指数与指数函数高考数学知识点总结高考数学真题复习
- 格式:docx
- 大小:92.76 KB
- 文档页数:20
第五节指数与指数函数1.根式(1)如果x n =a ,那么01x 叫做a 的n 次方根,其中n >1,且n ∈N *.(2)式子na 叫做02根式,其中n 叫做根指数,a 叫做被开方数.(3)(na )n =03a.当n 为奇数时,na n =04a ;当n 为偶数时,na n =|a |,a ≥0,a ,a <0.2.分数指数幂正数的正分数指数幂,a mn =na m (a >0,m ,n ∈N *,n >1).正数的负分数指数幂,a-m n =1a m n=1n a m(a >0,m ,n ∈N *,n >1).0的正分数指数幂等于050,0的负分数指数幂没有意义.3.指数幂的运算性质a r a s =06a r +s ;(a r )s =07a rs ;(ab )r =08a r b r (a >0,b >0,r ,s ∈R ).4.指数函数及其性质(1)概念:函数y =a x (a >0,且a ≠1)叫做指数函数,其中指数x 是自变量,定义域是R ,a 是底数.(2)指数函数的图象与性质a>10<a <1图象定义域R 值域09(0,+∞)性质图象过定点10(0,1),即当x=0时,y =1当x >0时,11y >1;当x <0时,120<y <1当x <0时,13y >1;当x >0时,140<y <1在(-∞,+∞)上是15增函数在(-∞,+∞)上是16减函数(1)任意实数的奇次方根只有一个,正数的偶次方根有两个且互为相反数.(2)画指数函数y =a x (a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1)1(3)如图是指数函数①y =a x ,②y =b x ,③y =c x ,④y =d x 的图象,底数a ,b ,c ,d 与1之间的大小关系为c >d >1>a >b >0.由此我们可得到以下规律:在第一象限内,指数函数y =a x (a >0,a ≠1)的图象越高,底数越大.(4)指数函数y =a x 与y (a >0,且a ≠1)的图象关于y 轴对称.1.概念辨析(正确的打“√”,错误的打“×”)(1)4(-4)4=-4.()(2)2a·2b=2ab.()(3)na n=(na)n=a.()(4)6(-3)2=(-3)13.()(5)函数y=2x-1是指数函数.()答案(1)×(2)×(3)×(4)×(5)×2.小题热身(1)(人教A必修第一册习题4.1T1改编)下列运算中正确的是()A.(2-π)2=2-πB.a-1a=-aC.(m 14n-38)8=m2n3D.(x3-2)3+2=x9答案C解析对于A,因为2-π<0,所以(2-π)2=π-2,故A错误;对于B,因为-1a>0,所以a<0,则a-1a=-(-a)·1-a=--a,故B错误;对于C,因为(m14n-38)8=(m14)8·(n-38)8=m2n3,故C正确;对于D,因为(x3-2)3+2=x9-2=x7,故D错误.(2)已知指数函数y=f(x)的图象经过点(-1,2),那么这个函数也必定经过点()21C.(1,2)答案D(3)函数y=2x+1的图象是()答案A(4)若函数y=a x(a>0,且a≠1)在区间[0,1]上的最大值与最小值之和为3,则a的值为________.答案2考点探究——提素养考点一指数幂的运算例1(1)(2024·湖北宜昌高三模拟)已知x,y>03x-34y12-14x14y-1y__________.答案-10y解析原式=3x -34y12-3 10 x -34y-12=-10y.(2)-0.752+6-2-23=________.答案1解析+136×-23=32-+136×2=32-916+136×94=1.【通性通法】【巩固迁移】-12·(4ab-1)3(0.1)-1·(a3·b-3)12(a>0,b>0)=________.答案85解析原式=2·432a 32b -3210a 32b-32=85.2.若x 12+x -12=3,则x 2+x -2=________.答案47解析由x 12+x -12=3,得x +x -1=7,再平方得x 2+x -2=47.考点二指数函数的图象及其应用例2(1)(2024·安徽合肥八中月考)函数①y =a x ;②y =b x ;③y =c x ;④y =d x 的图象如图所示,a ,b ,c ,d 分别是下列四个数:54,3,13,12中的一个,则a ,b ,c ,d 的值分别是()A.54,3,13,12 B.3,54,13,12C.12,13,3,54 D.13,12,54,3答案C解析由题图,直线x =1与函数图象的交点的纵坐标从上到下依次为c ,d ,a ,b ,而3>54>12>13,故选C.(2)(2024·江苏南京金陵高三期末)若直线y =3a 与函数y =|a x -1|(a >0,且a ≠1)的图象有两个公共点,则a 的取值范围为________.答案解析当0<a <1时,y =|a x -1|的图象如图1所示,由已知得0<3a <1,∴0<a <13;当a >1时,y =|a x -1|的图象如图2所示,由已知可得0<3a <1,∴0<a <13,结合a >1可得a 无解.综上可知,a【通性通法】(1)根据指数函数图象判断底数大小的问题,可以通过直线x =1与图象的交点进行判断.(2)对于有关指数型函数的图象可从指数函数的图象通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论.(3)已知函数解析式判断其图象一般是取特殊点,判断选项中的图象是否过这些点,若不满足则排除.【巩固迁移】3.(2024·广东深圳中学高三摸底)函数y =e -|x |(e 是自然对数的底数)的大致图象是()答案C解析y =e -|x |,x ≥0,x <0,易得函数y =e -|x |为偶函数,且图象过(0,1),y =e -|x |>0,函数在(-∞,0)上单调递增,在(0,+∞)上单调递减,故C 符合题意.故选C.4.(多选)若实数x ,y 满足4x +5x =5y +4y ,则下列关系式中可能成立的是()A .1<x <yB .x =yC .0<x <y <1D .y <x <0答案BCD解析设f (x )=4x +5x ,g (x )=5x +4x ,则f (x ),g (x )都是增函数,画出函数f (x ),g (x )的图象,如图所示,根据图象可知,当x =0时,f (0)=g (0)=1;当x =1时,f (1)=g (1)=9,依题意,不妨设f (x )=g (y )=t ,则x ,y 分别是直线y =t 与函数y =f (x ),y =g (x )图象的交点的横坐标.当t >9时,若f (x )=g (y ),则x >y >1,故A 不正确;当t =9或t =1时,若f (x )=g (y ),则x =y =1或x =y =0,故B 正确;当1<t <9时,若f (x )=g (y ),则0<x <y <1,故C 正确;当t <1时,若f (x )=g (y ),则y <x <0,故D 正确.故选BCD.考点三指数函数的性质及其应用(多考向探究)考向1比较指数式的大小例3(2023·天津高考)若a =1.010.5,b =1.010.6,c =0.60.5,则a ,b ,c 的大小关系为()A .c >a >bB .c >b >aC .a >b >cD .b >a >c答案D解析解法一:因为函数f (x )=1.01x 是增函数,且0.6>0.5>0,所以1.010.6>1.010.5>1,即b >a >1.因为函数φ(x )=0.6x 是减函数,且0.5>0,所以0.60.5<0.60=1,即c <1.综上,b >a >c .故选D.解法二:因为函数f (x )=1.01x 是增函数,且0.6>0.5,所以1.010.6>1.010.5,即b >a .因为函数h (x )=x 0.5在(0,+∞)上单调递增,且1.01>0.6>0,所以1.010.5>0.60.5,即a >c .综上,b >a >c .故选D.【通性通法】比较两个指数式的大小时,尽量化成同底或同指.(1)当底数相同,指数不同时,构造同一指数函数,然后利用指数函数的性质比较大小.(2)当指数相同,底数不同时,构造两个指数函数,利用图象比较大小;或构造同一幂函数,然后利用幂函数的性质比较大小.(3)当底数不同,指数也不同时,常借助1,0等中间量进行比较.【巩固迁移】5.(2023·福建泉州高三质检)已知a -13,b -23,c ()A .a >b >cB .c >b >aC .c >a >bD .b >a >c答案C解析-13-23,y 在R 上是增函数,-13-23,即c >a >b .考向2解简单的指数方程或不等式例4(1)(多选)若4x -4y <5-x -5-y ,则下列关系式正确的是()A .x <yB .y -3>x -3C.x >y <3-x答案AD解析由4x -4y <5-x -5-y ,得4x -5-x <4y -5-y ,令f (x )=4x -5-x ,则f (x )<f (y ).因为g (x )=4x ,h (x )=-5-x 在R 上都是增函数,所以f (x )在R 上是增函数,所以x <y ,故A 正确;因为G (x )=x -3在(0,+∞)和(-∞,0)上都单调递减,所以当x <y <0时,x -3>y -3,故B 错误;当x <0,y <0时,x ,y 无意义,故C 错误;因为y 在R 上是减函数,且x <y ,,<3-x ,故D 正确.故选AD.(2)已知实数a ≠1,函数f (x )x ,x ≥0,a -x ,x <0,若f (1-a )=f (a -1),则a 的值为________.答案12解析当a <1时,41-a =21,解得a =12;当a >1时,2a -(1-a )=4a -1,无解.故a 的值为12.【通性通法】(1)解指数方程的依据:a f (x )=a g (x )(a >0,且a ≠1)⇔f (x )=g (x ).(2)解指数不等式的思路方法:对于形如a x >a b (a >0,且a ≠1)的不等式,需借助函数y =a x 的单调性求解,如果a 的取值不确定,则需分a >1与0<a <1两种情况讨论;而对于形如a x >b 的不等式,需先将b 转化为以a 为底的指数幂的形式,再借助函数y =a x 的单调性求解.【巩固迁移】6.函数y =(0.5x-8)-12的定义域为________.答案(-∞,-3)解析因为y =(0.5x -8)-12=10.5x -8,所以0.5x -8>0,则2-x >23,即-x >3,解得x <-3,故函数y =(0.5x-8)-12的定义域为(-∞,-3).7.当0<x <12时,方程a x =1x (a >0,且a ≠1)有解,则实数a 的取值范围是________.答案(4,+∞)解析依题意,当x ,y =a x 与y =1x 的图象有交点,作出y =1x的部分图象,如图所示,>1,12>2,解得a>4.考向3与指数函数有关的复合函数问题例5(1)函数f(x)=3-x2+1的值域为________.答案(0,3]解析设t=-x2+1,则t≤1,所以0<3t≤3,故函数f(x)的值域为(0,3].(2)函数yx-+17的单调递增区间为________.答案[-2,+∞)解析设t>0,又y=t2-8t+17=(t-4)2+1在(0,4]上单调递减,在(4,+∞)上单调递增.≤4,得x≥-2,>4,得x<-2,而函数t在R上单调递减,所以函数yx-+17的单调递增区间为[-2,+∞).【通性通法】涉及指数函数的综合问题,首先要掌握指数函数的相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断.【巩固迁移】8.(多选)已知定义在[-1,1]上的函数f(x)=-2·9x+4·3x,则下列结论中正确的是() A.f(x)的单调递减区间是[0,1]B.f(x)的单调递增区间是[-1,1]C.f(x)的最大值是f(0)=2D.f(x)的最小值是f(1)=-6答案ACD解析设t=3x,x∈[-1,1],则t=3x是增函数,且t∈13,3,又函数y=-2t2+4t=-2(t-1)2+2在13,1上单调递增,在[1,3]上单调递减,因此f(x)在[-1,0]上单调递增,在[0,1]上单调递减,故A正确,B错误;f(x)max=f(0)=2,故C正确;f(-1)=109,f(1)=-6,因此f (x )的最小值是f (1)=-6,故D 正确.故选ACD.9.若函数f (x )2+2x +3,19,则f (x )的单调递增区间是________.答案(-∞,-1]解析∵y 是减函数,且f (x ),19,∴t =ax 2+2x +3有最小值2,则a >0且12a -224a =2,解得a =1,因此t =x 2+2x +3的单调递减区间是(-∞,-1],故f (x )的单调递增区间是(-∞,-1].课时作业一、单项选择题1.(2024·内蒙古阿拉善盟第一中学高三期末)已知集合A ={x |32x -1≥1},B ={x |6x 2-x -2<0},则A ∪B =()A.12,-12,12-12,+∞答案D解析集合A ={x |32x -1≥1}=12,+B ={x |6x 2-x -2<0}={x |(3x -2)(2x +1)<0}=-12,所以A ∪B -12,+故选D.2.(2024·山东枣庄高三模拟)已知指数函数y =a x 的图象如图所示,则y =ax 2+x 的图象顶点横坐标的取值范围是()-12,-12,+∞答案A解析由图可知,a ∈(0,1),而y =ax 2+x =-14a (a ≠0),其顶点横坐标为x =-12a,所以-12a∈∞,故选A.3.已知函数f (x )=11+2x ,则对任意实数x ,有()A .f (-x )+f (x )=0B .f (-x )-f (x )=0C .f (-x )+f (x )=1D .f (-x )-f (x )=13答案C解析f (-x )+f (x )=11+2-x +11+2x =2x 1+2x +11+2x =1,故A 错误,C 正确;f (-x )-f (x )=11+2-x-11+2x =2x 1+2x -11+2x =2x -12x +1=1-22x +1,不是常数,故B ,D 错误.故选C.4.已知a =243,b =425,c =513,则()A .c <b <aB .a <b <cC .b <a <cD .c <a <b答案A 解析因为a =243=423,b =425,所以a =423>425=b ,因为b =425=(46)115=4096115,c =513=(55)115=3125115,所以b >c .综上所述,a >b >c .故选A.5.(2024·江苏连云港海滨中学高三学情检测)若函数f (x )=a x (a >0,且a ≠1)在[-1,2]上的最大值为4,最小值为m ,则实数m 的值为()A.12B.1142C.116D.12或116答案D解析当a >1时,f (x )=a x 在[-1,2]上单调递增,则f (x )max =f (2)=a 2=4,解得a =2,此时f (x )=2x ,m =f (x )min =2-1=12;当0<a <1时,f (x )=a x 在[-1,2]上单调递减,所以f (x )max =f (-1)=a -1=4,解得a =14,此时f (x ),m =f (x )min =f (2)=116.综上所述,实数m 的值为12或116.故选D.6.(2023·新课标Ⅰ卷)设函数f (x )=2x (x -a )在区间(0,1)上单调递减,则a 的取值范围是()A .(-∞,-2]B .[-2,0)C .(0,2]D .[2,+∞)答案D解析函数y =2x 在R 上单调递增,而函数f (x )=2x (x -a )在区间(0,1)上单调递减,则函数y =x (x -a )-a 24在区间(0,1)上单调递减,因此a2≥1,解得a ≥2,所以a 的取值范围是[2,+∞).故选D.7.(2023·辽宁名校联盟联考)已知函数f (x )满足f (x )x -2,x >0,-2-x ,x <0,若f (a )>f (-a ),则实数a 的取值范围是()A .(-1,0)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(1,+∞)D .(-∞,-1)∪(0,1)答案B解析当x >0时,-x <0,f (-x )=2-2x =-(2x -2)=-f (x );当x <0时,-x >0,f (-x )=2-x-2=-(2-2-x )=-f (x ),则函数f (x )为奇函数,所以f (a )>f (-a )=-f (a ),即f (a )>0,作出函数f (x )的图象,如图所示,由图象可得,实数a 的取值范围为(-1,0)∪(1,+∞).故选B.8.(2024·福建漳州四校期末)已知正数a ,b ,c 满足2a -1=4,3b -1=6,4c -1=8,则下列判断正确的是()A .a <b <cB .a <c <bC .c <b <aD .c <a <b答案A解析由已知可得a =2,b =2,c =2,则a ,b ,c 可分别看作直线y =2-x 和y ,y ,y 的图象的交点的横坐标,画出直线y =2-x 和y ,y ,y 的大致图象,如图所示,由图象可知a <b <c .故选A.二、多项选择题9.下列各式中成立的是()=n 7m 17(n >0,m >0)B .-1234=3-3C.39=33D .[(a 3)2(b 2)3]-13=a -2b -2(a >0,b >0)答案BCD解析=n 7m7=n 7m -7(n >0,m >0),故A 错误;-1234=-3412=-313=3-3,故B 正确;39=332=332=33,故C 正确;[(a 3)2(b 2)3]-13=(a 6b 6)-13=a -2b -2(a >0,b >0),故D 正确.故选BCD.10.已知函数f (x )=3x -13x +1,下列说法正确的是()A .f (x )的图象关于原点对称B .f (x )的图象关于直线x =1对称C .f (x )的值域为(-1,1)D .∀x 1,x 2∈R ,且x 1≠x 2,f (x 1)-f (x 2)x 1-x 2<0答案AC解析由f (-x )=3-x -13-x +1=-3x -13x +1=-f (x ),可得函数f (x )为奇函数,所以A 正确;因为f (0)=0,f (2)=45,f (0)≠f (2),所以B 错误;设y =3x -13x +1,可得3x =1+y 1-y ,所以1+y 1-y >0,即1+y y -1<0,解得-1<y <1,即函数f (x )的值域为(-1,1),所以C 正确;f (x )=3x -13x +1=1-23x +1为增函数,所以D 错误.故选AC.三、填空题11.0.25-12-(-2×160)2×(2-23)3+32×(4-13)-1=________.答案3解析原式=[(0.5)2]-12-(-2×1)2×2-2+213×2231-4×14+2=2-1+2=3.12.不等式10x -6x -3x ≥1的解集为________.答案[1,+∞)解析由10x -6x -3x ≥1,≤1.令f (x ),因为y =,y ,y 均为R 上的减函数,则f (x )在R 上单调递减,且f (1)=1,所以f (x )≤f (1),所以x ≥1,故不等式10x -6x -3x ≥1的解集为[1,+∞).13.若函数f (x )=|2x -a |-1的值域为[-1,+∞),则实数a 的取值范围为________.答案(0,+∞)解析令g (x )=|2x -a |,由题意得g (x )的值域为[0,+∞),又y =2x 的值域为(0,+∞),所以-a <0,解得a >0.14.已知函数f (x )x -a ,x ≤0,x +a ,x >0,关于x 的不等式f (x )≤f (2)的解集为I ,若I(-∞,2],则实数a 的取值范围是________.答案(-∞,-1)解析当a ≥0时,结合图象可得f (x )≤f (2)的解集是(-∞,2],不符合题意.当a <0时,2-a>2a ,由于f (x )在区间(-∞,0]和(0,2]上单调递增,所以要使f (x )≤f (2)的解集I 满足I(-∞,2],则2-a >f (2)=22+a ,解得a <-1.综上,实数a 的取值范围是(-∞,-1).四、解答题15.(2024·辽宁沈阳东北育才学校高三月考)已知函数f (x )是定义在R 上的奇函数,且函数g (x )=f (x )+e x 是定义在R 上的偶函数.(1)求函数f (x )的解析式;(2)求不等式f (x )≥34的解集.解(1)∵g (x )=f (x )+e x 是定义在R 上的偶函数,∴g (-x )=g (x ),即f (-x )+e -x =f (x )+e x ,∵f (x )是定义在R 上的奇函数,∴f (-x )=-f (x ),∴-f (x )+e -x =f (x )+e x ,∴f (x )=e -x -e x2.(2)由(1),知e -x -e x 2≥34,得2e -x -2e x -3≥0,即2(e x )2+3e x -2≤0,令t =e x ,t >0,则2t 2+3t -2≤0,解得0<t ≤12,∴0<e x ≤12,∴x ≤-ln 2,∴不等式f (x )≥34的解集为(-∞,-ln 2].16.(2024·山东菏泽高三期中)已知函数f (x )3+x.(1)解关于x 的不等式f (x 3+ax +1,a ∈R ;(2)若∃x ∈(1,3),∀m ∈(1,2),f (2mnx -4)-f (x 2+nx )+x 2+nx -2mnx +4≤0,求实数n 的取值范围.解(1)3+x3+ax +1,得x 3+x <x 3+ax +1,即(1-a )x <1.当1-a =0,即a =1时,不等式恒成立,则f (x 3+ax +1的解集为R ;当1-a >0,即a <1时,x <11-a,则f (x 3+ax +1|x 当1-a <0,即a >1时,x >11-a,则f (x 3+ax +1|x 综上所述,当a =1时,不等式的解集是R ;当a <1时,|x当a >1时,|x (2)因为y =x 3和y =x 均为增函数,所以y =x 3+x 是增函数,因为y 是减函数,所以f (x )是减函数,则g (x )=f (x )-x 是减函数.由f (2mnx -4)-f (x 2+nx )+x 2+nx -2mnx +4≤0可得,g (2mnx -4)=f (2mnx -4)-(2mnx -4)≤f (x 2+nx )-(x 2+nx )=g (x 2+nx ),所以2mnx -4≥x 2+nx ,所以2mn -n ≥x +4x ,又x +4x≥2x ·4x =4,当且仅当x =4x,即x =2时,不等式取等号,即∀m ∈(1,2),2mn -n ≥4恒成立,由一次函数性质可知n -n ≥4,n -n ≥4,解得n ≥4,所以实数n 的取值范围是[4,+∞).17.(多选)已知函数f (x )=a |+b 的图象经过原点,且无限接近直线y =2,但又不与该直线相交,则下列说法正确的是()A .a +b =0B .若f (x )=f (y ),且x ≠y ,则x +y =0C .若x <y <0,则f (x )<f (y )D .f (x )的值域为[0,2)答案ABD解析∵函数f (x )=a |+b 的图象过原点,∴a +b =0,即b =-a ,则f (x )=a |-a ,又f (x )的图象无限接近直线y =2,但又不与该直线相交,∴b =2,a =-2,f (x )=-|+2,故A 正确;由于f (x )为偶函数,且f (x )在[0,+∞)上单调递增,故若f (x )=f (y ),且x ≠y ,则x =-y ,即x +y =0,故B 正确;由于f (x )=2-|在(-∞,0)上单调递减,故若x <y <0,则f (x )>f (y ),故C 错误;|∈(0,1],∴f (x )=-|+2∈[0,2),故D 正确.故选ABD.18.(多选)已知实数a ,b 满足3a =6b ,则下列关系式可能成立的是()A .a =bB .0<b <aC .a <b <0D .1<a <b答案ABC解析由题意,在同一坐标系内分别画出函数y =3x 和y =6x 的图象,如图所示,由图象知,当a =b =0时,3a =6b =1,所以A 可能成立;作出直线y =k ,当k >1时,若3a =6b =k ,则0<b <a ,所以B 可能成立;当0<k <1时,若3a =6b =k ,则a <b <0,所以C 可能成立.故选ABC.19.(2023·广东珠海一中阶段考试)对于函数f (x ),若其定义域内存在实数x 满足f (-x )=-f (x ),则称f (x )为“准奇函数”.若函数f (x )=e x -2e x +1,则f (x )________(是,不是)“准奇函数”;若g (x )=2x +m 为定义在[-1,1]上的“准奇函数”,则实数m 的取值范围为________.答案不是-54,-1解析假设f (x )为“准奇函数”,则存在x 满足f (-x )=-f (x ),∴e -x -2e -x +1=-e x -2e x +1有解,整理得e x =-1,显然无解,∴f (x )不是“准奇函数”.∵g (x )=2x +m 为定义在[-1,1]上的“准奇函数”,∴2-x+m =-2x -m 在[-1,1]上有解,∴2m =-(2x +2-x)在[-1,1]上有解,令2x =t ∈12,2,∴2m t ∈12,2上有解,又函数y =t +1t在12,,在(1,2]上单调递增,且t =12时,y =52,t =2时,y =52,∴y min =1+1=2,y max =52,∴y =t +1t 的值域为2,52,∴2m ∈-52,-2,解得m ∈-54,-1.。
高中数学必修1知识点总结—指数及指数函数1、 根式na (一般的,如果n x a =,那么x 叫做a 的n 次方根,其中*1,n n N >∈且.)35325325n n n ⎧=⎪⎨-=-⎪⎩正数的次方根是正数如当是奇数时,负数的次方根是负数如20,n a n an ⎧>±⎪⎨⎪⎩正数的次方根有个,且互为相反数如:则次方根为当是偶数时,负数没有偶次方根0的任何次方根都是0,记作0n2、nna的讨论 n nn a a =当是奇数时,;,0,0n n a a n a a a a ≥⎧==⎨-≤⎩当是偶数时, (2)分数指数幂的概念)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,mnmna a a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:11()()(0,,,m mmnnnaa m n N a a-+==>∈且1)n >.0的负分数指数幂没有意义.义. 注意口诀:底数取倒数,指数取相反数.底数取倒数,指数取相反数. (3)分数指数幂的运算性质)分数指数幂的运算性质①(0,,)rsr saa aa r s R +⋅=>∈ ②()(0,,)r s rsa a a r s R =>∈③()(0,0,)rr rab a b a b r R =>>∈一、 指数计算公式:()Q s r a ∈>,,0_____=⋅s r a a ________=sraa _____)(=s r a ______)(=r ab )1,,0_______(>∈>=*n N n m a anm,________=n na 练习 计算下列各式的值:计算下列各式的值:(1))4()3)((636131212132b a b a b a ÷- (2)()322175.003129721687064.0+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛---(3)421033)21(25.0)21()4(--⨯+-- (4)33)3(625π-+-2.已知31=+-x x ,则=+-22x x 已知23=a,513=b,则=-ba 23=____________. 3. 若21025x x =,则10x x-等于_________________【2.1.2】指数函数及其性质(4)指数函数)指数函数函数名称函数名称指数函数指数函数定义定义函数(0x y a a =>且1)a ≠叫做指数函数叫做指数函数图象图象1a >01a <<定义域定义域 R 值域值域(0,)+∞过定点过定点 图象过定点(0,1),即当0x=时,1y =.奇偶性奇偶性 非奇非偶非奇非偶单调性单调性在R 上是增函数上是增函数在R 上是减函数上是减函数函数值的函数值的 变化情况变化情况1(0)1(0)1(0)x x x a x a x a x >>==<< 1(0)1(0)1(0)x x x a x a x a x <>==>< a 变化对变化对 图象的影响图象的影响 在第一象限内,a 越大图象越高;在第二象限内,a 越大图象越低.越大图象越低.题型1、求函数经过的点 1、2)(f 1-=+x a x )10(≠>a a 且过定点______________2、函数y=4+a x -1的图象恒过定点P 的坐标是________________3.已知指数函数图像经过点)3,1(-p ,则=)3(f题型2、 图像问题1.下列说法中:下列说法中:①任取x ∈R 都有3x >2x ; ②当a >1时,任取x ∈R 都有a x >a -x ;③函数y =(3)-x 是增函数;④函数y =2|x |的最小值为1 ;⑤在同一坐标系中,y =2x 与y =2-x 的图象对称于y 轴。
知识点一:根式的概念一般地,如果一个数的n 次方等于a ()*∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若 ,则 叫做 的n 次方根, ()*∈>N n n ,1 ①n n a )(= ②n n a = 1. 给出下列各式:①√a n n =a ;②√a √a =a 34(a >0); ③√−33=√(−3)26.其中正确的是 2. 求下列各式的值:(1)√(−8)33; (2)√(−10)2; (3)√(3−π)44; (4)√(a −b)2.知识点二:指数的性质当a >0,b >0时(m ,n ∈R),有=m n a =-n a =-m na =n m a a =n m a a =n m a )( =n ab )( 3. 求值:(214)12−(−9.6)0−(338)−23+1.5−2+[(−5)4]14;4. 化简:(a 23−1−12−12⋅b 13√565. (1)√(3−π)44+(0.008) 13−(0.25) 12×(√2)−4(2)(√23×√3)6+(√2√2) 43−4×(1649) −12−√24×80.25−(−2009)06. 已知a 12+a −12=3,求下列各式的值(写出过程):(附:a 3+b 3=(a +b)(a 2−ab +b 2))1-+a a (2)a 2+a −2 (3)a 32+a −32 (4)1--a a7.已知a12+a−12=3,求a32+a−32的值.知识点三:指数函数的定义一般地,函数叫做指数函数,其中是自变量,函数定义域是.8.函数2y a a a=-+是指数函数,求a(33)x知识点四:指数函数的性质9.已知指数函数f(x)=(2a−1)x在(−∞,+∞)内是增函数,则实数a的取值范围是,则a的值是_______10.函数ƒ(x)=a x(a>0且a≠1)在[1,2]上的最大值比最小值大a211. 下列各式比较大小正确的是:1.72.3______ 1.74 ; 0.6−1______ 0.62; 1.70.3______ 0.92.30.8−0.1______ 1.250.212. 已知a =(13)−1.1,b =π0,c =30.9,则a ,b ,c 三者的大小关系是() A. c <b <a B. c <a <b C. b <a <c D. b <c <a13. 已知a =(35)25,b =(25)35,c =(25)25,则( ) A. a <b <c B. c <b <a C. c <a <b D. b <c <a14. (多选)设函数f(x)=2x ,对于任意的x 1,x 2(x 1≠x 2),下列命题中正确的是( )A. f(x 1⋅x 2)=f(x 1)+f(x 2)B. f(x 1+x 2)=f(x 1)⋅f(x 2)C.f(x 1)−f(x 2)x 1−x 2>0 D. f(x 1+x 22)<f(x 1)+f(x 2)215. 不等式3−x 2+2x >13x+4的解集为________16. 求不等式a 2x 7>a 4x 1(a >0,且a ≠1)中x 的取值范围。
指数与指数函数高考知识点指数和指数函数是高考数学中的重要知识点,涉及到数学中的指数概念、指数运算、指数函数及其性质等内容。
本文将以深入浅出的方式,详细介绍指数与指数函数的相关知识。
一、指数的概念及性质指数是数学中常用的表示方式,用于表示一个数的乘方。
指数的定义为:若a为非零实数,n为自然数(n≠0),则aⁿ称为以a为底的指数。
其中,a称为底数,n称为指数。
指数的性质有以下几点:1. 任何非零数的0次方都等于1,即a⁰=1(a≠0);2. 任何非零数的1次方都等于它本身,即a¹=a(a≠0);3. 指数相同、底数相等的两个指数相等,即aⁿ=aᵐ(a≠0,n≠0,m≠0);4. 任何数的负整数次方都可以表示为其倒数的相应正整数次方,即a⁻ⁿ=1/(aⁿ)(a≠0,n≠0);5. 不同底数、相同指数的指数大小可以通过底数的大小来判断,当0<a<b时,aⁿ<bⁿ(a,b,n都是实数且n>0)。
二、指数运算法则指数运算是指在进行乘方运算时,如何将指数进行运算。
在指数运算中,有以下几条法则:1. 乘法法则:同底数的指数相加,保持底数不变,指数相加,即aⁿ⋅aᵐ=aⁿ⁺ᵐ(a≠0,n≠0,m≠0);2. 除法法则:同底数的指数相减,保持底数不变,指数相减,即aⁿ/aᵐ=aⁿ⁻ᵐ(a≠0,n≠0,m≠0);3. 乘方法则:一个数的乘方再乘以另一个数的乘方,底数不变,指数相乘,即(aⁿ)ᵐ=aⁿᵐ(a≠0,n≠0,m≠0);4. 开方法则:一个数的乘方再开方,底数不变,指数取两个数的最小公倍数,即(aⁿ)^(1/ᵐ)=aⁿ/ᵐ(a≠0,n≠0,m≠0)。
三、指数函数的定义与图像指数函数是一种特殊的函数形式,具有以下定义:形如y=aᵘ(a>0,且a≠1)的函数称为指数函数。
在指数函数中,a称为底数,u称为自变量,y称为因变量。
指数函数的图像特点如下:1. 当底数0<a<1时,函数图像呈现下降趋势,越接近x轴,函数值越接近于0;2. 当底数a>1时,函数图像呈现上升趋势,越接近x轴,函数值越接近于0;3. 当底数a=1时,函数图像为水平直线y=1,与自变量无关。
专题2.11 指数与指数函数-重难点题型精讲1.分数指数幂 (1)m na =n,a m (a >0,m ,n ∈N *,且n 〉1);m na=1m na(a >0,m ,n ∈N *,且n 〉1);0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)有理数指数幂的运算性质:a r a s =a r +s ,(a r )s =a rs ,(ab )r =a r b r ,其中a 〉0,b >0,r ,s ∈Q . 2.指数函数的图象与性质(1)R 【思考】1。
如图所示是指数函数(1)y =a x ,(2)y =b x ,(3)y =c x ,(4)y =d x 的图象,则a ,b ,c ,d 与1之间的大小关系为________.提示 c 〉d >1〉a 〉b >02.结合指数函数y =a x (a >0,a ≠1)的图象和性质说明a x >1(a >0,a ≠1)的解集是否与a 的取值有关. 提示 当a >1时,a x >1的解集为{x |x >0};当0<a <1时,a x >1的解集为{x |x <0}.【题型1 指数幂的运算】【例1】(2020秋•荔湾区校级期中)化简下列各式.(1)(√23⋅√3)6﹣4•(1649)−12−√24•80.25﹣(2020)0;(2)√a 3b 2⋅√ab 23(a 14b 12)4⋅√a3(a >0,b >0).【解题思路】利用有理数指数幂的运算性质求解. 【解答过程】解:(1)原式=(213×312)6−4×(47)2×(−12)−214×814−1 =4×27﹣7−(2×8)14−1 =108﹣7﹣2﹣1 =98. (2)原式=a 32⋅b 22⋅a 16⋅b 26a⋅b2⋅a −13⋅b 13=a 53⋅b 43a 23⋅b 73=ab ﹣1.【变式1—1】(2020秋•济宁期中)(1)计算:(94)12−(﹣9.6)0﹣(278)−23+(23)−2;(2)已知a 12+a−12=3,求a 2+a −2+1a+a −1+2的值.【解题思路】(1)根据指数幂的运算法则即可求出;(2)根据完全平方公式即可求出. 【解答过程】解:(1)原式=32−1﹣(32)3×(−23)+94=32−1−49+94=8336, (2)∵a 12+a −12=3,∴a +a ﹣1=(a 12+a −12)2﹣2=7,∴a 2+a ﹣2=(a +a ﹣1)2﹣2=47,∴原式=47+17+2=489=163.【变式1-2】(2020秋•新泰市校级期中)化简求值:(请写出化简步骤过程)①0.064−13−(−59)0+[(−2)3]−43+16−0.75+0.0112;②1.5−13×(−76)0+814×√24+(√23×√3)6−√(−23)23.【解题思路】把根式化为分数指数幂,根据幂的运算法则计算即可. 【解答过程】解:①0.064−13−(−59)0+[(−2)3]−43+16−0.75+0.0112 =(0.43)−13−1+(−2)3×(−43)+(24)﹣0。
高考数学复习初等函数知识点:指数与指数函数一样地,形如y=a^x(a>0且a≠1) (x∈R)的函数叫做指数函数,下面是高考数学复习初等函数知识点:指数与指数函数,期望对考生有关心。
指数函数的一样形式为,从上面我们关于幂函数的讨论就能够明白,要想使得x能够取整个实数集合为定义域,则只有使得如图所示为a的不同大小阻碍函数图形的情形。
能够看到:(1) 指数函数的定义域为所有实数的集合,那个地点的前提是a大于0,关于a不大于0的情形,则必定使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2) 指数函数的值域为大于0的实数集合。
(3) 函数图形差不多上下凹的。
(4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5) 能够看到一个明显的规律,确实是当a从0趋向于无穷大的过程中(因此不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。
其中水平直线y=1是从递减到递增的一个过渡位置。
(6) 函数总是在某一个方向上无限趋向于X轴,永不相交。
(7) 函数总是通过(0,1)这点。
家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,小孩一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。
我把幼儿在园里的阅读活动及阅读情形及时传递给家长,要求小孩回家向家长朗诵儿歌,表演故事。
我和家长共同配合,一道训练,幼儿的阅读能力提高专门快。
宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。
至元明清之县学一律循之不变。
明朝入选翰林院的进士之师称“教习”。
到清末,学堂兴起,各科教师仍沿用“教习”一称。
事实上“教谕”在明清时还有学官一意,即主管县一级的教育生员。
而相应府和州掌管教育生员者则谓“教授”和“学正”。
“教授”“学正”和“教谕”的副手一律称“训导”。
于民间,专门是汉代以后,关于在“校”或“学”中传授经学者也称为“经师”。
第9讲指数与指数函数思维导图知识梳理1.指数与指数运算(1)根式的性质①(n a )n =a (a 使n a 有意义).②当n 是奇数时,n a n =a ;当n 是偶数时,n a n =|a ,a ≥0,a ,a <0.(2)分数指数幂的意义①a m n =n a m (a >0,m ,n ∈N *,且n >1).②a -m n =1a m n =1n a m (a >0,m ,n ∈N *,且n >1).③0的正分数指数幂等于0,0的负分数指数幂没有意义.(3)有理数指数幂的运算性质①a r ·a s =a r +s (a >0,r ,s ∈Q );②a r as =a r -s (a >0,r ,s ∈Q );③(a r )s =a rs (a >0,r ,s ∈Q );④(ab )r =a r b r (a >0,b >0,r ∈Q ).2.指数函数的概念函数y =a x (a >0,且a ≠1)叫做指数函数,其中指数x 是自变量,函数的定义域是R ,a 是底数.3.指数函数y =a x (a >0,且a ≠1)的图象与性质底数a >10<a <1图象性质定义域为R ,值域为(0,+∞)图象过定点(0,1)当x >0时,恒有y >1;当x <0时,恒有0<y <1当x >0时,恒有0<y <1;当x <0时,恒有y >1在定义域R 上为增函数在定义域R 上为减函数注意指数函数y =a x (a >0,且a ≠1)的图象和性质与a 的取值有关,应分a >1与0<a <1来研究核心素养分析幂函数、指数函数与对数函数是最基本的、应用最广泛的函数,是进一步研究数学的基础。
本讲的学习,可以帮助学生学会用函数图象和代数运算的方法研究这些函数的性质;理解这些函数中所蕴含的运算规律;运用这些函数建立模型,解决简单的实际问题,体会这些函数在解决实际问题中的作用。
指数与指数函数高考数学知识点总结高考数学真题复习§2.5 指数与指数函数2014高考会这样考 1.考查指数函数的求值、指数函数的图象和性质;2.讨论与指数函数有关的复合函数的性质;3.将指数函数与对数函数、抽象函数相结合,综合考查指数函数知识的应用.复习备考要这样做1.重视指数的运算,熟练的运算能力是高考得分的保证;2.掌握两种情况下指数函数的图象和性质,在解题中要善于分析,灵活使用;3.对有关的复合函数要搞清函数的结构.1.根式的性质(1)(na )n =a .(2)当n 为奇数时na n =a .当n 为偶数时na n ={ a (a ≥0)-a (a <0) 2.有理数指数幂(1)幂的有关概念①正整数指数幂:a n =a ·a ·…·a n个(n ∈N *).②零指数幂:a 0=1(a ≠0).③负整数指数幂:a -p =1ap (a ≠0,p ∈N *).④正分数指数幂:a m n =na m (a >0,m 、n ∈N *,且n >1).⑤负分数指数幂:a -m n =1a m n=1na m (a >0,m 、n ∈N *,且n >1).⑥0的正分数指数幂等于0,0的负分数指数幂没有意义.(2)有理数指数幂的性质①a r a s=a r+s(a>0,r、s∈Q);②(a r)s=a rs(a>0,r、s∈Q);③(ab)r=a r b r(a>0,b>0,r∈Q).3.指数函数的图象与性质[难点正本疑点清源]1.根式与分数指数幂的实质是相同的,通常利用分数指数幂的意义把根式的运算转化为幂的运算,从而可以简化计算过程.2.指数函数的单调性是底数a的大小决定的,因此解题时通常对底数a按:0<a1 进行分类讨论.</a3.比较指数式的大小方法:利用指数函数单调性、利用中间值.1.化简[(-2)6]12-(-1)0的值为________.答案 7解析 [(-2)6]12-(-1)0=(26)12-1=23-1=7.2.若函数y =(a 2-1)x 在(-∞,+∞)上为减函数,则实数a 的取值范围是__________.答案 (-2,-1)∪(1,2)解析由y =(a 2-1)x 在(-∞,+∞)上为减函数,得0<-1.<="" bdsfid="117" p="" 或-2<-1.<="" bdsfid="119" p="" 或-23.若函数f (x )=a x -1 (a >0,且a ≠1)的定义域和值域都是[0,2],则实数a =________.<-1.<="" bdsfid="121" p="" 或-2答案<-1.<="" bdsfid="123" p="" 或-23<-1.<="" bdsfid="125" p="" 或-2解析当a >1时,x ∈[0,2],y ∈[0,a 2-1].因定义域和值域一致,故a 2-1=2,即a = 3. 当04.(2012·四川)函数y =a x -1a(a >0,且a ≠1)的图象可能是 ( )答案 D解析当a >1时,y =a x -1a 为增函数,且在y 轴上的截距为0<1-1a <1,排除A ,B.当0<="" -1a="" =a=""><="" -1a="" =a="">a <0,故选D.<="" -1a="" =a="">5.设函数f (x )=a<="" -1a="" =a="">-|x |<="" -1a="" =a="">(a >0,且a ≠1),f (2)=4, ( )<="" -1a="" =a="">A .f (-2)>f (-1)<="" -1a="" =a="">B .f (-1)>f (-2)<="" -1a="" =a="">C .f (1)>f (2)<="" -1a="" =a="">D .f (-2)>f (2) 答案 A<="" -1a="" =a="">解析∵f (x )=a -|x |(a >0,且a ≠1),f (2)=4,∴a -2=4,∴a =1<="" -1a="" =a="">2<="" -1a="" =a="">,<="" -1a="" =a="">∴f (x )=12-|x |=2|x |<="" -1a="" =a="">,∴f (-2)>f (-1),故选A.<="" -1a="" =a=""><="" -1a="" =a="">题型一指数幂的运算例1 (1)计算:(124+223)12-2716+1634-2×(8-23)-1;(2)已知x 12+x -12=3,求x 2+x -2-2x 32+x -32-3的值.思维启迪:(1)本题是求指数幂的值,按指数幂的运算律运算即可;(2)注意x 2+x -2、x 32+x -32与x 12+x -12之间的关系.解 (1)(124+223)12-2716+1634-2×(8-23)-1=(11+3)2×12-33×16+24×34-2×8-23×(-1)=11+3-312+23-2×23×23=11+3-3+8-8=11.(2)∵x 12+x -12=3,∴(x 12+x -12)2=9,∴x +2+x -1=9,∴x +x -1=7,∴(x +x -1)2=49,∴x 2+x -2=47,又∵x 32+x +-32=(x 12+x -12)·(x -1+x -1) =3×(7-1)=18,∴x 2+x -2-2x 32+x -32-3=3. 探究提高根式运算或根式与指数式混合运算时,将根式化为指数式计算较为方便,对于计算的结果,不强求统一用什么形式来表示,如果有特殊要求,要根据要求写出结果.但结果不能同时含有根号和分数指数,也不能既有分母又有负指数.计算下列各式的值:(1)-278-23+(0.002)-12-10(5-2)-1+(2-3)0; (2)15+2-(3-1)0-9-45; (3)a 3b 23ab 2(a 14b 12)4a -13b 13(a >0,b >0).解 (1)原式=-278-23+1500-12-105-2+1 =-82723+50012-10(5+2)+1 =49+105-105-20+1=-1679. (2)原式=5-2-1-(5-2)2=(5-2)-1-(5-2)=-1.(3)原式=(a 3b 2a 13b 23)12ab 2a -13b13=a 32+16-1+13b 1+13-2-13=ab -1.题型二指数函数的图象、性质的应用例2 (1)函数f (x )=a x -b 的图象如图所示,其中a ,b 为常数,则下列结论<="" -1a="" =a="">正确的是 ( ) A .a >1,b <0 B .a >1,b >0 C .00 D .0<0<=""<0<="" (2)求函数f (x )=3x 2-5x +4的定义域、值域及其单调区间.<0<="" 思维启迪:对于和指数函数的图象、性质有关的问题,可以通过探求已知函数和指数函数的关系入手.答案 (1)D <0<="" 解析由f (x )=a x -b 的图象可以观察出函数f (x )=a x -b 在定义域上单调递减,所以0x )=a x 的基础上向左平移得到的,所以b <0.(2)解依题意x 2-5x +4≥0,解得x ≥4或x ≤1,∴f (x )的定义域是(-∞,1]∪[4,+∞).∵x 2-5x +4≥0,∴f (x )=3x 2-5x +4≥30=1,∴函数f (x )的值域是[1,+∞).令u =x 2-5x +4=x -522-94,x ∈(-∞,1]∪[4,+∞),∴当x ∈(-∞,1]时,u 是减函数,当x ∈[4,+∞)时,u 是增函数.而3>1,∴由复合函数的单调性,可知f (x )=3x 2-5x +4在(-∞,1]上是减函数,在[4,+∞)上是增函数.探究提高(1)与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,通过平移、对称变换得到其图象.(2)对复合函数的性质进行讨论时,要搞清复合而成的两个函数,然后对其中的参数进行讨论.(1)函数y =e x +e -xe x -e-x 的图象大致为 ( )答案 A解析 y =e x +e -x e x -e -x =1+2e 2x-1,当x >0时,e 2x -1>0,且随着x 的增大而增大,故y =1 +2e 2x -1>1且随着x 的增大而减小,即函数y 在(0,+∞)上恒大于1且单调递减.又函数y 是奇函数,故只有A 正确.(2)若函数f (x )=e -(x -μ)2 (e 是自然对数的底数)的最大值是m ,且f (x )是偶函数,则m +μ=________. 答案 1解析由于f (x )是偶函数,所以f (-x )=f (x ),即e -(-x -μ)2=e -(x -μ)2,∴(x +μ)2=(x -μ)2,∴μ=0,∴f (x )=e -x 2.又y =e x 是R 上的增函数,而-x 2≤0,∴f (x )的最大值为e 0=1=m ,∴m +μ=1. 题型三指数函数的综合应用例3 (1)k 为何值时,方程|3x -1|=k 无解?有一解?有两解?(2)已知定义在R 上的函数f (x )=2x -12|x |.①若f (x )=32,求x 的值;②若2t f (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围.思维启迪:方程的解的问题可转为函数图象的交点问题;恒成立可以通过分离参数求最值或值域来解决.解 (1)函数y =|3x -1|的图象是由函数y =3x 的图象向下平移一个单位后,再把位于x 轴下方的图象沿x 轴翻折到x 轴上方得到的,函数图象如图所示.当k <0时,直线y =k 与函数y =|3x -1|的图象无交点,即方程无解;当k =0或k ≥1时,直线y =k 与函数y =|3x -1|的图象有唯一的交点,所以方程有一解;当0<="" -1|的图象有两个不同的交点,所以方程有两解.="" =k="" =|3x="">x ,由2x -12x =32,得2·22x -3·2x -2=0,看成关于2x 的一元二次方程,解得2x =2或-12,∵2x >0,∴x =1.②当t ∈[1,2]时,2t 22t -122t +m2t -12t ≥0,即m (22t -1)≥-(24t -1),∵22t -1>0,∴m ≥-(22t +1),∵t ∈[1,2],∴-(22t +1)∈[-17,-5],故m 的取值范围是[-5,+∞).探究提高对指数函数的图象进行变换是利用图象的前提,方程f (x )=g (x )解的个数即为函数y =f (x )和y =g (x )图象交点的个数;复合函数问题的关键是通过换元得到两个新的函数,搞清复合函数的结构.已知f (x )=a a 2-1(a x -a -x ) (a >0且a ≠1).(1)判断f (x )的奇偶性; (2)讨论f (x )的单调性;(3)当x ∈[-1,1]时,f (x )≥b 恒成立,求b 的取值范围.解 (1)因为函数的定义域为R ,所以关于原点对称.又因为f (-x )=aa 2-1(a -x -a x )=-f (x ),所以f (x )为奇函数.(2)当a >1时,a 2-1>0,y =a x 为增函数,y =a -x 为减函数,从而y =a x -a -x 为增函数,所以f (x )为增函数,当0 y =a x 为减函数,y =a -x 为增函数,从而y =a x -a -x 为减函数,所以f (x )为增函数.故当a >0,且a ≠1时,f (x )在定义域内单调递增. (3)由(2)知f (x )在R 上是增函数,所以在区间[-1,1]上为增函数,所以f (-1)≤f (x )≤f (1),所以f (x )min =f (-1)=a a 2-1(a-1-a ) =a a 2-1·1-a 2a=-1,所以要使f (x )≥b 在[-1,1]上恒成立,则只需b ≤-1,故b 的取值范围是(-∞,-1].3.利用方程思想和转化思想求参数范围典例:(14分)已知定义域为R 的函数f (x )=-2x +b2x +1+a是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.审题视角 (1)f (x )是定义在R 上的奇函数,要求参数值,可考虑利用奇函数的性质,构建方程:f (0)=0,f (1)=-f (-1).(2)可考虑将t 2-2t,2t 2-k 直接代入解析式化简,转化成关于t 的一元二次不等式.也可考虑先判断f (x )的单调性,由单调性直接转化为关于t 的一元二次不等式.规范解答解 (1)因为f (x )是R 上的奇函数,所以f (0)=0,即-1+b2+a =0,解得b =1,从而有f (x )=-2x +12x +1+a.[4分]又由f (1)=-f (-1)知-2+14+a =--12+11+a ,解得a =2.[7分](2)方法一由(1)知f (x )=-2x +12x +1+2,又由题设条件得-2t 2-2t +12t 2-2t +1+2+-22t 2-k +122t 2-k +1+2<0,即(22t 2-k +1+2)(-2t 2-2t +1)+(2t 2-2t +1+2)(-22t 2-k +1)<0.[9分] 整理得23t 2-2t -k >1,因底数2>1,故3t 2-2t -k >0.[12分] 上式对一切t ∈R 均成立,从而判别式Δ=4+12k <0,解得k <-13.[14分]方法二由(1)知f (x )=-2x +12x +1+2=-12+12x +1,由上式易知f (x )在R 上为减函数,又因为f (x )是奇函数,从而不等式f (t 2-2t )+f (2t 2-k )<0 等价于f (t 2-2t )<-f (2t 2-k )=f (-2t 2+k ).因为f (x )是R 上的减函数,由上式推得t 2-2t >-2t 2+k .[12分] 即对一切t ∈R 有3t 2-2t -k >0,从而Δ=4+12k <0,解得k <-13.[14分]温馨提醒 (1)根据f (x )的奇偶性,构建方程求参数体现了方程的思想;在构建方程时,利用了特殊值的方法,在这里要注意:有时利用两个特殊值确定的参数,并不能保证对所有的x 都成立.所以还要注意检验.(2)数学解题的核心是转化,本题的关键是将f (t 2-2t )+f (2t 2-k )<0恒成立等价转化为t 2 -2t >-2t 2+k 恒成立.这个转化易出错.其次,不等式t 2-2t >-2t 2+k 恒成立,即对一切t ∈R 有3t 2-2t -k >0,也可以这样做:k <3t 2-2t ,t ∈R ,只要k 比3t 2-2t 的最小值小即可,而3t 2-2t 的最小值为-13,所以k <-1 3.方法与技巧1.判断指数函数图象上底数大小的问题,可以先通过令x =1得到底数的值再进行比较. 2.指数函数y =a x (a >0,a ≠1)的性质和a 的取值有关,一定要分清a >1与0<=""><="">1.恒成立问题一般与函数最值有关,要与方程有解区别开来. 2.复合函数的问题,一定要注意函数的定义域.<="">3.对可化为a 2x +b ·a x +c =0或a 2x +b ·a x +c ≥0 (≤0)的指数方程或不等式,常借助换元法解<="">决,但应注意换元后“新元”的范围.<=""><="">(时间:60分钟) A 组专项基础训练一、选择题(每小题5分,共20分)1.设2a =5b =m ,且1a +1b=2,则m 等于 ( )A.10 B .10 C .20 D .100 答案 A解析∵2a =5b =m ,∴a =log 2m ,b =log 5m ,∴1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2. ∴m =10.2.函数y =12-x 2+2x 的值域是 ( )A .RB .(0,+∞)C .(2,+∞) D.12,+∞ 答案 D解析∵-x 2+2x =-(x -1)2+1≤1,∴12-x 2+2x ≥12,故选D. 3.函数y =xa x|x |<="">(0答案 D解析函数定义域为{x |x ∈R ,x ≠0},且y =xa x |x |={a x,x-a x ,x <0.当x >0时,函数是一个指数函数,因为0<0,0<="" =a=""><0,0<="" =a="">4| (a >0,a ≠1),满足f (1)=19<0,0<="" =a="">,则f (x )的单调递减区间是 ( )<0,0<="" =a="">A .(-∞,2]<0,0<="" =a="">B .[2,+∞)<0,0<="" =a="">C .[-2,+∞)<0,0<="" =a="">D .(-∞,-2] 答案 B<0,0<="" =a="">解析由f (1)=19,得a 2=19,∴a =13 (a =-1<0,0<="" =a="">3舍去),<0,0<="" =a="">即f (x )=<0,0<="" =a="">?13|2x -4|<0,0<="" =a="">. 由于y =|2x -4|在(-∞,2]上递减,在[2,+∞)上递增,所以f (x )在(-∞,2]上递增,在[2,+∞)上递减.故选B. 二、填空题(每小题5分,共15分) 5.已知a =<0,0<="" =a="">5-1<0,0<="" =a="">2<0,0<="" =a="">,函数f (x )=a x ,若实数m 、n 满足f (m )>f (n ),则m 、n 的大小关系为________.答案 m<0,0<="" =a="">5-1<0,0<="" =a="">2<0,0<="" =a=""><1,∴函数f (x )=a x 在R 上是减函数.又∵f (m )>f (n ),∴m 0,a ≠1)在[1,2]中的最大值比最小值大a <0,0<="" =a="">2<0,0<="" =a="">,则a 的值为__________.<0,0<="" =a="">答案 12或32<0,0<="" =a=""><0,0<="" =a="">解析当0<=""><="">2或a =0(舍去).<="">当a >1时,a 2-a =a 2,∴a =3<="">2或a =0(舍去).<="">综上所述,a =12或3<="">2<="">.<="">7. (2012·洛阳调研)已知函数f (x )=a x +b (a >0且a ≠1)的图象如图所<=""><="">示,则a +b 的值是________.答案-2解析∵{a 2+b =a 0+b =-3,∴{a =b =-4,∴a +b =-2.三、解答题(共25分) 8. (12分)设函数f (x )=2|x+1|-|x -1|,求使f (x )≥22的x 的取值范围.解 y =2x 是增函数,f (x )≥22等价于 |x +1|-|x -1|≥32.①(1)当x ≥1时,|x +1|-|x -1|=2,∴①式恒成立.(2)当-1<="" ①式化为2x="" +1|-|x="" ,="" -1|=2x=""> 4≤x <1.(3)当x ≤-1时,|x +1|-|x -1|=-2,①式无解.综上,x 的取值范围是34,+∞.9. (13分)设a >0且a ≠1,函数y =a 2x +2a x -1在[-1,1]上的最大值是14,求a 的值.解令t =a x (a >0且a ≠1),则原函数化为y =(t +1)2-2 (t >0).<="">①当0<="" =a=""><="" =a="">a ,此时f (t )在a ,1<="" =a="">a 上为增函数.所以f (t )max =f 1a =1a +12<="" =a="">-2=14. 所以1a +12=16,所以a =-15或a =1<="" =a="">3. 又因为a >0,所以a =13<="" =a="">.<="" =a="">②当a >1时,x ∈[-1,1],t =a x ∈<="" =a="">1a ,a ,<="" =a="">此时f (t )在<="" =a="">1a ,a 上是增函数.所以f (t )max =f (a )=(a +1)2-2=14,解得a =3(a =-5舍去).综上得a =1<="" =a="">3<="" =a="">或3.<="" =a="">B 组专项能力提升<="" =a="">一、选择题(每小题5分,共15分)<="" =a="">1.设函数f (x )=?<="" =a="">??<="" =a="">1<="" =a="">x (x >0),<="" =a="">x<="" =a="">(x ≤0),若F (x )=f (x )+x ,x ∈R ,则F (x )的值域为<="" =a="">( )<="" =a="">A .(-∞,1]<="" =a="">B .[2,+∞)<="" =a="">C .(-∞,1]∪[2,+∞)<="" =a="">D .(-∞,1)∪(2,+∞) 答案 C<="" =a="">解析当x >0时,F (x )=1<="" =a="">x<="" =a="">+x ≥2;<="" =a="">当x ≤0时,F (x )=e x +x ,根据指数函数与一次函数的单调性,F (x )是单调递增函数,F (x )≤F (0)=1,所以F (x )的值域为(-∞,1]∪[2,+∞).<="" =a="">2.(2012·山东)设函数f (x )=1<="" =a="">x<="" =a="">,g (x )=ax 2+bx (a ,b ∈R ,a ≠0).若y =f (x )的图象与y =g (x )<="" =a="">的图象有且仅有两个不同的公共点A (x 1,y 1),B (x 2,y 2),则下列判断正确的是<="" =a="">( )<="" =a="">A .当a <0时,x 1+x 2<0,y 1+y 2>0<="" =a="">B .当a <0时,x 1+x 2>0,y 1+y 2<0<="" =a="">C .当a >0时,x 1+x 2<0,y 1+y 2<0<="" =a="">D .当a >0时,x 1+x 2>0,y 1+y 2>0 答案 B <="" =a="">解析由题意知函数f (x )=1<="" =a="">x ,g (x )=ax 2+bx (a ,b ∈R ,a ≠0)的图象有且仅有两个公共<="" =a="">点A (x 1,y 1),B (x 2,y 2),等价于方程1<="" =a="">x =ax 2+bx (a ,b ∈R ,a ≠0)有两个不同的根x 1,x 2,<="" =a="">即方程ax 3+bx 2-1=0有两个不同非零实根x 1,x 2,因而可设ax 3+bx 2-1=a (x -x 1)2(x -x 2),<="" =a="">即ax 3+bx 2-1=a (x 3-2x 1x 2+x 21x -x 2x 2+2x 1x 2x -x 2x 2<="" =a="">1),<="" =a="">∴b =a (-2x 1-x 2),x 21+2x 1x 2=0,-ax 2x 21=-1,<="" =a="">∴x 1+2x 2=0,ax 2>0,当a >0时,x 2>0,∴x 1+x 2=-x 2<0,x 1<0,∴y 1+y 2=1x 1+1x 2=x 1+x 2x 1x 2>0.<="" =a="">当a <0时,x 2<0,∴x 1+x 2=-x 2>0,x 1>0,∴y 1+y 2=1x 1+1x 2=x 1+x 2<="" =a="">x 1x 2<="" =a=""><0.<="" =a="">3.(2012·上饶质检)设函数f (x )=2x 1+2x -1 <="" =a="">2<="" =a="">,[x ]表示不超过x 的最大整数,则函数y =[f (x )] 的值域是 ( ) A .{0,1} B .{0,-1} C .{-1,1} D .{1,1} 答案 B <="" =a="">解析 f (x )=1+2x -11+2x<="" =a="">-12=12-1<="" =a="">1+2x .<="" =a="">∵1+2x >1,∴f (x )的值域是-12,12. ∴y =[f (x )]的值域是{0,-1}.二、填空题(每小题4分,共12分)<="" =a="">4.函数f (x )=ax 2+2x -3+m (a >1)恒过点(1,10),则m =______.<="" =a="">答案 9<="" =a="">解析 f (x )=ax 2+2x -3+m 在x 2+2x -3=0时过定点(1,1+m )或(-3,1+m ),∴1+m =10,解得m =9.<="" =a="">5.若函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围是________.<="" =a="">答案 (1,+∞)<="" =a=""><="" =a=""><="" =a="">解析令a x -x -a =0即a x =x +a ,若01,y =a x 与y =x +a 的图象如图所示.6.关于x 的方程32x =2+3a5-a 有负数根,则实数a 的取值范围为__________.答案-23,34 解析由题意,得x <0,所以0<1,从而0<2+3a 5-a <1,解得-23<34.<="" bdsfid="709" p=""><34.<="" bdsfid="711" p="">三、解答题(13分)<34.<="" bdsfid="713" p="">7.设f (x )=e -<34.<="" bdsfid="715" p="">x a +a<34.<="" bdsfid="717" p="">e<34.<="" bdsfid="719" p="">-x 是定义在R 上的函数.<34.<="" bdsfid="720" p="">。