建模。
指数函数的形式可以提供准确地描述和计算物种在特定时间内的衰减情况。
3. 自然增长:人口学家使用指数函数来研究人口的自然增长过程。
指数函数可以帮助人口学家了解一个地区的人口趋势和人口变化的因素,为政府提供人口规划和政策制定方面的参考。
4. 电子电路:在电子学中,指数函数可以用来描述电路中的电流和电压变化。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载指数与指数函数知识点地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容指数函数(一)整数指数幂1.整数指数幂概念:2.整数指数幂的运算性质:(1)(2)(3)其中,.3.的次方根的概念一般地,如果一个数的次方等于,那么这个数叫做的次方根,即:若,则叫做的次方根,例如:27的3次方根,的3次方根,32的5次方根,的5次方根.说明:①若是奇数,则的次方根记作;若则,若则;②若是偶数,且则的正的次方根记作,的负的次方根,记作:;(例如:8的平方根 16的4次方根)③若是偶数,且则没意义,即负数没有偶次方根;④ ∴;⑤式子叫根式,叫根指数,叫被开方数。
∴..4.的次方根的性质一般地,若是奇数,则;若是偶数,则.(二)分数指数幂1.分数指数幂:即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式;如果幂的运算性质(2)对分数指数幂也适用,例如:若,则,,∴ .即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。
规定:(1)正数的正分数指数幂的意义是;(2)正数的负分数指数幂的意义是.2.分数指数幂的运算性质:整数指数幂的运算性质对于分数指数幂也同样适用即说明:(1)有理数指数幂的运算性质对无理数指数幂同样适用;(2)0的正分数指数幂等于0,0的负分数指数幂没意义。
二、指数函数1.指数函数定义:一般地,函数(且)叫做指数函数,其中是自变量,函数定义域是.2.指数函数在底数及这两种情况下的图象和性质:1.1 实数指数幂及其运算(一)(一)选择题1.下列正确的是( )A.a0=1 B. C.10-1=0.1 D.2.的值为( )A.±2B.2 C.-2 D.43.的值为( )A.B.C.D.4.化简的结果是( )A.a B.C.a2 D.a35.把下列根式化成分数指数幂的形式(其中a,b>0)(1)______;(2)=______;6.______.7.化简______.8.=______(三)解答题9.计算10.计算1.2 实数指数幂及其运算(二)(一)选择题(每道题的四个选择答案中有且只有一个答案是正确的) 1.下列说法正确的是(n∈N*)( )A.正数的n次方根是正数B.负数的n次方根是负数C.0的n次方根是0 D.是无理数2.函数的定义域为( )A.R B.[0,+∞)C.(0,+∞)D.(-∞,1] 3.可以简化为( )A.B.C.D.4.化简的结果是( )A.B.x2 C.x3 D.x4(二)填空题5.________,________________________.6.________.7.计算________.8.若a+a-1=3,则a2+a-2=______.10.若求的值.1.3 指数函数(一)(一)选择题(每道题的四个选择答案中有且只有一个答案是正确的)1.一种细胞在分裂时由一个分裂成两个,两个分裂成四个,四个分裂成八个……每天分裂一次.现在将一个该细胞放入一个容器,发现经过10天就可充满整个容器,则当细胞分裂到充满容器一半时需要的天数是( ) A.5 B.9 C.6 D.82.下列函数中为指数函数的是( )A.y=2·3x B.y=-3x C.y=3-x D.y=1x3.若0.2m=3,则( )A.m>0 B.m<0 C.m=0 D.以上答案都不对4.函数f(x)=ax+1(其中a>0且a≠1)的图象一定经过点( )A.(0,1) B.(0,2) C.(0,3) D.(1,3)(二)填空题5.若函数f(x)是指数函数且f(3)=8,则f(x)=______.6.函数的定义域为______,值域为______.7.函数y=2x-1的图象一定不经过第______象限;若函数的图象不经过第一象限,则实数b的取值范围是______.8.若2m>4,则m的取值范围是______;若(0.1)t>1,则t的取值范围是______.9.指数函数y=(a2-1)x在R上是减函数,则实数a的取值范围是______.(三)解答题10.根据函数f(x)=2x的图象,画出下列函数的草图.(1)y=-2x (2)y=-2x+1 (3)y=2|x|11.求函数的定义域和值域.12.已知a>0且a≠1,函数f1(x)=,f2(x)=,若f1(x)<f2(x),求x 的取值范围.1.4 指数函数(二)(一)选择题(每道题的四个选择答案中有且只有一个答案是正确的)1.若,则x的取值范围是( )A.(-∞,-3] B.(-∞,-3) C.[-3,+∞)D.R2.已知三个数M=0.32-0.32,P=0.32-3.2,Q=3.2-0.32,则它们的大小顺序是( )A.M<P<Q B.Q<M<P C.P<Q<M D.P<M<Q3.如图是指数函数①y=ax,②y=bx,③y=cx,④y=dx的图象,则a,b,c,d与0和1的大小关系是( )A.0<a<b<1<c<d B.0<b<a<1<d<cC.1<a<b<c<d D.0<a<b<1<d<c4.函数y=2x-2-x( )A.在R上减函数B.在R上是增函数C.在(-∞,0)上是减函数,在(0,+∞)上是增函数D.无法判断其单调性(二)填空题5.函数y=3x+1-2的图象是由函数y=3x的图象沿x轴向______平移______个单位,再沿y轴向______平移______个单位得到的.6.函数f(x)=3x+5的值域是______.7.函数y=ax-1+1(其中a>0且a≠1)的图象必经过点______.8.若指数函数y=ax在区间[0,1]上的最大值和最小值的差为,则底数a =______.9.函数g(x)=x2-x的单调增区间是______,函数y=的单调增区间是______.(三)解答题10.函数f(x)是R上的奇函数,且当x≥0时,f(x)=2x-1,求x<0时函数的解析式.11.若关于x的方程|2x-1|=a有两个解,借助图象求a的取值范围.12.已知函数f(x)=22x-2x+1-3,其中x∈[0,1],求f(x)的值域.您好,欢迎您阅读我的文章,本WORD文档可编辑修改,也可以直接打印。
专题02基本初等函数(知识梳理)第一节 指数与指数函数1.有理数指数幂 (1)幂的有关概念 ①正分数指数幂: am n=na m (a >0,m ,n ∈N *,且n >1).②负分数指数幂: a -m n=1am n=1n a m(a >0,m ,n ∈N *,且n >1).③0的正分数指数幂等于0,0的负分数指数幂没有意义. (2)有理数指数幂的性质 ①a r a s =a r +s (a >0,r ,s ∈Q); ②(a r )s =a rs (a >0,r ,s ∈Q); ③(ab )r =a r b r (a >0,b >0,r ∈Q). 2.指数函数的图象与性质R1.在进行指数幂的运算时,一般用分数指数幂的形式表示,并且结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数.2.指数函数y =a x (a >0,a ≠1)的图象和性质跟a 的取值有关,要特别注意区分a >1或0<a <1.[谨记通法]指数幂运算的一般原则(1)有括号的先算括号里的,无括号的先做指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号,底数是小数,先化成分数,底数是带分数的,先化成假分数. (4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答. 考点二 指数函数的图象及应用重点保分型考点——师生共研[典例引领]1.(2018·嘉兴能力测试)若函数f (x )=a x -b 的图象如图所示,则( )A .a >1,b >1B .a >1,0<b <1C .0<a <1,b >1D .0<a <1,0<b <1解析:选D 由f (x )=a x -b 的图象可以观察出,函数f (x )=a x -b 在定义域上单调递减,所以0<a <1,又函数f (x )=a x -b 的图象是在y =a x 的基础上向下平移b 个单位长度得到的,所以0<b <1.2.已知a >0,且a ≠1,若函数y =|a x -2|与y =3a 的图象有两个交点,则实数a 的取值范围是________.解析:①当0<a <1时,作出函数y =|a x -2|的图象,如图a.若直线y =3a 与函数y =|a x -2|(0<a <1)的图象有两个交点,则由图象可知0<3a <2,所以0<a <23.②当a >1时,作出函数y =|a x -2|的图象,如图b ,若直线y =3a 与函数y =|a x -2|(a >1)的图象有两个交点,则由图象可知0<3a <2,此时无解.所以a 的取值范围是⎝⎛⎭⎫0,23. 答案:⎝⎛⎭⎫0,23[由题悟法]指数函数图象的画法及应用(1)画指数函数y =a x (a >0,a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎝⎛⎭⎫-1,1a . (2)与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,通过平移、对称变换得到其图象.(3)一些指数方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解.[即时应用]1.函数f (x )=1-e |x |的图象大致是( )解析:选A 将函数解析式与图象对比分析,因为函数f (x )=1-e |x |是偶函数,且值域是(-∞,0],只有A 满足上述两个性质.2若函数y =|3x -1|在(-∞,k ]上单调递减,求k 的取值范围.解:函数y =|3x -1|的图象是由函数y =3x 的图象向下平移一个单位后,再把位于x 轴下方的图象沿x 轴翻折到x 轴上方得到的,函数图象如图所示.由图象知,其在(-∞,0]上单调递减,所以k 的取值范围是(-∞,0]. 考点三 指数函数的性质及应用题点多变型考点——多角探明[锁定考向]高考常以选择题或填空题的形式考查指数函数的性质及应用,难度偏小,属中低档题. 常见的命题角度有: (1)比较指数式的大小;(2)简单指数方程或不等式的应用; (3)探究指数型函数的性质.[通法在握]应用指数函数性质的常见3大题型及求解策略题型 求解策略比较幂值的大小(1)能化成同底数的先化成同底数幂再利用单调性比较大小;(2)不能化成同底数的,一般引入“1”等中间量比较大小解简单指数不等式先利用幂的运算性质化为同底数幂,再利用单调性转化为一般不等式求解探究指数型函数的性质与研究一般函数的定义域、单调性(区间)、奇偶性、最值(值域)等性质的方法一致[提醒]在研究指数型函数的单调性时,当底数与“1”的大小关系不明确时,要分类讨论.第二节对数与对数函数1.对数概念如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数,log a N 叫做对数式性质对数式与指数式的互化:a x=N⇔x=log a N log a1=0,log a a=1,a log a N=N运算法则log a(M·N)=log a M+log a Na>0,且a≠1,M>0,N>0 log aMN=log a M-log a Nlog a M n=n log a M(n∈R)换底公式换底公式:log a b=log c blog c a(a>0,且a≠1,c>0,且c≠1,b>0)2.对数函数的图象与性质y=log a x a>10<a<1图象性质定义域为(0,+∞)值域为R过定点(1,0),即x=1时,y=0当x>1时,y>0;当0<x<1时,y<0当x>1时,y<0;当0<x<1时,y>0在区间(0,+∞)上是增函数在区间(0,+∞)上是减函数3.反函数指数函数y=a x(a>0且a≠1)与对数函数y=log a x(a>0且a≠1)互为反函数,它们的图象关于直线y=x对称.1.在运算性质log a Mα=αlog a M中,要特别注意条件,在无M>0的条件下应为log a Mα=αlog a|M|(α∈N*,且α为偶数).2.解决与对数函数有关的问题时需注意两点:(1)务必先研究函数的定义域;(2)注意对数底数的取值范围.[谨记通法]对数运算的一般思路(1)将真数化为底数的指数幂的形式进行化简;(2)将同底对数的和、差、倍合并;(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用.如“题组练透”第1题易错.考点二对数函数的图象及应用重点保分型考点——师生共研[典例引领](2018·杭州模拟)设f(x)=|ln(x+1)|,已知f(a)=f(b)(a<b),则()A.a+b>0B.a+b>1C.2a+b>0 D.2a+b>1解析:选A 作出函数f (x )=|ln(x +1)|的图象如图所示,由f (a )=f (b ),得-ln(a +1)=ln(b +1),即ab +a +b =0.所以0=ab +a +b <a +b 24+a +b ,即(a +b )(a +b +4)>0,显然-1<a <0,b >0,∴a +b +4>0.∴a +b >0.故选A.[由题悟法]应用对数型函数的图象可求解的问题(1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.[即时应用]1.函数f (x )=ln|x -1|的图象大致是( )解析:选B 当x >1时,f (x )=ln(x -1),又f (x )的图象关于x =1对称,故选B.2.(2018·温州适应性训练)若x 1满足2x +2x =5,x 2满足2x +2log 2(x -1)=5,则x 1+x 2=( ) A.52 B .3 C.72D .4解析:选C 2x =5-2x,2log 2(x -1)=5-2x ,即2x -1=52-x ,log 2(x -1)=52-x ,作出y =2x -1,y =52-x ,y =log 2(x -1)的图象(如图). 由图知y =2x-1与y =log 2(x -1)的图象关于y =x -1对称,它们与y =52-x 的交点A ,B 的中点为y =52-x 与y =x -1的交点C ,x C =x 1+x 22=74,∴x 1+x 2=72,故选C.[通法在握]1.解决与对数函数有关的函数的单调性问题的步骤2.比较对数值大小的方法(1)若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,则需对底数进行分类讨论.(2)若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较.(3)若底数与真数都不同,则常借助1,0等中间量进行比较.第三节幂函数1.五种常见幂函数的图象与性质函数特征性质y=x y=x2y=x3y=x12y=x-1图象定义域R R R{x|x≥0}{x|x≠0}值域R{y|y≥0}R{y|y≥0}{y|y≠0}奇偶性奇偶奇非奇非偶奇单调性增(-∞,0)减,(0,+∞)增增增(-∞,0)和(0,+∞)减公共点(1,1)1.对于函数y=ax2+bx+c,要认为它是二次函数,就必须满足a≠0,当题目条件中未说明a≠0时,就要讨论a=0和a≠0两种情况.2.幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点.[小题纠偏]1.已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是________. 答案:⎝⎛⎭⎫120,+∞ 2.给出下列命题: ①函数y =2x 是幂函数;②如果幂函数的图象与坐标轴相交,则交点一定是原点; ③当n <0时,幂函数y =x n 是定义域上的减函数; ④二次函数y =ax 2+bx +c ,x ∈[m ,n ]的最值一定是4ac -b 24a. 其中正确的是________(填序号). 答案:②考点一 幂函数的图象与性质基础送分型考点——自主练透[题组练透]1.幂函数y =f (x )的图象过点(4,2),则幂函数y =f (x )的图象是( )解析:选C 令f (x )=x α,则4α=2, ∴α=12,∴f (x )=x 12.2.已知幂函数f (x )=(m 2-3m +3)x m +1为偶函数,则m =( ) A .1 B .2 C .1或2D .3解析:选A ∵幂函数f (x )=(m 2-3m +3)x m +1为偶函数,∴m 2-3m +3=1,即m 2-3m +2=0,解得m =1或m =2.当m =1时,幂函数f (x )=x 2为偶函数,满足条件.当m =2时,幂函数f (x )=x 3为奇函数,不满足条件.故选A.3.若(a +1)12<(3-2a )12,则实数a 的取值范围是________. 解析:易知函数y =x 12的定义域为[0,+∞),在定义域内为增函数,所以⎩⎪⎨⎪⎧a +1≥0,3-2a ≥0,a +1<3-2a ,解得-1≤a <23.答案:⎣⎡⎭⎫-1,23 [谨记通法]幂函数的指数与图象特征的关系(1)幂函数的形式是y =x α(α∈R),其中只有一个参数α,因此只需一个条件即可确定其解析式. (2)若幂函数y =x α(α∈R)是偶函数,则α必为偶数.当α是分数时,一般将其先化为根式,再判断.(3)若幂函数y =x α在(0,+∞)上单调递增,则α>0,若在(0,+∞)上单调递减,则α<0. 考点二 求二次函数的解析式重点保分型考点——师生共研[典例引领]已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式.解:法一:(利用二次函数的一般式) 设f (x )=ax 2+bx +c (a ≠0). 由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.故所求二次函数为f (x )=-4x 2+4x +7. 法二:(利用二次函数的顶点式) 设f (x )=a (x -m )2+n .∵f (2)=f (-1),∴抛物线对称轴为x =2+-12=12. ∴m =12,又根据题意函数有最大值8,∴n =8,∴y =f (x )=a ⎝⎛⎭⎫x -122+8. ∵f (2)=-1,∴a ⎝⎛⎭⎫2-122+8=-1,解得a =-4, ∴f (x )=-4⎝⎛⎭⎫x -122+8=-4x 2+4x +7. 法三:(利用两根式)由已知f (x )+1=0的两根为x 1=2,x 2=-1,故可设f(x)+1=a(x-2)(x+1),即f(x)=ax2-ax-2a-1.又函数有最大值y max=8,即4a-2a-1-a24a=8.解得a=-4或a=0(舍去),故所求函数解析式为f(x)=-4x2+4x+7.[由题悟法]求二次函数解析式的方法[通法在握]1.二次函数最值问题的3种类型及解题思路(1)类型:①对称轴、区间都是给定的;②对称轴动、区间固定;③对称轴定、区间变动.(2)思路:抓“三点一轴”,三点是指区间两个端点和中点,一轴指的是对称轴.2.由不等式恒成立求参数取值范围的2大思路及1个关键(1)思路:一是分离参数;二是不分离参数.(2)关键:两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否可分离.这两个思路的依据是:a≥f(x)⇔a≥f(x)max,a≤f(x)⇔a≤f(x)min.。
指数与指数函数知识点一、指数运算的基本性质1.任何数的0次方等于12.非零数的负指数等于该数的倒数。
3.相同底数的指数之间的乘方运算,底数保持不变,指数相加。
4.相同指数的指数之间的乘方运算,指数保持不变,底数相乘。
二、指数运算的规律1.法则1:a的m次方乘以a的n次方,等于a的m加n次方。
2.法则2:a的m次方除以a的n次方,等于a的m减n次方。
3.法则3:(a的m次方)的n次方,等于a的m乘n次方。
4.法则4:a的m次方的p次方,等于a的m乘p次方。
5.法则5:零的任何正次方都是0,零的0次方没有意义,规定为1三、指数函数的定义与性质指数函数的定义为:y=a^x,其中a>0且a≠1,a为底数,x为指数。
指数函数可以看作是以底数为底,自变量为指数的函数。
指数函数的性质如下:1.底数a大于1时,指数函数是递增的,即自变量x的增大,函数值y也增大。
2.底数a介于0和1之间时,指数函数是递减的,即自变量x的增大,函数值y也减小。
3.指数函数的图象都经过点(0,1),即当x=0时,y=14.指数函数的图象在直线x=0和y=0上均没有交点。
5.指数函数的图象没有水平渐近线,但有一条过点(0,0)的铅直渐近线。
指数函数常见的应用有:1.在金融领域中,指数函数可以用来描述货币的增长规律,例如复利计算。
2.在自然科学领域中,指数函数可以用来描述人口增长、病原体传播等现象。
3.在电路中,指数函数可以用来描述电容、电感等元件的充放电过程。
4.在计算机领域中,指数函数可以用来描述算法的时间复杂度、空间复杂度等特性。
总结:。
指数与指数函数高考知识点指数和指数函数是高考数学中的重要知识点,涉及到数学中的指数概念、指数运算、指数函数及其性质等内容。
本文将以深入浅出的方式,详细介绍指数与指数函数的相关知识。
一、指数的概念及性质指数是数学中常用的表示方式,用于表示一个数的乘方。
指数的定义为:若a为非零实数,n为自然数(n≠0),则aⁿ称为以a为底的指数。
其中,a称为底数,n称为指数。
指数的性质有以下几点:1. 任何非零数的0次方都等于1,即a⁰=1(a≠0);2. 任何非零数的1次方都等于它本身,即a¹=a(a≠0);3. 指数相同、底数相等的两个指数相等,即aⁿ=aᵐ(a≠0,n≠0,m≠0);4. 任何数的负整数次方都可以表示为其倒数的相应正整数次方,即a⁻ⁿ=1/(aⁿ)(a≠0,n≠0);5. 不同底数、相同指数的指数大小可以通过底数的大小来判断,当0<a<b时,aⁿ<bⁿ(a,b,n都是实数且n>0)。
二、指数运算法则指数运算是指在进行乘方运算时,如何将指数进行运算。
在指数运算中,有以下几条法则:1. 乘法法则:同底数的指数相加,保持底数不变,指数相加,即aⁿ⋅aᵐ=aⁿ⁺ᵐ(a≠0,n≠0,m≠0);2. 除法法则:同底数的指数相减,保持底数不变,指数相减,即aⁿ/aᵐ=aⁿ⁻ᵐ(a≠0,n≠0,m≠0);3. 乘方法则:一个数的乘方再乘以另一个数的乘方,底数不变,指数相乘,即(aⁿ)ᵐ=aⁿᵐ(a≠0,n≠0,m≠0);4. 开方法则:一个数的乘方再开方,底数不变,指数取两个数的最小公倍数,即(aⁿ)^(1/ᵐ)=aⁿ/ᵐ(a≠0,n≠0,m≠0)。
三、指数函数的定义与图像指数函数是一种特殊的函数形式,具有以下定义:形如y=aᵘ(a>0,且a≠1)的函数称为指数函数。
在指数函数中,a称为底数,u称为自变量,y称为因变量。
指数函数的图像特点如下:1. 当底数0<a<1时,函数图像呈现下降趋势,越接近x轴,函数值越接近于0;2. 当底数a>1时,函数图像呈现上升趋势,越接近x轴,函数值越接近于0;3. 当底数a=1时,函数图像为水平直线y=1,与自变量无关。
高一数学指数及指数函数1•根式的性质(3)负数没有偶次方根 (4)零的任何正次方根都是零2•幕的有关概念 (1)正整数指数幕:naa a a ..… n...... a (n N )(2)零指数幕a 01(a 0)1⑶负整数指数幕 a p-(a 0.p N )a pm(4)正分数指数幕a nnma (a0, m, n N ,且 n 1) (5)负分数指数幕a m1 nm(a0, m, n N ,且 n 1)a 石(6)0的正分数指数幕等于0,0的负分数指数幕无意义3•有理指数幕的运算性质rr s⑶(ab) a a ,(a0,b 0, r Q)4、指数函数的定义:函数y a% 0且a °叫做指数函数,其中x 是自变量,函数定义域是R 。
① 若a 0,则当x 0时,『0;当x 0时,a x 无意义.1 1② 若a 0,则对于X 的某些数值,可使a 无意义•如(2),这时对于 4,2,等等,在实数范围内函数值不存在•③ 若a 1,则对于任何x R ,a x 1,是一个常量,没有研究的必要性• 对于任何x R ,「都有意义,且『0.因此指数函数的定义域是R ,值域是(°)有些函数貌似指数函数,实际上却不是,如y 『k (a 0且 a 1,k Z );x有些函数看起来不像指数函数,实际上却是,如y a (a 0且a 1),因为它可 x1 1 1 0 1 a ,其中a ,且a(1)当n 为奇数时,有n a na(2)当n 为偶数时,有;a" a a, (a 0) a, (a 0)r sr s .八 亠、(1) a a a ,(a 0, r, s Q)/ r、srs , -亠、⑵(a )a ,(a 0,r,s Q)以化为y5、函数的图象(1)①特征点:指数函数y = a x (a > 0且a ^ 1) 的图象经过两点(0 , 1)和(1,a).②指数函数y = a x (a > 0且a 工1)的图象中,y = 1 反映了它的分布特征;而直线x = 1 与指数函数图象的交点(1,a)的纵坐 标则直观反映了指数函数的底数特 征,称直线x = 1和y = 1为指数函 数的两条特征线•(2)、函数的图象单调性当a > 1时,函数在定义域范围内 呈单调递增; 当0v a v 1时,函数在定义域范围 内呈单调递减; 推论:(1)底互为倒数的两个函数图像关于y 轴对称(2)当a > 1时,底数越大,函数图象越靠近丫轴;当0v a v 1时,底数越小, 函数图象越靠近丫轴。
指数与指数函数【考纲要求】1.理解分数指数的概念,掌握有理指数幂的运算性质2.掌握无理指数幂的概念,将指数的取值范围推广到实数集;3.掌握指数函数的概念,了解对底数的限制条件的合理性,明确指数函数的定义域;4.掌握指数函数图象:5.通过对指数函数的概念、图象、性质的学习,培养观察、分析归纳的能力,进一步体会数形结合的思想方法; 【知识网络】【考点梳理】考点一、整数指数幂的概念及运算性质 (1)整数指数幂的概念()()),0(1010*Z*n a a a a a Z n a a a a nn an n ∈≠=≠=∈⋅⋅⋅=-43421Λ个(2)运算法则 ①nm nma a a +=⋅;②()mn nma a =;③()0≠>=-a n m a aa nm n m ,; ④()mm mb a ab =.指数与指数函数图象与性质指数运算性质指数函数的图像与指数的概念考点二、根式的概念和运算法则 (1)n 次方根的定义:若x n =y(n ∈N *,n>1,y ∈R),则x 称为y 的n 次方根. 要点诠释:n 为奇数时,正数y 的奇次方根有一个,是正数,记为n y ;负数y 的奇次方根有一个,是负数,记为ny ;零的奇次方根为零,记为00=n ;n 为偶数时,正数y 的偶次方根有两个,记为;负数没有偶次方根;零的偶次方根为零,记为0=.(2)根式的意义与运算法则y y n n =)(⎩⎨⎧=)(||)(,为偶数为奇数n a n a a nn 考点三、分数指数幂的概念和运算法则 为避免讨论,我们约定a>0,n ,m ∈N *,且mn为既约分数,分数指数幂可如下定义: 1na =m m na ==-1m nm naa=考点四、有理数指数幂的运算性质()Q b a ∈>>βα,00,,(1);a a aαβαβ+⋅=(2)();a a αβαβ= (3)();ab a b ααα=当a>0,p 为无理数时,a p是一个确定的实数,上述有理数指数幂的运算性质仍适用. 要点诠释:(1)根式问题常利用指数幂的意义与运算性质,将根式转化为分数指数幂运算;(2)根式运算中常出现乘方与开方并存,要注意两者的顺序何时可以交换、何时不能交换.如2442)4()4(-≠-;(3)幂指数不能随便约分.如2142)4()4(-≠-. 考点五、指数函数 (1)定义:函数y=a x(a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R. (2)y=a x0<a<1时图象a>1时图象图象性质 ① 义域R ,值域 (0,+∞)②a 0=1, 即x=0时,y=1,图象都经过(0,1)点 ③a x =a ,即x=1时,y 等于底数a④在定义域上是单调减函数 ④在定义域上是单调增函数 ⑤x<0时,a x>1x>0时,0<a x<1⑤x<0时,0<a x<1x>0时,a x>1⑥ 既不是奇函数,也不是偶函数【典型例题】类型一、指数运算、化简、求值 例1.已知c ba==53,且211=+ba ,求c 的值。
【解析】213log 31log 31log 3111log 52log 3log 52log 15215015a a c c c c c c c c a ab a bc c c ==∴=∴==+=∴+=∴=∴=>∴=Q Q 由得同理可得【总结升华】运算顺序(能否应用公式); 举一反三:【变式】计算下列各式:(1)1200.2563433721.5()82(23)()63-⨯-+-;(2)63425.0031)32(28)67()81(⨯+⨯+-⨯-; (3)33323323134)21(428a ab bab a b a a ⨯-÷++-. 【解析】(1)原式1131231334422()2223()242711033=+⨯+⨯-=+⨯=;(2)原式=62163141413)31)(1()3()2(2)2(18⨯+⨯+⨯--1123222324143=⨯++=+;(3)原式313131312313131231312)2(2)()8(a b a ab b a a b a a ⨯-⨯++-=a b a b a a=--=++331331313131)2()()8(.类型二、函数的定义域、值域 例2.求下列函数的定义域、值域.(1)212x xy =+;(2)y=4x -2x+1;(3)||3()2x y -=;(4)y =为大于1的常数)【解析】(1)函数的定义域为R (∵对一切x ∈R ,2x≠-1).∵ xx x y 2111211)21(+-=+-+=,又∵ 2x >0, 1+2x>1, ∴ 12110<+<x , ∴ 02111<+-<-x, ∴ 121110<+-<x, ∴值域为(0,1). (2)定义域为R ,43)212(12)2(22+-=+-=xx x y ,∵ 2x >0, ∴ 212=x即 x=-1时,y 取最小值43,同时y 可以取一切大于43的实数,∴ 值域为[+∞,43).(3)定义域为R ,∵|x|≥0, ∴ -|x|≤0, ∴ 1)23(0||≤=<-x y ,∴ 值域为(0,1].(4)∵011112≥+-=-+x x x x ∴ 定义域为(-∞,-1)∪[1,+∞), 又∵111011≠+-≥+-x x x x 且,∴ a ay a y x xx x≠=≥=-+-+1121121且,∴值域为[1,a)∪(a ,+∞).【总结升华】求值域时有时要用到函数单调性;第(3)小题中值域切记不要漏掉y>0的条件,第(4)小题中112111≠+-=+-x x x 不能遗漏. 举一反三:【变式】求下列函数的定义域:(1)y =y =0,1)y a a =>≠【解析】(1)(]-3∞, 需满足3-x ≥0,即3x ≤ (3)[)0,+∞为使得函数有意义,需满足2x-1≥0,即2x≥1,故x ≥0 (4)a>1时,(]-0∞,;0<a<1时,[)0+∞,. 类型三、指数函数的单调性例3.(2015 山东)判断下列各数的大小关系:(1)0.61.50.60.6,0.6,1.5(2)22.5,(2.5)0, 2.51()2(3)1.080.3与0.983.1(4)0,1)a a >≠【解析】 (1) 1.50.60.60.6<0.6<1.5 (2) 2.50 2.51()<(2.5)<22(3)1.080.3>1>0.983.1(4)a>1时,<0<a<1时,>【总结升华】(1)注意利用单调性解题的规范书写;(2)不是同底的尽量化为同底数幂进行比较(因为同底才能用单调性);(3)不能化为同底的,借助一个中间量来比较大小(常用的中间量是0和1). 举一反三:【变式1】(2015 西安模拟)已知3a π=,3b π=,c e π=,则,,a b c 的大小关系为( ) .Aa b c >> .B a c b >> .C b c a >> .C b a c >> 【答案】D【解析】解:因为函数()y x π=是R 上的增函数,且31e >> 所以31e ππ>>即1b c >>构造函数()33x f x x =-则()30f =, ()'233ln3x f x x =-Q ()'32727ln30f∴=-<()'44881ln30f =-<所以函数()f x 在()3,4上单调递减. ()()30ff π∴<=330ππ∴-<即33ππ<a b ∴<又3ee πππ<<Q c a ∴< 综上b a c >>.【变式2】求函数2323x x y -+-=的值域及单调区间.【解析】设u=-x 2+3x-2, y=3u,其中y=3u为R 上的单调增函数,u=-x 2+3x-2在3(,]2x ∈-∞上单增,u=-x 2+3x-2在3[,)2x ∈+∞上单减,则2323xx y -+-=在3(,]2x ∈-∞上单增,在3[,)2x ∈+∞上单减.又u=-x 2+3x-22311()244x =--+≥, 2323x x y -+-=的值域为14(0,3].例4.化简:4233-2a a a +【解析】212422121333333331233-,1-2---,01a a a a a a a a a a a a a ⎧>⎛⎫⎪+===⎨ ⎪⎝⎭⎪<<⎩类型四、判断函数的奇偶性例5.判断下列函数的奇偶性:)()21121()(x x f xϕ+-= (()x ϕ为奇函数) 【解析】f(x)定义域关于原点对称(∵()x ϕ定义域关于原点对称, 且f(x)的定义域是()x ϕ定义域除掉0这个元素),令21121)(+-=x x g ,则211222*********)(+--=+-=+-=--x x x x xx g )()21121(21121121121)12(x g xx x x -=+--=+---=+----= ∴ g(x)为奇函数, 又 ∵()x ϕ为奇函数,∴ f(x)为偶函数. 举一反三:【变式】判断函数的奇偶性:()221xx xf x =+-. 【解析】定义域{x|x ∈R 且x ≠0},又112121()()()()222211221x x xx x f x x x x --=-+=-+=---- 21111111()(1)()()222212121x xx x x x x f x -+=-=+-=+=---, ∴ f(-x)=f(x),则f(x)偶函数. 类型五、指数函数的图象问题例 6.(2015 贵阳二模)函数(0,1)xy a a a =>≠与by x =的图象如图,则下列不等式一定成立的是().0a Ab > .0B a b +> .1b C a > .log 2a D b >【答案】D【解析】由图像可知,a >1,b <0;所以log 20a b >> 故选D.【总结升华】用函数图象解决问题是中学数学的重要方法,利用其直观性实现数形结合解题,所以要熟悉基本函数的图象,并掌握图象的变化规律,比如:平移、伸缩、对称等.【巩固练习】一、选择题:1.若1,0a b ><,且22bba a -+=,则b b a a --的值等于( )A.6B.2±C.2-D.22.函数()2()1xf x a =-在R 上是减函数,则a 的取值范围是( ) A.1>a B.2<a C.2a <D.12a <<3. (2016 新课标全国Ⅲ) 已知432a =,254b =,1325c =,则(A )b a c << (B )a b c << (C )b c a << (D )c a b << 4.(2015 天津)已知定义在R 上的函数1(x)2x m f --=(m 为实数)为偶函数,记0.52(log 3),b (log 5),c (2m)a f f f ===,则a ,b ,c 的大小关系为( )B.c a b <<C.a c b <<D.c b a <<5.(2015 泉州模拟)函数()()()f x x a x b =--(其中a b >)的图像如图所示,则函数()xg x a b =+的大致图像是()6.已知01,1a b <<<-,则函数xy a b =+的图像必定不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 7.2()1()(0)21x F x f x x ⎛⎫=+⋅≠ ⎪-⎝⎭是偶函数,且()f x 不恒等于零,则()f x ( ) A.是奇函数 B.可能是奇函数,也可能是偶函数 C.是偶函数 D.不是奇函数,也不是偶函数 8.(2015 河南二模)已知(),,xf x e x R a b =∈<,记()()A f b f a =-,()()()()12B b a f a f b =-+,则,A B 的大小关系是( ) .A A B > .B A B ≥ .C A B < .D A B ≤A.a b c <<二、填空题:9.设函数[)22,(,1)(),,1,x x f x x x -⎧∈-∞⎪=⎨∈+∞⎪⎩若()4f x >,则x 的取值范围是_________. 10.函数22811(31)3x x y x --+⎛⎫=-≤≤ ⎪⎝⎭的值域是_______________.11.函数2233x y -=的单调递减区间是_______________. 12.(2015 福建高考)若函数()2()x af x a R -=∈满足()()11f x f x +=-,且()f x 在[,)m +∞上单调递增,则实数m 的最小值等于 . 三、解答题:13.已知[]3,2x ∈-,求11()142x xf x =-+的最小值与最大值. 14.设a R ∈,22()()21x x a a f x x R ⋅+-=∈+,试确定a 的值,使()f x 为奇函数. 15.已知函数22513x x y ++⎛⎫= ⎪⎝⎭,求其单调区间及值域.16.若函数4323xxy =-⋅+的值域为[]1,7,试确定x 的取值范围.17.已知函数1()(1)1x xa f x a a -=>+, (1)判断函数的奇偶性; (2)求该函数的值域;(3)证明()f x 是R 上的增函数.【参考答案与解析】【解析】因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<. 故答案选A b a c <<. 4.B【解析】由函数(x)21x mf -=-为偶函数,得m=0.所以(x)21xf =-,当x>0时,f (x )为增函数,0.5222log 3log 3,log 5log 3,=->-20.5(log 5)(log 3)c f(2m)f(0)b f a f =>=>==得,故选B.5.A【解析】由()f x 的图像可知01a <<,1b <-,则函数()g x 为减函数,且()010g b =+<,故答案为A . 8.C【解析】考查选项,不妨令1,0b a ==,则1A e =-,12e B +=显然A B <,排除,A B 选项. 若A B =则()()12baa b e e b a e e -=-+ 整理得()()22b a b a e b a e -+=-+观察可得a b =,与a b <矛盾,排除D .故选C . 12.【答案】1【解析】()()11f x f x +=-Q ,()f x ∴关于1x =对称,Q 函数()()2x a f x a R -=∈,x a =为对称轴,1a ∴=()f x ∴在[1,)+∞上单调递增, ()f x Q 在[,)m +∞上单调递增,m ∴的最小值为1.二、填空题9.(),2(2,)-∞-+∞U ,()4,f x >Q 当1x <时,由24x ->可知,2x <-;当1x ≥时,由24x >可知,2x >, ∴ 2x >或 2x <-.10.991,33⎡⎤⎛⎫⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,令222812(2)9U x x x =--+=-++,∵ 31,99x U -≤≤∴-≤≤,又∵13Uy ⎛⎫= ⎪⎝⎭为减函数,∴99133y ⎛⎫≤≤ ⎪⎝⎭. 11.()0,+∞,令23,23Uy U x ==-,∵3Uy =为增函数,∴2233x y -=的单调递减区间为()0,+∞. 12. 0,3221(125)(5)(5)220f f f ⨯-===-=三、解答题:13.221113()142122124224x x x x x x x f x -----⎛⎫=-+=-+=-+=-+ ⎪⎝⎭,∵[]3,2x ∈-, ∴1284x -≤≤. 则当122x-=,即1x =时,()f x 有最小值43; 当28x-=,即3x =-时,()f x 有最大值57.14.要使()f x 为奇函数,∵ x R ∈,∴需()()0f x f x +-=,∴1222(),()212121x x x x f x a f x a a +-=--=-=-+++, 由12202121x xx a a +-+-=++,得2(21)2021x x a +-=+,1a ∴=. 15.令13Uy ⎛⎫= ⎪⎝⎭,225U x x =++,则y 是关于U 的减函数,而U 是(),1-∞-上的减函数,()1,-+∞上的增函数,∴22513x x y ++⎛⎫= ⎪⎝⎭在(),1-∞-上是增函数,而在()1,-+∞上是减函数,又∵2225(1)44U x x x =++=++≥,∴22513x x y ++⎛⎫= ⎪⎝⎭的值域为410,3⎛⎤⎛⎫ ⎥ ⎪ ⎝⎭⎥⎝⎦.16.243232323xxxx y =-⋅+=-⋅+,依题意有22(2)3237(2)3231x x x x ⎧-⋅+≤⎪⎨-⋅+≥⎪⎩即1242221xx x⎧-≤≤⎪⎨≥≤⎪⎩或,∴ 224021,x x≤≤<≤或 由函数2xy =的单调性可得(,0][1,2]x ∈-∞U .17.(1)∵定义域为x R ∈,且11()(),()11x xxxa a f x f x f x a a -----===-∴++是奇函数;(2)1222()1,11,02,111x x x x x a f x a a a a +-==-+>∴<<+++∵ 即()f x 的值域为()1,1-;(3)设12,x x R ∈,且12x x <,12121212121122()()011(1)(1)x x x x x x x x a a a a f x f x a a a a ----=-=<++++(∵分母大于零,且12x x a a <) ∴()f x 是R 上的增函数.。