山东省潍坊市2021届高三上学期期中考试数学试题 Word版含答案
- 格式:docx
- 大小:188.22 KB
- 文档页数:11
2021届江西省南城县第一中学高三上学期期中考试数学(理)试题一、单选题1.集合2*{|70}A x x x x N =-<∈,,则*6{|}B y N y A y=∈∈,中子集的个数为( ) A. 4个 B. 8个 C. 15个 D. 16个 【答案】D【解析】2*{|70}A x x x x N =-<∈,, *6{|}B y N y A y=∈∈,,即子集的个数为4216=,选D. 2.设x , y R ∈,则“1x ≠或1y ≠”是“1xy ≠”的( )A. 充分不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】B【解析】因为“1xy =” 是“11x y ==且”的必要而不充分条件,所以“1x ≠或1y ≠”是“1xy ≠”的必要而不充分条件,选B.3.若n S 是等差数列{}n a 的前n 项和,且8310S S -=,则11S 的值为( ) A. 12 B. 18 C. 22 D. 44 【答案】C【解析】试题分析:∵834567810S S a a a a a -=++++=,由等差数列的性质可得, 6510a =,∴62a =,由等差数列的求和公式可得, ()1111161111222a a s a +===,故选C.【考点】1、等差数列性质;2、等差数列求和公式.4.若A 为ABC 的内角,且3sin25A =-,则cos 4A π⎛⎫+ ⎪⎝⎭等于( )A. 5-B. 5C. 5-D. 5【答案】A【解析】3sin25A =- ()32sin cos 0,0,,52A A A A πππ⎛⎫⇒=-<∈⇒∈ ⎪⎝⎭所以cos sin A A -===()2210225cos cos sin 4A A A π⎛⎫+=-=-⨯=- ⎪⎝⎭,选A. 5.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长五尺,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”根据上题的已知条件,若金箠由粗到细是均匀变化的,问第二尺与第四尺的重量之和为( ) A. 6斤 B. 9斤 C. 9.5斤 D. 12斤 【答案】A【解析】由题意得,金箠的每一尺的重量依次成等差数列,从细的一端开始,第一段重2斤,第五段重4斤,由等差中项性质可知,第三段重3斤,第二段加第四段重326⨯=斤.6.如图所示,点P 从点A 处出发,按逆时针方向沿边长为a 的正三角形ABC 运动一周,O 为ABC ∆的中心,设点P 走过的路程为x ,OAP ∆的面积为()f x (当,,A O P 三点共线时,记面积为0),则函数()f x 的图象大致为( )【答案】A【解析】试题分析:由于O 为等边三角形的中心,故O 到AB 边的距离为高的13,即313236a a ⋅=,故当P 在AB 上运动时,面积为()1332612ax f x x =⋅=为一次函数,排除B 选项.当O 在BC 上运动时,以OA 为底,高为32a x -,故面积为()32a f x OA x ⎛⎫=⋅- ⎪⎝⎭,也是一个一次函数,故选A.【考点】函数图象与性质.7.已知函数()y f x =是R 上的偶函数,当1x , ()20x ∈+∞,时,都有()()()12120x x f x f x ⎡⎤-⋅-<⎣⎦,设1lna π=, ()2ln b π=, ln c π=,则( )A. ()()()f a f b f c >>B. ()()()f b f a f c >>C. ()()()f c f a f b >>D.()()()f c f b f a >> 【答案】C【解析】由1x , ()20x ∈+∞,时,都有()()()12120x x f x f x ⎡⎤-⋅-<⎣⎦,得()y f x =在()0+∞,上单调递减, ()()()()()()2ln 1ln ln ln ln ln f b f f f a f c ππππππ>∴<<∴<=-=< 选C.8.已知函数()2ln 1||f x x x =-+与()2g x x =,则它们所有交点的横坐标之和为( ) A. 0 B. 2 C. 4 D. 8 【答案】C【解析】作函数2ln 1||,2y x y x x =-=-图像,由图可知所有交点的横坐标之和为224⨯=,选C.点睛:(1)图象法研究函数零点的关键是正确画出函数的图象.在画函数的图象时,常利用函数的性质,如周期性、对称性等,同时还要注意函数定义域的限制.(2)对于一般函数零点个数的判断问题,不仅要判断区间[a ,b ]上是否有f (a )·f (b )<0,还需考虑函数的单调性.9.在ABC 中,内角A , B , C 的对边分别为a , b , c ,若tan tan tan tan A B c bA B c--=+,则这个三角形必含有( )A. 90︒的内角B. 60︒的内角C. 45︒的内角D. 30︒的内角 【答案】B【解析】由tan tan tan tan A B c bA B c--=+得2tan 2sin cos sin 1cos tan tan sin cos sin cos sin 23B b B A B A A A B c A B B AC π=⇒=⇒=⇒=++选B.10.已知函数()f x 在()1-+∞,上单调,且函数()2y f x =-的图象关于1x =对称,若数列{}n a 是公差不为0的等差数列,且()()5051f a f a =,则{}n a 的前100项的和为( ) A. 50- B. 0 C. 200- D. 100- 【答案】D【解析】因为函数()2y f x =-的图象关于1x =对称,所以函数()f x 的图象关于1x =-对称,因为()()5051f a f a =,所以50512a a +=-,因此{}n a 的前100项的和为()()11005051100501002a a a a +=+=-,选D.点睛:1.在解决等差数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则a m+a n =a p+a q ”,可以减少运算量,提高解题速度.2.等差数列的性质可以分为三类:一是通项公式的变形,二是等差中项的变形,三是前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口. 11.已知点是圆上的动点,点是以坐标原点为圆心的单位圆上的动点,且,则的最小值为( )A. 4B. 5C. 6D. 7 【答案】B 【解析】由题设是圆的直径,则,故时,,应选答案B 。
2022-2021学年山东省威海市乳山一中高三(上)其次次自主练习数学试卷(文科)一、选择题:(本大题共10小题,每小题5分,共50分.在每题给出的四个选项中,只有一个是符合题目要求的.)1.设U={1,2,3,4,5},A={1,2,3},B={2,3,4},则下列结论中正确的是()A.A⊆B B.A∩B={2}C.A∪B={1,2,3,4,5} D.A∩∁U B={1}2.(若a=0.53,b=30.5,c=log30.5,则a,b,c,的大小关系是()A.b>a>c B.b>c>a C.a>b>c D.c>b>a3.下列命题中,假命题是()A.∀x∈R,2x﹣1>0 B.∃x∈R,sinx=C.∀x∈R,x2﹣x+1>0 D.∃x∈R,lgx=24.f(x)=﹣+log2x的一个零点落在下列哪个区间()A.(0,1)B.(1,2)C.(2,3)D.(3,4)5.若函数y=f(x)是函数y=a x(a>0,且a≠1)的反函数,且f(2)=1,则f(x)=()A.log2x B .C .D.2x﹣26.函数y=e|lnx|﹣|x﹣1|的图象大致是()A .B .C .D .7.已知函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈(﹣1,1]时,f(x)=|x|,则y=f(x)与y=log7x 的交点的个数为()A.4 B.5 C.6 D.78.若函数f(x)=lg(x2+ax﹣a﹣1)在区间[2,+∞)上单调递增,则实数a的取值范围是()A.(﹣3,+∞)B.[﹣3,+∞)C.(﹣4,+∞)D.[﹣4,+∞)9.曲线y=e x在点(2,e2)处的切线与坐标轴所围三角形的面积为()A .e2B.2e2C.e2D .e210.设函数f(x),g(x)在[a,b]上均可导,且f′(x)<g′(x),则当a<x<b时,有()A.f(x)>g(x)B.f(x)+g(a)<g(x)+f(a) C.f(x)<g(x)D.f(x)+g(b)<g(x)+f(b)二、填空题:(本大题5小题,每小题5分,共25分)11.函数f(x)=(m2﹣m﹣1)是幂函数,且在区间(0,+∞)上为减函数,则实数m 的值为.12.= .13.函数f(x)=x3+3ax2+3[(a+2)x+1]既有极大值又有微小值,则a的取值范围是.14.已知函数f(x)=若f(x)在(﹣∞,+∞)上单调递增,则实数a的取值范围为.15.定义在(﹣∞,+∞)上的偶函数f(x)满足f(x+1)=﹣f(x),且在[﹣1,0]上是增函数,下面是关于函数f(x)的推断:①f(x)的图象关于点P(,0)对称;②f(x)的图象关于直线x=1对称;③f(x)在[0,1]上是增函数;④f(2)=f(0).其中正确的推断有.(把你认为正确的推断都填上)三、解答题:(本大题共6题,满分75分.解答须写出文字说明、证明过程和演算步骤)16.已知函数f(x)=的定义域为集合A,B={x|x<a}.(1)若A⊆B,求实数a的取值范围;(2)若全集U={x|x≤4},a=﹣1,求∁U A及A∩(∁U B).17.已知a∈R,设命题p:函数f(x)=a x是R上的单调递减函数;命题q:函数g(x)=lg(2ax2+2ax+1)的定义域为R.若“p∨q”是真命题,“p∧q”是假命题,求实数a的取值范围.18.已知函数(1)争辩函数f(x)的奇偶性,并说明理由;(2)若函数f(x)在x∈[3,+∞)上为增函数,求a的取值范围.19.已知函数是定义在(﹣1,1)上的奇函数,且.(1)求函数f(x)的解析式;(2)推断f(x)的单调性,并证明你的结论;(3)解不等式f(t﹣1)+f(t)<0.20.有两个投资项目A,B,依据市场调查与猜测,A项目的利润与投资成正比,其关系如图甲,B项目的利润与投资的算术平方根成正比,其关系如图乙.(注:利润与投资单位:万元)(1)分别将A,B两个投资项目的利润表示为投资B={x|x<a}(万元)的函数关系式;(2)现将x(0≤x≤10)万元投资A项目,10﹣x万元投资B项目.h(x)表示投资A项目所得利润与投资B 项目所得利润之和.求h(x)的最大值,并指出x为何值时,h(x)取得最大值.21.已知函数f(x)=x2+ax﹣lnx,a∈R.(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;(2)令g(x)=f(x)﹣x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由.四、附加题22.已知函数f(x)=x3﹣x﹣.(Ⅰ)推断的单调性;(Ⅱ)求函数y=f(x)的零点的个数;(Ⅲ)令g(x)=+lnx,若函数y=g(x)在(0,)内有极值,求实数a的取值范围.2022-2021学年山东省威海市乳山一中高三(上)其次次自主练习数学试卷(文科)参考答案与试题解析一、选择题:(本大题共10小题,每小题5分,共50分.在每题给出的四个选项中,只有一个是符合题目要求的.)1.设U={1,2,3,4,5},A={1,2,3},B={2,3,4},则下列结论中正确的是()A.A⊆B B.A∩B={2}C.A∪B={1,2,3,4,5} D.A∩∁U B={1}考点:补集及其运算;交集及其运算.专题:计算题.分析:先求出集合的补集,看出两个集合的公共元素,做出两个集合的交集,得到结果.解答:解:∵∁U B={1,5},A={1,2,3},∴A∩∁U B={1}故选D.点评:本题考查两个集合之间的运算,是一个基础题,本题解题的关键是先写出集合的补集,在求两个集合的交集.2.(若a=0.53,b=30.5,c=log30.5,则a,b,c,的大小关系是()A.b>a>c B.b>c>a C.a>b>c D.c>b>a考点:对数值大小的比较.专题:函数的性质及应用.分析:利用指数函数与对数函数的单调性即可得到.解答:解:∵0<a=0.53<1,b=30.5>1,c=log30.5<0,∴b>a>c.故选:A.点评:本题考查了指数函数与对数函数的单调性,属于基础题.3.下列命题中,假命题是()A.∀x∈R,2x﹣1>0 B.∃x∈R,sinx=C.∀x∈R,x2﹣x+1>0 D.∃x∈R,lgx=2考点:特称命题;全称命题;命题的真假推断与应用.专题:简易规律.分析: 1.先理解特称命题与全称命题及存在量词与全称量词的含义,再进行推断.2.用符号“∀x”表示“对任意x”,用符号“∃x”表示“存在x”.含有全称量词的命题就称为全称命题,含有存在量词的命题称为特称命题.解答:解:由指数函数y=2x的图象与性质易知,∀x∈R,2x﹣1>0,故选项A为真命题.由正弦函数y=sinx的有界性知,﹣1≤sinx≤1,所以不存在x∈R,使得sinx=成立,故选项B为假命题.由x2﹣x+1=≥>0知,∀x∈R,x2﹣x+1>0,故选项C为真命题.由lgx=2知,x=102=100,即存在x=100,使lgx=2,故选项D为真命题.综上知,答案为B.点评: 1.像“全部”、“任意”、“每一个”等量词,常用符号“∀”表示;“有一个”、“有些”、“存在一个”等表示部分的量词,常用符号“∃”表示.全称命题的一般形式为:∀x∈M,p(x);特称命题的一般形式为:∃x0∈M,p(x0).2.推断全称命题为真,需由条件推出结论,留意应满足条件的任意性;推断全称命题为假,只需依据条件举出一个反例即可.推断特称命题为真,只需依据条件举出一个正例即可;推断特称命题为假,需由条件推出冲突才行.4.f(x)=﹣+log2x的一个零点落在下列哪个区间()A.(0,1)B.(1,2)C.(2,3)D.(3,4)考点:函数零点的判定定理.专题:计算题.分析:依据函数的实根存在定理,要验证函数的零点的位置,只要求出函数在区间的两个端点上的函数值,得到结果.解答:解:依据函数的实根存在定理得到f(1)•f(2)<0.故选B.点评:本题考查函数零点的判定定理,本题解题的关键是做出区间的两个端点的函数值,本题是一个基础题.5.若函数y=f(x)是函数y=a x(a>0,且a≠1)的反函数,且f(2)=1,则f(x)=()A.log2x B .C .D.2x﹣2考点:反函数.专题:计算题.分析:求出y=a x(a>0,且a≠1)的反函数即y=f(x),将已知点代入y=f(x),求出a,即确定出f(x).解答:解:函数y=a x(a>0,且a≠1)的反函数是f(x)=log a x,又f(2)=1,即log a2=1,所以,a=2,故f(x)=log2x,故选A.点评:本题考查指数函数与对数函数互为反函数、考查利用待定系数法求函数的解析式.6.函数y=e|lnx|﹣|x﹣1|的图象大致是()A .B .C .D .考点:函数的图象.专题:函数的性质及应用.分析:依据函数y=e|lnx|﹣|x﹣1|知必过点(1,1),再对函数进行求导观看其导数的符号进而知原函数的单调性,得到答案.解答:解:由y=e|lnx|﹣|x﹣1|可知:函数过点(1,1),当0<x<1时,y=e﹣lnx﹣1+x=+x﹣1,y′=﹣+1<0.∴y=e﹣lnx﹣1+x为减函数;若当x>1时,y=e lnx﹣x+1=1,故选:D.点评:本题主要考查函数的图象,娴熟把握函数的求导与函数单调性的关系,是解答的关键.7.已知函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈(﹣1,1]时,f(x)=|x|,则y=f(x)与y=log7x 的交点的个数为()A.4 B.5 C.6 D.7考点:函数的周期性;抽象函数及其应用.专题:函数的性质及应用.分析:先依据函数的周期性画出函数f(x)的图象,再画出对数函数y=log7x 的图象,数形结合即可得交点个数.解答:解:∵f(﹣x+2)=f(﹣x),可得 f(x+2)=f(x),即函数f(x)为以2为周期的周期函数,又∵x∈[﹣1,1]时,f(x)=|x|,∴函数f(x)的图象如图,函数y=log7x的图象如图,数形结合可得交点共有6个.故选:C.点评:本题考查了数形结合的思想方法,函数周期性及对数函数图象的性质,解题时要精确推理,认真画图,属于中档题.8.若函数f(x)=lg(x2+ax﹣a﹣1)在区间[2,+∞)上单调递增,则实数a的取值范围是()A.(﹣3,+∞)B.[﹣3,+∞)C.(﹣4,+∞)D.[﹣4,+∞)考点:复合函数的单调性.专题:函数的性质及应用.分析:由复合函数为增函数,且外函数为增函数,则只需内函数在区间[2,+∞)上单调递增且其最小值大于0,由此列不等式组求解a的范围.解答:解:令t=x2+ax﹣a﹣1,∵函数f(x)=lg(x2+ax﹣a﹣1)在区间[2,+∞)上单调递增,又外层函数y=lgt为定义域内的增函数,∴需要内层函数t=x2+ax﹣a﹣1在区间[2,+∞)上单调递增,且其最小值大于0,即,解得:a>﹣3.∴实数a的取值范围是(﹣3,+∞).故选:A.点评:本题考查了复合函数的单调性,关键是留意真数大于0,是中档题.9.曲线y=e x在点(2,e2)处的切线与坐标轴所围三角形的面积为()A .e2B.2e2C.e2D .e2考点:利用导数争辩曲线上某点切线方程.专题:计算题.分析:欲切线与坐标轴所围成的三角形的面积,只须求出切线在坐标轴上的截距即可,故先利用导数求出在x=2处的导函数值,再结合导数的几何意义即可求出切线的斜率.最终求出切线的方程,从而问题解决.解答:解析:依题意得y′=e x,因此曲线y=e x在点A(2,e2)处的切线的斜率等于e2,相应的切线方程是y﹣e2=e2(x﹣2),当x=0时,y=﹣e2即y=0时,x=1,∴切线与坐标轴所围成的三角形的面积为:S=×e2×1=.故选D.点评:本小题主要考查直线的方程、三角形的面积、导数的几何意义、利用导数争辩曲线上某点切线方程等基础学问,考查运算求解力量.属于基础题.10.设函数f(x),g(x)在[a,b]上均可导,且f′(x)<g′(x),则当a<x<b时,有()A.f(x)>g(x)B.f(x)+g(a)<g(x)+f(a) C.f(x)<g(x)D.f(x)+g(b)<g(x)+f(b)考点:导数的运算.专题:函数的性质及应用.分析:构造函数,设F(x)=f(x)﹣g(x),由于函数f(x),g(x)在[a,b]上均可导,且f′(x)<g′(x),所以F(x)在[a,b]上可导,并且F′(x)<0,得到函数的单调性,利用单调性得到F(a)<F(x)<F(b),即f(x)﹣g(x)<f(a)﹣g(a),得到选项.解答:解:设F(x)=f(x)﹣g(x),由于函数f(x),g(x)在[a,b]上均可导,且f′(x)<g′(x),所以F(x)在[a,b]上可导,并且F′(x)<0,所以F(x)在[a,b]上是减函数,所以F(a)<F(x)<F(b),即f(x)﹣g(x)<f(a)﹣g(a),f(x)+g(a)<g(x)+f(a);故选B.点评:本题考查了函数的单调性,关键构造函数,利用求导推断函数的单调性.二、填空题:(本大题5小题,每小题5分,共25分)11.函数f(x)=(m2﹣m﹣1)是幂函数,且在区间(0,+∞)上为减函数,则实数m 的值为 2 .考点:幂函数的单调性、奇偶性及其应用;幂函数的概念、解析式、定义域、值域.专题:函数的性质及应用.分析:依据幂函数的定义,令幂的系数为1,列出方程求出m的值,将m的值代入f(x),推断出f(x)的单调性,选出符和题意的m的值.解答:解:f(x)=(m2﹣m﹣1)xm2﹣2m﹣3是幂函数∴m2﹣m﹣1=1解得m=2或m=﹣1当m=2时,f(x)=x﹣3在x∈(0,+∞)上是减函数,满足题意.当m=﹣1时,f(x)=x0在x∈(0,+∞)上不是减函数,不满足题意.故答案为:2.点评:解决幂函数有关的问题,常利用幂函数的定义:形如y=xα(α为常数)的为幂函数;幂函数的单调性与指数符号的关系.是基础题.12.= .考点:对数的运算性质.专题:函数的性质及应用.分析:利用对数的运算性质把要求的式子化为 lg,进一步运算求得结果.解答:解:∵=lg﹣lg+lg=lg﹣lg2=lg﹣2lg2=lg=lg=lg=lg10=,故答案为:.点评:本题主要考查对数的运算性质的应用,属于基础题.13.函数f(x)=x3+3ax2+3[(a+2)x+1]既有极大值又有微小值,则a的取值范围是{a|a<﹣1或a>2} .考点:函数在某点取得极值的条件.专题:导数的综合应用.分析:由已知得f′(x)=3x2+6ax+3(a+2),由题意知△=36a2﹣36(a+2)>0,由此能求出a的取值范围.解答:解:∵f(x)=x3+3ax2+3[(a+2)x+1],∴f′(x)=3x2+6ax+3(a+2),由题意知△=36a2﹣36(a+2)>0,解得a<﹣1或a>2.故答案为:{a|a<﹣1或a>2}.点评:本题考查函数的极大值和微小值的求法,考查实数的取值范围的求法,是中档题,解题时要认真审题,留意导数性质的合理运用.14.已知函数f(x)=若f(x)在(﹣∞,+∞)上单调递增,则实数a的取值范围为2<a≤3 .考点:函数单调性的性质.专题:常规题型.分析:让两段均为增函数且两段的端点值须满足前一段的最大值小于或等于后一段的最小值即可解答:解:∵f(x)在(﹣∞,+∞)上单调递增∴须⇒2<a≤3,故答案为:2<a≤3点评:分段函数在定义域内递增,须每一段递增,且前一段的最大值小于或等于后一段的最小值.15.定义在(﹣∞,+∞)上的偶函数f(x)满足f(x+1)=﹣f(x),且在[﹣1,0]上是增函数,下面是关于函数f(x)的推断:①f(x)的图象关于点P(,0)对称;②f(x)的图象关于直线x=1对称;③f(x)在[0,1]上是增函数;④f(2)=f(0).其中正确的推断有①、②、④.(把你认为正确的推断都填上)考点:奇偶函数图象的对称性.专题:规律型;函数的性质及应用.分析:由f(﹣x)=f(x),f(x+1)=﹣f(x)可得f(1+x)=﹣f(﹣x),则可求f(x)图象关于点对称;f(x)图象关于y轴(x=0)对称,可得x=1也是图象的一条对称轴,故可推断①②;由f(x)为偶函数且在[﹣1,0]上单增可得f(x)在[0,1]上是减函数;由f(x+1)=﹣f(x)可得f(2+x)=﹣f(x+1)=f(x),故f(2)=f(0).解答:解:由f(x)为偶函数可得f(﹣x)=f(x),由f(x+1)=﹣f(x)可得f(1+x)=﹣f(﹣x),则f (x)图象关于点对称,即①正确;f(x)图象关于y轴(x=0)对称,故x=1也是图象的一条对称轴,故②正确;由f(x)为偶函数且在[﹣1,0]上单增可得f(x)在[0,1]上是减函数,即③错;由f(x+1)=﹣f(x)可得f(2+x)=﹣f(x+1)=f(x),∴f(2)=f(0),即④正确故答案为:①②④点评:本题考查函数的对称性,函数的单调性,函数奇偶性的应用,考查同学分析问题解决问题的力量,是基础题.三、解答题:(本大题共6题,满分75分.解答须写出文字说明、证明过程和演算步骤)16.已知函数f(x)=的定义域为集合A,B={x|x<a}.(1)若A⊆B,求实数a的取值范围;(2)若全集U={x|x≤4},a=﹣1,求∁U A及A∩(∁U B).考点:函数的定义域及其求法;交、并、补集的混合运算.专题:计算题.分析:(1)首先求出集合A,依据A⊆B,利用子集的概念,考虑集合端点值列式求得a的范围;(2)直接运用补集及交集的概念进行求解.解答:解:(1)要使函数f(x)=有意义,则,解得:﹣2<x≤3.所以,A={x|﹣2<x≤3}.又由于B={x|x<a},要使A⊆B,则a>3.(2)由于U={x|x≤4},A={x|﹣2<x≤3},所以C U A={x|x≤﹣2或3<x≤4}.又由于a=﹣1,所以B={x|x<﹣1}.所以C U B={﹣1≤x≤4},所以,A∩(C U B)=A={x|﹣2<x≤3}∩{﹣1≤x≤4}={x|﹣1≤x≤3}.点评:本题考查了函数的定义域及其求法,考查了交集和补集的混合运算,求解集合的运算时,利用数轴分析能起到事半功倍的效果,此题是基础题.17.已知a∈R,设命题p:函数f(x)=a x是R上的单调递减函数;命题q:函数g(x)=lg(2ax2+2ax+1)的定义域为R.若“p∨q”是真命题,“p∧q”是假命题,求实数a的取值范围.考点:复合命题的真假.专题:函数的性质及应用;简易规律.分析:本题考查的学问点是复合命题的真假判定,解决的方法是先推断组成复合命题的简洁命题的真假,再依据真值表进行推断.命题p为真命题时,指数函数f(x)=a x的底数0<a<1,命题q为真命题时,对数函数g(x)=lg(2ax2+2ax+1)的真数2ax2+2ax+1>0在R上恒成立,求得0≤a<2.p∨q是真命题,p∧q是假命题,所以p,q一真一假,分类争辩即可.解答:解:当命题p为真命题时,由于函数f(x)=a x是R上的单调递减函数,所以0<a<1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)当命题q为真命题时,由于函数g(x)=lg(2ax2+2ax+1)的定义域为R所以2ax2+2ax+1>0在R上恒成立当a=0时,1>0在R上恒成立﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)当所以,当命题q为真命题时,0≤a<2﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)由于p∨q是真命题,p∧q是假命题,所以p,q一真一假当﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)当﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分)综上所述a的取值范围是1≤a<2或a=0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)点评:解题关键是由p∨q是真命题,p∧q是假命题,得p,q一真一假18.已知函数(1)争辩函数f(x)的奇偶性,并说明理由;(2)若函数f(x)在x∈[3,+∞)上为增函数,求a的取值范围.考点:函数奇偶性的推断;函数单调性的性质.专题:计算题.分析:(1)先推断函数的定义域关于原点对称,再利用奇偶函数的定义,留意对参数进行争辩;(2)函数f(x)在x∈[3,+∞)上为增函数,可转化为导函数大于等于0在x∈[3,+∞)上恒成立,从而可解.解答:解:(1)函数的定义域关于原点对称,①当a=0时,函数为偶函数;②当a≠0时,函数非奇非偶.(2)∵函数f(x)在x∈[3,+∞)上为增函数∴在x∈[3,+∞)上恒成立∴∴点评:本题以函数为载体,考查函数的性质,考查恒成立问题,关键是把握定义,利用导数解决恒成立问题.19.已知函数是定义在(﹣1,1)上的奇函数,且.(1)求函数f(x)的解析式;(2)推断f(x)的单调性,并证明你的结论;(3)解不等式f(t﹣1)+f(t)<0.考点:奇偶性与单调性的综合.专题:函数的性质及应用.分析:(1)由f(0)=0,解得b的值,再依据f ()=﹣,解得a的值,从而求得f(x)的解析式.(2)设﹣1<x1<x2<1,求得f(x1)﹣f(x2)=>0,即f(x1)﹣f(x2)>0,可得函数f(x)在(﹣1,1)上是减函数.(3)由不等式f(t﹣1)+f(t)<0,可得f(t﹣1)<f(﹣t),可得,由此求得t的范围解答:解:(1)由奇函数的性质可得f(0)=0,解得b=0,∴f(x)=.再依据f ()===﹣,解得a=﹣1,∴f(x)=.(2)设﹣1<x1<x2<1,∵f(x1)﹣f(x2)=﹣==,而由题设可得 x2﹣x1>0,1﹣x1x2>0,∴>0,故 f(x1)﹣f(x2)>0,故函数f(x)在(﹣1,1)上是减函数.(3)由不等式f(t﹣1)+f(t)<0,可得f(t﹣1)<﹣f(t)=f(﹣t),∴,解得<t<1,故t 的范围为(,1).点评:本题主要考查函数的单调性和奇偶性的综合应用,属于中档题.20.有两个投资项目A,B,依据市场调查与猜测,A项目的利润与投资成正比,其关系如图甲,B项目的利润与投资的算术平方根成正比,其关系如图乙.(注:利润与投资单位:万元)(1)分别将A,B两个投资项目的利润表示为投资B={x|x<a}(万元)的函数关系式;(2)现将x(0≤x≤10)万元投资A项目,10﹣x万元投资B项目.h(x)表示投资A项目所得利润与投资B 项目所得利润之和.求h(x)的最大值,并指出x为何值时,h(x)取得最大值.考点:函数模型的选择与应用;函数解析式的求解及常用方法.专题:计算题;应用题;函数的性质及应用.分析:(1)由题意,设,代入求出参数值即可,(2)化简,利用换元法可得y=.从而求最值.解答:解:(1)设投资为x万元,A项目的利润为f(x)万元,B项目的利润为g(x)万元.由题设.由图知.又∵,∴.从而.(2)令=.当,答:当A项目投入3.75万元,B项目投入6.25万元时,最大利润为万元.点评:本题考查了同学将实际问题转化为数学问题的力量及换元法与配方法求函数的最值,属于中档题.21.已知函数f(x)=x2+ax﹣lnx,a∈R.(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;(2)令g(x)=f(x)﹣x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由.考点:函数单调性的性质.专题:分类争辩;转化思想.分析:(1)由函数f(x)在[1,2]上是减函数得在[1,2]上恒成立,即有h(x)=2x2+ax﹣1≤0成立求解.(2)先假设存在实数a ,求导得=,a在系数位置对它进行争辩,结合x∈(0,e]分当a≤0时,当时,当时三种状况进行.解答:解:(1)在[1,2]上恒成立,令h(x)=2x2+ax﹣1,有得,得(6分)(2)假设存在实数a,使g(x)=ax﹣lnx(x∈(0,e])有最小值3,=(7分)当a≤0时,g(x)在(0,e]上单调递减,g(x)min=g(e)=ae﹣1=3,(舍去),∴g(x)无最小值.当时,g(x )在上单调递减,在上单调递增∴,a=e2,满足条件.(11分)当时,g(x)在(0,e]上单调递减,g(x)min=g(e)=ae﹣1=3,(舍去),∴f(x)无最小值.(13分)综上,存在实数a=e2,使得当x∈(0,e]时g(x)有最小值3.(14分)点评:本题主要考查转化化归、分类争辩等思想的应用,函数若为单调函数,则转化为不等式恒成立问题,解决时往往又转化求函数最值问题.四、附加题22.已知函数f(x)=x3﹣x ﹣.(Ⅰ)推断的单调性;(Ⅱ)求函数y=f(x)的零点的个数;(Ⅲ)令g(x)=+lnx,若函数y=g(x)在(0,)内有极值,求实数a的取值范围.考点:利用导数争辩函数的单调性;利用导数争辩函数的极值;利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:(Ⅰ)化简,并求导数,留意定义域:(0,+∞),求出单调区间;(Ⅱ)运用零点存在定理说明在(1,2)内有零点,再说明f(x)在(0,+∞)上有且只有两个零点;(Ⅲ)对g(x)化简,并求出导数,整理合并,再设出h(x)=x2﹣(2+a)x+1,说明h(x)=0的两个根,有一个在(0,)内,另一个大于e,由于h(0)=1,通过h ()>0解出a即可.解答:解:(Ⅰ)设φ(x)==x2﹣1﹣(x>0),则φ'(x)=2x+>0,∴φ(x)在(0,+∞)上单调递增;(Ⅱ)∵φ(1)=﹣1<0,φ(2)=3﹣>0,且φ(x)在(0,+∞)上单调递增,∴φ(x)在(1,2)内有零点,又f(x)=x3﹣x ﹣=x•φ(x),明显x=0为f(x)的一个零点,∴f(x)在(0,+∞)上有且只有两个零点;(Ⅲ)g(x)=+lnx=lnx+,则g'(x)==,设h(x)=x2﹣(2+a)x+1,则h(x)=0有两个不同的根x1,x2,且有一根在(0,)内,不妨设0<x1<,由于x1x2=1,即x2>e,由于h(0)=1,故只需h ()<0即可,即﹣(2+a )+1<0,解得a>e+﹣2,∴实数a的取值范围是(e+﹣2,+∞).点评:本题主要考查导数在函数中的综合运用:求单调区间,求极值,同时考查零点存在定理和二次方程实根的分布,是一道综合题.。
2021-2022学年天津市红桥区高三(上)期中数学试卷(文科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={1,2,4,5,6},B={1,3,5},则集合A∩B=( )A.{1,3,5} B.{1,5} C.{2,4,6} D.{1,2,3,4,5.6}2.i 是虚数单位,复数=( )A .B .C .D .3.命题“对∀∈R,x2﹣3x+5≤0”的否定是( )A.∃x0∈R,x02﹣3x0+5≤0 B.∃x0∈R,x02﹣3x0+5>0C.∀x∈R,x2﹣3x+5≤0 D.∀x0∈R,x02﹣3x0+5>04.某程序框图如图所示,则输出的结果S等于( )A.26 B.57 C.60 D.615.设a=log0.32,b=log32,c=20.3,则这三个数的大小关系是( )A.b>c>a B.a>c>b C.a>b>c D.c>b>a6.已知=(1,2),=(0,1),=(k,﹣2),若(+2)⊥,则k=( )A.2 B.﹣2 C.8 D.﹣87.将函数y=sin(x+)图象上各点的横坐标缩短到原来的倍(纵坐标不变),再向右平移个单位,那么所得图象的一条对称轴方程为( )A.x=﹣B.x=﹣C.x=D.x=8.如图,在三角形ABC中,已知AB=2,AC=3,∠BAC=θ,点D为BC 的三等分点.则的取值范围为( )A .B .C .D .二、填空题:本大题共6个小题,每小题5分,共30分.9.设全集U={1,2,3,4,5,6},集合A={1,3,5},B={2,3},则A∩(∁U B)=__________.10.计算的值为__________.11.计算:log525+lg=__________.12.在△ABC中,AC=,BC=2,B=60°,则△ABC的面积等于__________.13.设函数f(x)=,则f(f(﹣4))的值是__________.14.如图,△ABC为圆的内接三角形,BD为圆的弦,且BD∥AC.过点A作圆的切线与DB的延长线交于点E,AD与BC交于点F.若AB=AC,AE=3,BD=4则线段AF的长为__________.三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知集合A={x|(x﹣2)[x﹣(3a+1)]<0},B={x|2a<x<a2+1}.(Ⅰ)当a=﹣2时,求A∪B;(Ⅱ)求使B⊆A的实数a的取值范围.16.(13分)在等差数列{a n}中,已知a1+a4+a7=9,a3+a6+a9=21,(Ⅰ)求数列{a n}的通项a n;(Ⅱ)求数列{a n}的前9项和S9;(Ⅲ)若,求数列{c n}的前n项和T n.17.(13分)已知cosθ=,(Ⅰ)求sin2θ的值;(Ⅱ)求的值;(Ⅲ)求的值.18.(13分)已知函数f(x)=sin2ωx+cos2ωx.(ω>0)的最小正周期为4π,(Ⅰ)求ω的值及函数f(x)的单调递减区间;(Ⅱ)将函数y=f(x)的图象上各点的横坐标向右平行移动个单位长度,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在上的最大值和最小值.19.(14分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=2,f(x+1)﹣f(x)=2x﹣1(Ⅰ)求函数f(x)的解析式;(Ⅱ)当x∈[﹣1,2]时,求函数的最大值和最小值.(Ⅲ)若函数g(x)=f(x)﹣mx的两个零点分别在区间(﹣1,2)和(2,4)内,求m的取值范围.20.(14分)已知:已知函数f(x)=﹣+2ax,(Ⅰ)若曲线y=f(x)在点P(2,f(2))处的切线的斜率为﹣6,求实数a;(Ⅱ)若a=1,求f(x)的极值;(Ⅲ)当0<a<2时,f(x)在[1,4]上的最小值为﹣,求f(x)在该区间上的最大值.2021-2022学年天津市红桥区高三(上)期中数学试卷(文科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={1,2,4,5,6},B={1,3,5},则集合A∩B=( )A.{1,3,5} B.{1,5} C.{2,4,6} D.{1,2,3,4,5.6}【考点】交集及其运算.【专题】计算题;集合.【分析】由A与B,求出两集合的交集即可.【解答】解:∵A={1,2,4,5,6},B={1,3,5},∴A∩B={1,5},故选:B.【点评】此题考查了交集及其运算,娴熟把握交集的定义是解本题的关键.2.i 是虚数单位,复数=( )A .B .C .D .【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】利用复数的运算法则、共轭复数的定义即可得出.【解答】解:复数==,故选:C.【点评】本题考查了复数的运算法则、共轭复数的定义,考查了推理力量与计算力量,属于基础题.3.命题“对∀∈R,x2﹣3x+5≤0”的否定是( )A.∃x0∈R,x02﹣3x0+5≤0 B.∃x0∈R,x02﹣3x0+5>0C.∀x∈R,x2﹣3x+5≤0 D.∀x0∈R,x02﹣3x0+5>0【考点】命题的否定.【专题】计算题;规律型;简易规律.【分析】直接利用全称命题的否定是特称命题写出结果即可.【解答】解:由于全称命题的否定是特称命题,所以,命题“对∀∈R,x2﹣3x+5≤0”的否定是:∃x0∈R,x02﹣3x0+5>0.故选:B.【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.4.某程序框图如图所示,则输出的结果S等于( ) A.26 B.57 C.60 D.61【考点】程序框图.【专题】计算题;图表型;分类争辩;试验法;算法和程序框图.【分析】分析程序中各变量、各语句的作用,再依据流程图所示的挨次,可知:该程序的作用是利用循环计算并输出S值.模拟程序的运行过程,用表格对程序运行过程中各变量的值进行分析,不难得到最终的输出结果.【解答】解:程序在运行过程中各变量的值如下表示:k S 是否连续循环循环前1 1/第一圈2 4 是其次圈3 11 是第三圈4 26 是第四圈5 57 否故最终的输出结果为:57故选:B.【点评】依据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,属于基础题.5.设a=log0.32,b=log32,c=20.3,则这三个数的大小关系是( )A.b>c>a B.a>c>b C.a>b>c D.c>b>a【考点】对数值大小的比较.【专题】转化思想;数学模型法;函数的性质及应用.【分析】利用指数函数与对数函数的单调性即可得出.【解答】解:∵a=log0.32<0,0<b=log32<1,c=20.3>1,∴c>b>a.故选:D.【点评】本题考查了指数函数与对数函数的单调性,考查了推理力量与计算力量,属于中档题.6.已知=(1,2),=(0,1),=(k,﹣2),若(+2)⊥,则k=( )A.2 B.﹣2 C.8 D.﹣8【考点】数量积推断两个平面对量的垂直关系.【专题】平面对量及应用.【分析】由向量的坐标运算易得的坐标,进而由可得它们的数量积为0,可得关于k的方程,解之可得答案.【解答】解:∵=(1,2),=(0,1),∴=(1,4),又由于,所以=k﹣8=0,解得k=8,故选C【点评】本题考查平面对量数量积和向量的垂直关系,属基础题.7.将函数y=sin(x+)图象上各点的横坐标缩短到原来的倍(纵坐标不变),再向右平移个单位,那么所得图象的一条对称轴方程为( )A.x=﹣B.x=﹣C.x=D.x=【考点】函数y=Asin(ωx+φ)的图象变换.【专题】三角函数的图像与性质.【分析】依据函数y=Asin(ωx+φ)的图象变换规律,余弦函数的图象的对称性,可得结论.【解答】解:将函数y=sin(x+)图象上各点的横坐标缩短到原来的倍(纵坐标不变),可得函数y=sin(2x+)的图象,再向右平移个单位,那么所得图象对应的函数解析式为y=sin[2(x ﹣)+]=sin(2x ﹣)=﹣cos2x,故最终所得函数的图象的一条对称轴方程为2x=kπ,即x=,k∈z,结合所给的选项可得只有B满足条件,故选:B.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,余弦函数的图象的对称性,属于中档题.8.如图,在三角形ABC中,已知AB=2,AC=3,∠BAC=θ,点D为BC 的三等分点.则的取值范围为( )A .B .C .D .【考点】平面对量数量积的运算.【专题】计算题;转化思想;向量法;平面对量及应用.【分析】直接利用向量的运算法则和数量积运算把化为2cos,然后由﹣1<cosθ<1求得答案.【解答】解:∵====,∴=()•()=﹣==2cos.∵﹣1<cosθ<1,∴﹣<2cosθ+<.∴∈(﹣).故选:D.【点评】本题考查平面对量的数量积运算,娴熟把握向量的运算法则和数量积运算是解题的关键,是中档题.二、填空题:本大题共6个小题,每小题5分,共30分.9.设全集U={1,2,3,4,5,6},集合A={1,3,5},B={2,3},则A∩(∁U B)={1,5}.【考点】交、并、补集的混合运算.【专题】集合思想;综合法;集合.【分析】进行集合的补集、交集运算即可.【解答】解:∁U B={1,4,5,6};∴A∩(∁U B)={1,5}.故答案为:{1,5}.【点评】考查列举法表示集合,全集的概念,以及补集、交集的运算.10.计算的值为﹣.【考点】运用诱导公式化简求值.【专题】三角函数的求值.【分析】所求式子中的角变形后,利用诱导公式化简,再利用特殊角的三角函数值计算即可得到结果.【解答】解:cos=cos(π+)=﹣cos=﹣.故答案为:﹣【点评】此题考查了运用诱导公式化简求值,娴熟把握诱导公式是解本题的关键.11.计算:log525+lg =.【考点】对数的运算性质.【专题】计算题;函数思想;函数的性质及应用.【分析】直接利用导数的运算法则化简求解即可.【解答】解:log525+lg=2﹣2++1=故答案为:.【点评】本题考查导数的运算法则的应用,考查计算力量.12.在△ABC中,AC=,BC=2,B=60°,则△ABC 的面积等于.【考点】余弦定理;三角形的面积公式.【专题】计算题;解三角形.【分析】通过余弦定理求出AB的长,然后利用三角形的面积公式求解即可.【解答】解:设AB=c,在△ABC中,由余弦定理知AC2=AB2+BC2﹣2AB•BCcosB,即7=c2+4﹣2×2×c×cos60°,c2﹣2c﹣3=0,又c>0,∴c=3.S△ABC =AB•BCsinB=BC•h可知S△ABC ==.故答案为:【点评】本题考查三角形的面积求法,余弦定理的应用,考查计算力量.13.设函数f(x)=,则f(f(﹣4))的值是4.【考点】函数的值.【专题】计算题;函数思想;函数的性质及应用.【分析】直接利用分段函数求解函数值即可.【解答】解:函数f(x)=,则f(f(﹣4))=f(16)=log216=4.故答案为:4.【点评】本题考查分段函数的应用,函数值的求法,考查计算力量.14.如图,△ABC为圆的内接三角形,BD为圆的弦,且BD∥AC.过点A作圆的切线与DB 的延长线交于点E,AD与BC交于点F.若AB=AC,AE=3,BD=4则线段AF的长为.【考点】与圆有关的比例线段.【专题】综合题;选作题;转化思想;综合法.【分析】由切割线定理得到AE2=EB•ED=EB(EB+BD),求出EB=5,由已知条件推导出四边形AEBC 是平行四边形,从而得到AC=AB=BE=5,BC=AE=3,由△AFC∽△DFB,能求出CF的长.【解答】解:∵AB=AC,AE=3,BD=4,梯形ABCD中,AC∥BD,BD=4,由切割线定理可知:AE2=EB•ED=EB(EB+BD),即45=BE(BE+4),解得EB=5,∵AC∥BD,∴AC∥BE,∵过点A作圆的切线与DB的延长线交于点E,∴∠BAE=∠C,∵AB=AC,∴∠ABC=∠C,∴∠ABC=∠BAE,∴AE∥BC,∴四边形AEBC 是平行四边形,∴EB=AC ,∴AC=AB=BE=5,∴BC=AE=3,∵△AFC∽△DFB,∴=,即=,解得CF=.故答案为:.【点评】本题考查与圆有关的线段长的求法,是中档题,解题时要认真审题,留意切割线定理的合理运用.三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知集合A={x|(x﹣2)[x﹣(3a+1)]<0},B={x|2a<x<a2+1}.(Ⅰ)当a=﹣2时,求A∪B;(Ⅱ)求使B⊆A的实数a的取值范围.【考点】集合的包含关系推断及应用;并集及其运算.【专题】分类争辩;分类法;集合.【分析】由已知中集合A={x|(x﹣2)(x﹣3a﹣1)<0},集合B={x|(x﹣2a)(x﹣a2﹣1)<0},我们先对a 进行分类争辩后,求出集合A,B,再由B⊆A,我们易构造出一个关于a的不等式组,解不等式组,即可得到实数a的取值范围【解答】(Ⅰ)解:当a=﹣2时,A={x|﹣5<x<2},B={x|﹣4<x<5},∴A∪B={x|﹣5<x<5}.(Ⅱ)∵B={x|2a<x<a2+1}当时,2>3a+1,A={x|3a+1<x<2},﹣﹣﹣﹣﹣﹣﹣﹣要使B⊆A必需此时a=﹣1,当时,A=ϕ,使B⊆A的a不存在;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣当时,2<3a+1,A={x|2<x<3a+1}要使B⊆A必需,故1≤a≤3.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣综上可知,使的实数a的取值范围为[1,3]∪{﹣1}.﹣﹣﹣﹣﹣(13分)【点评】本题考查集合的基本运算,集合关系中的参数取值问题,考查计算力量,分类争辩思想的应用16.(13分)在等差数列{a n}中,已知a1+a4+a7=9,a3+a6+a9=21,(Ⅰ)求数列{a n}的通项a n;(Ⅱ)求数列{a n}的前9项和S9;(Ⅲ)若,求数列{c n}的前n项和T n.【考点】数列的求和;等差数列的通项公式.【专题】计算题;方程思想;数学模型法;等差数列与等比数列.【分析】(I)利用等差数列的通项公式即可得出;(II)利用等差数列的前n项和公式即可得出;(III)利用等比数列的前n项和公式即可得出.【解答】解:(Ⅰ)设等差数列{a n}的公差为d,∵a1+a4+a7=9,a3+a6+a9=21,得,解得a1=﹣3,d=2,∴a n=2n﹣5.(Ⅱ)S9=9a1+36d=9×(﹣3)+36×2=45.(Ⅲ)由(Ⅰ),∴{c n}是首项c1=1,公比q=4的等比数列,∴.【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式,考查了推理力量与计算力量,属于中档题.17.(13分)已知cosθ=,(Ⅰ)求sin2θ的值;(Ⅱ)求的值;(Ⅲ)求的值.【考点】两角和与差的正切函数;两角和与差的余弦函数.【专题】计算题;转化思想;分析法;三角函数的求值.【分析】(Ⅰ)利用同角三角函数关系式可求sinθ的值,依据二倍角的正弦函数公式即可求值.(Ⅱ)利用(Ⅰ)的结论及两角和的余弦函数公式即可求值得解.(Ⅲ)利用同角三角函数关系式可求tanθ的值,依据两角和的正切函数公式即可求值.【解答】(本小题满分13分)解:(Ⅰ)∵,∴.﹣﹣﹣﹣﹣﹣(公式,结论1分)﹣﹣﹣﹣∴.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(公式,结论1分)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)∴=cosθcos﹣sin ==.﹣﹣﹣﹣(公式,函数值,结论1分)﹣﹣(Ⅲ)∵,﹣﹣﹣﹣﹣﹣﹣(公式1分)∴.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(公式,结论1分)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(13分)【点评】本题主要考查了同角三角函数关系式,二倍角的正弦函数公式、余弦函数公式、正切函数公式的应用,考查了计算力量,属于基础题.18.(13分)已知函数f(x)=sin2ωx+cos2ωx.(ω>0)的最小正周期为4π,(Ⅰ)求ω的值及函数f(x)的单调递减区间;(Ⅱ)将函数y=f(x )的图象上各点的横坐标向右平行移动个单位长度,纵坐标不变,得到函数y=g(x)的图象,求函数g(x )在上的最大值和最小值.【考点】函数y=Asin(ωx+φ)的图象变换;三角函数中的恒等变换应用.【专题】计算题;数形结合;数形结合法;三角函数的图像与性质.【分析】(Ⅰ)利用两角和的正弦函数公式化简可得解析式:f(x)=sin(2ωx+),由周期公式可求ω,解得函数解析式,由,k∈Z*,即可解得f(x)的单调递减区间.(Ⅱ)由函数y=Asin(ωx+φ)的图象变换规律可得解析式,由正弦函数的图象和性质,即可求得函数g(x )在上的最大值和最小值.【解答】(本小题满分13分)解:(Ⅰ)由于,(公式2分)又由于,所以;(公式,结论1分)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣解得:.当,k∈Z*,函数f(x)单调递减,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣所以,函数f(x )的单调递减区间为k∈Z*.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)将函数y=f(x )的图象上各点的横坐标向右平行移动个单位长度,纵坐标不变,得到函数y=g(x)的图象,,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣g(x )在上单调递增,在上单调递减,,,所以g(x )在上最大值为,最小值为.(单调性,结论各1分)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(13分)【点评】本题主要考查了两角和的正弦函数公式,周期公式,函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象和性质的应用,属于中档题.19.(14分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=2,f(x+1)﹣f(x)=2x﹣1(Ⅰ)求函数f(x)的解析式;(Ⅱ)当x∈[﹣1,2]时,求函数的最大值和最小值.(Ⅲ)若函数g(x)=f(x)﹣mx的两个零点分别在区间(﹣1,2)和(2,4)内,求m的取值范围.【考点】函数的最值及其几何意义;函数零点的判定定理.【专题】计算题;函数思想;转化思想;解题方法;函数的性质及应用.【分析】(Ⅰ)利用f(0)=2,f(x+1)﹣f(x)=2x﹣1,直接求出a、b、c,然后求出函数的解析式.(Ⅱ)利用二次函数的对称轴与区间的关系,直接求解函数的最值.(Ⅲ)利用g(x)的两个零点分别在区间(﹣1,2)和(2,4)内,列出不等式组,即可求出M的范围.【解答】(本小题满分14分)解:(Ⅰ)由f(0)=2,得c=2,又f(x+1)﹣f(x)=2x﹣1得2ax+a+b=2x﹣1,故解得:a=1,b=﹣2,所以f(x)=x2﹣2x+2.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(a,b,c各,解析式1分)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)f(x)=x2﹣2x+2=(x﹣1)2+1,对称轴为x=1∈[﹣1,2],故f min(x)=f(1)=1,又f(﹣1)=5,f(2)=2,所以f max(x)=f(﹣1)=5.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅲ)g(x)=x2﹣(2+m)x+2,若g(x)的两个零点分别在区间(﹣1,2)和(2,4)内,则满足﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣解得:.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)【点评】本题考查二次函数的解析式的求法,二次函数的性质与最值的求法,零点判定定理的应用,考查计算力量.20.(14分)已知:已知函数f(x)=﹣+2ax,(Ⅰ)若曲线y=f(x)在点P(2,f(2))处的切线的斜率为﹣6,求实数a;(Ⅱ)若a=1,求f(x)的极值;(Ⅲ)当0<a<2时,f(x)在[1,4]上的最小值为﹣,求f(x)在该区间上的最大值.【考点】利用导数争辩曲线上某点切线方程;导数在最大值、最小值问题中的应用.【专题】计算题;规律型;函数思想;方程思想;转化思想;综合法;导数的综合应用.【分析】(Ⅰ)求出曲线y=f(x)在点P(2,f(2))处的导数值等于切线的斜率为﹣6,即可求实数a;(Ⅱ)通过a=1,利用导函数为0,推断导数符号,即可求f(x)的极值;(Ⅲ)当0<a<2时,利用导函数的单调性,通过f(x)在[1,4]上的最小值为﹣,即可求出a,然后求f(x)在该区间上的最大值.【解答】(本小题满分14分)解:(Ⅰ)由于f′(x)=﹣x2+x+2a,曲线y=f(x)在点P(2,f(2))处的切线的斜率k=f′(2)=2a﹣2,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣依题意:2a﹣2=﹣6,a=﹣2.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)当a=1时,,f′(x)=﹣x2+x+2=﹣(x+1)(x﹣2)﹣﹣﹣﹣x (﹣∞,﹣1)﹣1 (﹣1,2) 2 (2,+∞)f′(x)﹣0 + 0 ﹣f(x)单调减单调增单调减所以,f(x)的极大值为,f(x)的微小值为.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅲ)令f′(x)=0,得,,f(x)在(﹣∞,x1),(x2,+∞)上单调递减,在(x1,x2)上单调递增,当0<a<2时,有x1<1<x2<4,所以f(x)在[1,4]上的最大值为f(x2),f(4)<f(1),所以f(x)在[1,4]上的最小值为,解得:a=1,x2=2.故f(x)在[1,4]上的最大值为.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)【点评】本题考查导数的综合应用,切线方程以及极值的求法,函数的单调性与函数的最值的关系,考查转化思想以及计算力量.。
2022-2021学年安徽省黄山市屯溪一中高三(上)期中数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分,每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R,集合A={x|2x>1},B={x|x2+3﹣4<0},则A∩B等于()A.(0,1) B.(1,+∞) C.(﹣4,1) D.(﹣∞,﹣4)2.i是虚数单位,复数z=的虚部是()A.﹣i B.﹣1 C. 1 D. 23.在△ABC中,已知M是BC 中点,设=,则=()A. B. C. D.4.已知a,b,c,d为实数,且c>d.则“a>b”是“a﹣c>b﹣d”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件5.将函数y=sin(2x+)的图象经过怎样的平移后所得图象关于点(﹣,0)中心对称() A.向右平移 B.向右平移 C.向左平移 D.向左平移6.等比数列{a n}中,已知a3=2,a4﹣a2=,则前5项和S5=()A. 7±3 B. 3±7 C. 7+3 D. 3﹣77.若a>0,b>0,且函数f(x)=4x3﹣ax2﹣2bx+2在x=1处有极值,则ab的最大值等于() A. 2 B. 3 C. 6 D. 98.如图,给出的是计算的值的一个程序框图,则图中推断框内(1)处和执行框中的(2)处应填的语句是()A. i>100,n=n+1 B. i>100,n=n+2 C. i>50,n=n+2 D. i≤50,n=n+29.右面茎叶图表示的是甲、乙两人在5次综合测评中的成果,其中一个数字被污损.则甲的平均成果超过乙的平均成果的概率为()A. B. C. D.10.已知函数f(x)=sin(π﹣2x),g(x)=2cos2x,则下列结论正确的是() A.函数f(x)在区间[]上为增函数B.函数y=f(x)+g(x)的最小正周期为2πC.函数y=f(x)+g(x)的图象关于直线x=对称D.将函数f(x )的图象向右平移个单位,再向上平移1个单位,得到函数g(x)的图象二、填空题(本大题共5小题,每小题5分,共25分.把答案填在答题卷的相应位置11.已知α是钝角,cosα=﹣,则sin (﹣α)= .12.已知某几何体的三视图如图所示,若该几何体的体积为24,则正视图中a的值为.13.对大于或等于2的自然数m的n次方幂有如下分解方式:22=1+332=1+3+542=1+3+5+723=3+533=7+9+1143=13+15+17+19依据上述分解规律,63的分解式为63= .14.在△ABC中,D为边BC上一点,BD=DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC= .15.点M(x,y)是不等式组表示的平面区域内一动点,定点是坐标原点,则的取值范围是.三、解答题:(本大题共6题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.已知△ABC中,角A,B,C的对边分别为a,b,c,若向量=(cosB,2cos2﹣1)与向量=(2a﹣b,c)共线.(1)求角C的大小;(2)若c=2,S△ABC=2,求a,b的值.17.汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆);轿车A轿车B轿车C舒适型100150z标准型300450600按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.(Ⅰ)求z的值;(Ⅱ)用分层抽样的方法在C类轿车中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(Ⅲ)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的确定值不超过0.5的概率.18.在棱长为a的正方体ABCD﹣A1B1C1D1中,E是线段A1C1的中点,AC∩BD=F.(1)求证:CE⊥BD;(2)求证:CE∥平面A1BD;(3)求三棱锥D﹣A1BC的表面积.19.已知数列{a n}的前n项之和为S n,满足a n+S n=n.(Ⅰ)证明:数列{a n﹣1}为等比数列,并求通项a n;(Ⅱ)设b n=(2﹣n)•(a n﹣1),求数列{b n}中的最大项的值.20.如图,DP⊥x轴,点M在DP的延长线上,且|DM|=2|DP|.当点P在圆x2+y2=1上运动时.(Ⅰ)求点M的轨迹C的方程;(Ⅱ)过点T(0,t)作圆x2+y2=1的切线交曲线C于A,B两点,求△AOB面积S的最大值和相应的点T的坐标.21.设x1、x2(x1≠x2)是函数f(x)=ax3+bx2﹣a2x(a>0)的两个极值点.(1)若x1=﹣1,x2=2,求函数f(x)的解析式;(2)若,求实数b的最大值;(3)函数g(x)=f′(x)﹣a(x﹣x1)若x1<x<x2,且x2=a,求函数g(x)在(x1,x2)内的最小值.(用a表示)2022-2021学年安徽省黄山市屯溪一中高三(上)期中数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R,集合A={x|2x>1},B={x|x2+3﹣4<0},则A∩B等于()A.(0,1) B.(1,+∞) C.(﹣4,1) D.(﹣∞,﹣4)考点:交集及其运算.专题:集合.分析:求出A与B中不等式的解集确定出A与B,找出两集合的交集即可.解答:解:由A中的不等式变形得:2x>1=20,得到x>0,即A=(0,+∞);由B中的不等式变形得:(x﹣1)(x+4)<0,解得:﹣4<x<1,即B=(﹣4,1),则A∩B=(0,1).故选:A.点评:此题考查了交集及其运算,娴熟把握交集的定义是解本题的关键.2.i是虚数单位,复数z=的虚部是()A.﹣i B.﹣1 C. 1 D. 2考点:复数代数形式的乘除运算;复数的基本概念.专题:计算题.分析:先将复数进行除法运算,化简为最简形式的代数形式,再依据虚部的概念,得出虚部.解答:解:∵复数z====﹣i,∴复数的虚部是﹣1,故选 B.点评:本题考查复数的除法运算,复数的虚部的概念,本题解题的关键是写出复数的代数形式的标准形式.3.在△ABC中,已知M是BC 中点,设=,则=()A. B. C. D.考点:平面对量的基本定理及其意义.专题:平面对量及应用.分析:依据向量加法的平行四边形法则,及向量的减法即可用表示.解答:解:=;故选A.点评:考查向量加法的平行四边形法则,向量的减法运算,及相反向量.4.已知a,b,c,d为实数,且c>d.则“a>b”是“a﹣c>b﹣d”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的推断;不等关系与不等式.分析:由题意看命题“a>b”与命题“a﹣c>b﹣d”是否能互推,然后依据必要条件、充分条件和充要条件的定义进行推断.解答:解:∵a﹣c>b﹣d,c>d两个同向不等式相加得a>b但c>d,a>b⇒a﹣c>b﹣d.例如a=2,b=1,c=﹣1,d=﹣3时,a﹣c<b﹣d.故选B.点评:此题主要考查必要条件、充分条件和充要条件的定义,是一道基础题.5.将函数y=sin(2x+)的图象经过怎样的平移后所得图象关于点(﹣,0)中心对称() A.向右平移 B.向右平移 C.向左平移 D.向左平移考点:函数y=Asin(ωx+φ)的图象变换;正弦函数的对称性.专题:计算题.分析:设出将函数y=sin(2x+)的图象平移ρ个单位得到关系式,然后将x=﹣代入使其等于0,再由正弦函数的性质可得到ρ的全部值,再对选项进行验证即可.解答:解:假设将函数y=sin(2x+)的图象平移ρ个单位得到y=sin(2x+2ρ+)关于点(﹣,0)中心对称∴将x=﹣代入得到sin (﹣+2ρ+)=sin(+2ρ)=0∴+2ρ=kπ,∴ρ=﹣+,当k=0时,ρ=﹣,向右平移,故选B.点评:本题主要考查正弦函数的平移变换和基本性质﹣﹣对称性,考查计算力量,常考题型之一.6.等比数列{a n}中,已知a3=2,a4﹣a2=,则前5项和S5=()A. 7±3 B. 3±7 C. 7+3 D. 3﹣7考点:等比数列的前n项和.专题:等差数列与等比数列.分析:设等比数列{a n}的公比为q ,由题意可得,解方程组代入求和公式可得.解答:解:设等比数列{a n}的公比为q,则,解得或,∴当时,数列{a n}的前5项和S5==7+3,当时,数列{a n}的前5项和S5==7﹣3,故选:A点评:本题考查等比数列的求和公式,涉及方程组的解法,属基础题.7.若a>0,b>0,且函数f(x)=4x3﹣ax2﹣2bx+2在x=1处有极值,则ab的最大值等于() A. 2 B. 3 C. 6 D. 9考点:函数在某点取得极值的条件;基本不等式.专题:计算题.分析:求出导函数,利用函数在极值点处的导数值为0得到a,b满足的条件;利用基本不等式求出ab的最值;留意利用基本不等式求最值需留意:一正、二定、三相等.解答:解:∵f′(x)=12x2﹣2ax﹣2b,又由于在x=1处有极值,∴a+b=6,∵a>0,b>0,∴,当且仅当a=b=3时取等号,所以ab的最大值等于9.故选:D.点评:本题考查函数在极值点处的导数值为0、考查利用基本不等式求最值需留意:一正、二定、三相等.8.如图,给出的是计算的值的一个程序框图,则图中推断框内(1)处和执行框中的(2)处应填的语句是()A. i>100,n=n+1 B. i>100,n=n+2 C. i>50,n=n+2 D. i≤50,n=n+2考点:循环结构.专题:图表型.分析:写出前三次循环的结果,观看归纳出和的最终一项的分母i的关系,得到推断框中的条件.解答:解:此时,经第一次循环得到的结果是,经其次次循环得到的结果是经第三次循环得到的结果是据观看S中最终一项的分母与i的关系是分母=2(i﹣1)令2(i﹣1)=100解得i=51即需要i=51时输出故图中推断框内(1)处和执行框中的(2)处应填的语句是分别是i>50,n=n+2故选C点评:本题考查解决程序框图中的循环结构的有关的题目,常接受写出前几次循环的结果,找规律.9.右面茎叶图表示的是甲、乙两人在5次综合测评中的成果,其中一个数字被污损.则甲的平均成果超过乙的平均成果的概率为()A. B. C. D.考点:众数、中位数、平均数;茎叶图.专题:图表型.分析:由已知的茎叶图,我们可以求出甲乙两人的平均成果,然后求出≤即甲的平均成果不超过乙的平均成果的概率,进而依据对立大事减法公式得到答案.解答:解:由已知中的茎叶图可得甲的5次综合测评中的成果分别为88,89,90,91,92,则甲的平均成果==90设污损数字为X,则乙的5次综合测评中的成果分别为83,83,87,99,90+X则乙的平均成果==88.4+当X=8或9时,≤即甲的平均成果不超过乙的平均成果的概率为=则甲的平均成果超过乙的平均成果的概率P=1﹣=故选C点评:本题考查的学问点是平均数,茎叶图,古典概型概率计算公式,其中依据已知茎叶图求出数据的平均数是解答本题的关键.10.已知函数f(x)=sin(π﹣2x),g(x)=2cos2x,则下列结论正确的是() A.函数f(x)在区间[]上为增函数B.函数y=f(x)+g(x)的最小正周期为2πC.函数y=f(x)+g(x)的图象关于直线x=对称D.将函数f(x )的图象向右平移个单位,再向上平移1个单位,得到函数g(x)的图象考点:二倍角的余弦;两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的单调性;函数y=Asin(ωx+φ)的图象变换.专题:计算题;三角函数的图像与性质.分析:将f(x)与g(x)分别化简,再对A,B,C,D四个选项逐一分析即可.解答:解:∵f(x)=sin(π﹣2x)=sin2x,y=sinx在[0,]上单调递增,在区间[,π]上单调递减,∴f(x)=sin2x在区间[]上单调递减,故A错误;又g(x)=2cos2x=1+cos2x,∴y=f(x)+g(x)=cos2x+sin2x+1=sin(2x+)+1,∴其周期T=π,由2x+=kπ+(k∈Z)得,x=+,k∈Z,当k=0时,x=;故B错误,C正确;对于D,f(x)=sin2x f(x ﹣)=sin[2(x ﹣)]=﹣sin2x≠1+cos2x=g(x),故D错误.综上所述,只有C正确.故选C..点评:本题考查二倍角的余弦,考查正弦函数的性质的应用,考查函数y=Asin(ωx+φ)的图象变换,综合性强,属于中档题.二、填空题(本大题共5小题,每小题5分,共25分.把答案填在答题卷的相应位置11.已知α是钝角,cosα=﹣,则sin (﹣α)= ﹣.考点:两角和与差的正弦函数.专题:计算题;三角函数的求值.分析:由同角三角函数的平方关系,求出sinα,再由两角差的正弦公式,即可得到答案.解答:解:由于α是钝角,cosα=﹣,则sinα==,则sin(﹣α)=sin cosα﹣cos sinα=(﹣﹣)=﹣.故答案为:﹣点评:本题考查三角函数的求值,考查同角的平方关系和两角差的正弦公式,考查运算力量,属于基础题.12.已知某几何体的三视图如图所示,若该几何体的体积为24,则正视图中a的值为 6 .考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:几何体是一个四棱锥,底面是一个边长分别是a和3的矩形,一条侧棱与底面垂直,且这条侧棱的长是4,依据该几何体的体积是24,列出关于a的方程,解方程即可.解答:解:由三视图知几何体是一个四棱锥,底面是一个边长分别是a和3的矩形,一条侧棱与底面垂直,且这条侧棱的长是4,依据该几何体的体积是24,得到24=×a×3×4,∴a=6,故答案为:6.点评:本题考查由三视图求几何体的体积,实际上不是求几何体的体积,而是依据体积的值和体积的计算公式,写出关于变量的方程,利用方程思想解决问题.13.对大于或等于2的自然数m的n次方幂有如下分解方式:22=1+332=1+3+542=1+3+5+723=3+533=7+9+1143=13+15+17+19依据上述分解规律,63的分解式为63= 29+31+35+37+39+41 .考点:类比推理;归纳推理.专题:规律型.分析:由题意知,n的三次方就是n个连续奇数相加,且从2开头,这些三次方的分解正好是从奇数3开头连续消灭,由此规律即可建立m3(m∈N*)的分解方法.解答:解:由题意,从23到m3,正好用去从3开头的连续奇数共2+3+4+…+m=个,即从23到53,用去从3开头的连续奇数共=14个故63的分解式中第一个奇数为29,且共有6个连续奇数相加故63=29+31+35+37+39+41故答案为:29+31+35+37+39+41点评:本题考查归纳推理,求解的关键是依据归纳推理的原理归纳出结论,其中分析出分解式中项数及每个式子中各数据之间的变化规律是解答的关键.14.在△ABC中,D为边BC上一点,BD=DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC= 60°.考点:余弦定理的应用.专题:计算题;压轴题.分析:先依据三角形的面积公式利用△ADC的面积求得DC,进而依据三角形ABC的面积求得BD和BC,进而依据余弦定理求得AB.最终在三角形ABC中利用余弦定理求得cos∠BAC,求得∠BAC的值.解答:解:由△ADC的面积为可得解得,则.AB2=AD2+BD2﹣2AD•BD•cos120°=,则=.故∠BAC=60°.点评:本题主要考查解三角形中的边角关系及其面积等基础学问与技能,分析问题解决问题的力量以及相应的运算力量.15.点M(x,y)是不等式组表示的平面区域内一动点,定点是坐标原点,则的取值范围是[0,18] .考点:简洁线性规划.专题:不等式的解法及应用.分析:画出满足约束条件的平面区域Ω,利用向量的坐标运算得到=3x+y,然后利用角点法求出满足约束条件时,使Z=3x+y的值取得最大(小)的点M的坐标,即可得到的取值范围.解答:解:满足约束条件的平面区域Ω如下图所示:则=( 3,),=(x,y)则=3x+y,则当M与O 重合时,取最小值0;当M点坐标为( 3,3)时,取最大值18,故则(O为坐标原点)的取值范围是[0,18]故答案为:[0,18].点评:本题考查的学问点是简洁线性规划,及平面对量的数量积的运算,其中依据约束条件画出可行域,进而依据角点法求出最优解是解答本题的关键.三、解答题:(本大题共6题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.已知△ABC中,角A,B,C的对边分别为a,b,c ,若向量=(cosB,2cos 2﹣1)与向量=(2a﹣b,c)共线.(1)求角C的大小;(2)若c=2,S△ABC =2,求a,b的值.考点:正弦定理;平面对量数量积的运算.专题:解三角形.分析:(1)依据向量共线建立条件关系,利用三角函数的关系式,即可求角C的大小;(2)依据三角形的面积公式,以及余弦定理建立方程组,即可得到结论.解答:解:(1)∵向量=(cosB,2cos 2﹣1)与向量=(2a﹣b,c)共线,∴ccosB=(2a﹣b)cosC,依据正弦定理得sinCcosB=(2sinA﹣sinB)cosC,∴sinCcosB+sinBcosC=2sinAcosC,即sinA═2sinAcosC,∴cosC=,即C=.(2)∵c2=a2+b2﹣2abcosC,∴a2+s2﹣ab=12,①∵S△ABC =2=,∴ab=8,②,由①②得或.点评:本题主要考查正弦定理和余弦定理的应用,要求娴熟把握相应的定理和公式.17.汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆);轿车A 轿车B 轿车C舒适型 100 150 z标准型 300 450 600按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.(Ⅰ)求z的值;(Ⅱ)用分层抽样的方法在C类轿车中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(Ⅲ)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的确定值不超过0.5的概率.考点:古典概型及其概率计算公式;分层抽样方法.专题:概率与统计.分析:(Ⅰ)依据用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆,得每个个体被抽到的概率,列出关系式,得到n的值(Ⅱ)由题意知本题是一个古典概型,试验发生包含的大事数和满足条件的大事数,可以通过列举数出结果,依据古典概型的概率公式得到结果.(Ⅲ)首先做出样本的平均数,做出试验发生包含的大事数,和满足条件的大事数,依据古典概型的概率公式得到结果.解答:解:(Ⅰ)设该厂这个月共生产轿车n辆,由题意得=,∴n=2000,∴z=2000﹣(100+300)﹣150﹣450﹣600=400.(Ⅱ)设所抽样本中有a辆舒适型轿车,由题意,得a=2.因此抽取的容量为5的样本中,有2辆舒适型轿车,3辆标准型轿车.用A1,A2表示2辆舒适型轿车,用B1,B2,B3表示3辆标准轿车,用E表示大事“在该样本中任取2辆,其中至少有1辆舒适型轿车”,则基本大事空间包含的基本大事有:(A1,A2),(A1B1),(A1B2),(A1,B3,),(A2,B1),(A2,B2)(A2,B3),(B1B2),(B1,B3,),(B2,B3),共10个,大事E包含的基本大事有:(A1A2),(A1,B1,),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),共7个,故P(E)=,即所求概率为.(Ⅲ)样本平均数=(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2)=9.设D表示大事“从样本中任取一数,该数与样本平均数之差的确定不超过0.5”,则基本大事空间中有8个基本大事,大事D包括的基本大事有:9.4,8.6,9.2,8.7,9.3,9.0,共6个,∴P(D)=,即所求概率为.点评:本题考查古典概型,考查用列举法来得到大事数,考查分层抽样,是一个概率与统计的综合题目,这种题目看起来比较麻烦,但是解题的原理并不简单.18.在棱长为a的正方体ABCD﹣A1B1C1D1中,E是线段A1C1的中点,AC∩BD=F.(1)求证:CE⊥BD;(2)求证:CE∥平面A1BD;(3)求三棱锥D﹣A1BC的表面积.考点:直线与平面垂直的性质;棱柱、棱锥、棱台的侧面积和表面积;直线与平面平行的判定.专题:计算题;证明题.分析:(1)欲证CE⊥BD,而CE⊂平面ACC1A1,可先证BD⊥平面ACC1A1,依据直线与平面垂直的判定定理可知只需证BD与平面ACC1A1内两相交直线垂直,依据正方体的性质BD⊥AC,AA1⊥平面ABCD,BD⊂平面ABCD,则BD⊥AA1,又AC∩AA1=A,满足定理所需条件;(2)欲证CE∥平面A1BD,依据直线与平面平行的判定定理可知只需证CE与平面A1BD内始终线平行,连接A1F,依据AA1∥BB1∥CC1,AA1=BB1=CC1,可得ACC1A1为平行四边形,依据中位线可知CE∥FA1,FA1⊂面A1BD,CE⊄平面A1BD,满足定理所需条件;(3)先求出正三角形△A1BD的面积,然后依据BC⊥平面A1B1BA,则BC⊥A1B,求出直角三角形△A1BC的面积,同理求出△A1CD的面积和△BCD面积,最终将四个面积相加即可.解答:解:(1)证明:依据正方体的性质BD⊥AC,(2分)由于AA1⊥平面ABCD,BD⊂平面ABCD,所以BD⊥AA1,又AC∩AA1=A,所以BD⊥平面ACC1A1,CE⊂平面ACC1A1,所以CE⊥BD.(4分)(2)证明:连接A1F,由于AA1∥BB1∥CC1,AA1=BB1=CC1,所以ACC1A1为平行四边形,因此A1C1∥AC,A1C1=AC,由于E是线段A1C1的中点,所以CE∥FA1,(6分)由于FA1⊂面A1BD,CE⊄平面A1BD,所以CE∥平面A1BD.(8分)(3)△A1BD 是边长为的正三角形,其面积为,(9分)由于BC⊥平面A1B1BA,所以BC⊥A1B,所以△A1BC 是直角三角形,其面积为,同理△A1CD 的面积为,(12分)△BCD 面积为.(13分)所以三棱锥D﹣A1BC 的表面积为.(14分)点评:本小题主要考查直线与平面垂直的性质,直线与平面平行的判定,以及三棱锥的表面积等基础学问,考查空间想象力量、运算求解力量、推理论证力量,考查化归与转化思想,属于中档题.19.已知数列{a n}的前n项之和为S n,满足a n+S n=n.(Ⅰ)证明:数列{a n﹣1}为等比数列,并求通项a n;(Ⅱ)设b n=(2﹣n)•(a n﹣1),求数列{b n}中的最大项的值.考点:等比关系的确定;数列的函数特性.专题:计算题;等差数列与等比数列.分析:(1)由数列前n项和S n与a n的关系式,结合题中等式化简得2a n=a n﹣1+1(n≥2),再配方得到,可得{a n﹣1}为公比为的等比数列,利用等比数列通项公式即可算出通项a n;(2)依据题意,得,利用作差争辩得到b n+1﹣b n =(3﹣n),因此可得当n≤3时数列{b n}递增,而当n≥4时数列{b n}递减,进而得到数列{b n}中的最大项为b3=b3=.解答:解:(Ⅰ)由题意,得S n=n﹣a n,所以S n﹣1=n﹣1﹣a n﹣()1,两式相减得S n﹣S n﹣1=1+a n﹣1﹣a n,整理,得2a n=a n﹣1+1,(n≥2)配方得:2(a n﹣1)=a n﹣1﹣1∴,可得{a n﹣1}为公比为的等比数列由已知式可得a1+s1=1,得∴,可得,n=1时也符合因此,数列{a n}的通项公式为…(7分)(Ⅱ)可得=(3﹣n)∴当n=1,2时,b n+1﹣b n≥0;当n=3时,b n+1﹣b n=0;当n≥4时,b n+1﹣b n<0∴当n=3或4时,b n达到最大值.即数列{b n}中的最大项为b3=b3=.…(14分)点评:本题给出数列中S n与a n的关系式,求数列的通项公式并争辩另一个数列的最值,着重考查了等比数列的通项公式与数列的单调性等学问,属于中档题.20.如图,DP⊥x轴,点M在DP的延长线上,且|DM|=2|DP|.当点P在圆x2+y2=1上运动时.(Ⅰ)求点M的轨迹C的方程;(Ⅱ)过点T(0,t)作圆x2+y2=1的切线交曲线C于A,B两点,求△AOB面积S的最大值和相应的点T的坐标.考点:直线与圆锥曲线的综合问题;轨迹方程;直线与圆相交的性质.专题:计算题.分析:(I)设出M的坐标为(x,y),点P的坐标为(x0,y0),由题意DP⊥x轴,点M在DP的延长线上,且|DM|=2|DP|,找出x0与x的关系及y0与y的关系,记作①,依据P在圆上,将P的坐标代入圆的方程,记作②,将①代入②,即可得到点M的轨迹方程;(Ⅱ)由过点T(0,t)作圆x2+y2=1的切线l交曲线C于A,B两点,得到|t|大于等于圆的半径1,分两种状况考虑:(i)当t=1时,确定出切线l为x=1,将x=1代入M得轨迹方程中,求出A和B的坐标,确定出此时|AB|的长,当t=﹣1时,同理得到|AB|的长;(ii)当|t|大于1时,设切线l方程为y=kx+t,将切线l 的方程与圆方程联立,消去y得到关于x的一元二次方程,设A和B的坐标,利用根与系数的关系表示出两点横坐标之和与之积,再由切线l与圆相切,得到圆心到切线的距离d=r,利用点到直线的距离公式列出关系式,整理后得到k与t的关系式,然后利用两点间的距离公式表示出|AB|,将表示出的两根之和与两根之积,以及k与t的关系式代入,得到关于t的关系,利用基本不等式变形,得到|AB|的最大值,以及此时t 的取值,而三角形AOB的面积等于AB与半径r乘积的一半来求,表示出三角形AOB的面积,将|AB|的最大值代入求出三角形AOB面积的最大值,以及此时T的坐标即可.解答:(本小题满分13分)解:(I)设点M的坐标为(x,y),点P的坐标为(x0,y0),则x=x0,y=2y0,所以x0=x,y0=,①由于P(x0,y0)在圆x2+y2=1上,所以x02+y02=1②,将①代入②,得点M的轨迹方程C的方程为x2+=1;…(5分)(Ⅱ)由题意知,|t|≥1,(i)当t=1时,切线l的方程为y=1,点A、B 的坐标分别为(﹣,1),(,1),此时|AB|=,当t=﹣1时,同理可得|AB|=;(ii)当|t|>1时,设切线l的方程为y=kx+t,k∈R,由,得(4+k2)x2+2ktx+t2﹣4=0③,设A、B两点的坐标分别为(x1,y1),(x2,y2),由③得:x1+x2=﹣,x1x2=,又直线l与圆x2+y2=1相切,得=1,即t2=k2+1,∴|AB|===,又|AB|==≤2,且当t=±时,|AB|=2,综上,|AB|的最大值为2,依题意,圆心O到直线AB的距离为圆x2+y2=1的半径,∴△AOB面积S=|AB|×1≤1,当且仅当t=±时,△AOB面积S的最大值为1,相应的T的坐标为(0,﹣)或(0,).…(13分)点评:此题考查了直线与圆相交的性质,以及动点的轨迹方程,涉及的学问有:直线与圆的交点,一元二次方程根与系数的关系,两点间的距离公式,点到直线的距离公式,基本不等式的运用,以及直线与圆相切时,圆心到直线的距离等于圆的半径的性质,利用了转化及分类争辩的思想,是一道综合性较强的试题.21.设x1、x2(x1≠x2)是函数f(x)=ax3+bx2﹣a2x(a>0)的两个极值点.(1)若x1=﹣1,x2=2,求函数f(x)的解析式;(2)若,求实数b的最大值;(3)函数g(x)=f′(x)﹣a(x﹣x1)若x1<x<x2,且x2=a,求函数g(x)在(x1,x2)内的最小值.(用a表示)考点:利用导数求闭区间上函数的最值;函数在某点取得极值的条件.专题:综合题.分析:(1)f'(x)=3ax2+2bx﹣a2(a>0).由得,(或由f'(﹣1)=0,f'(2)=0,解得a=6,b=﹣9.)由此能求出f(x)的解析式.(2)由x1、x2(x1≠x2)是函数f(x)=ax3+bx2﹣a2x(a>0)的两个极值点,知x1,x2是方程3ax2+2bx﹣a2=0的两根,由△=4b2+12a3>0对一切a>0,b∈R 恒成立,,a>0,知x1•x2<0,由此能求出b的最大值.(3)由x1、x2是方程f'(x)=0的两根,f'(x)=3ax2+2bx﹣a2(a>0),,知,,由此能求出函数g(x)在(x1,x2)内的最小值.解答:解:(1)f'(x)=3ax2+2bx﹣a2(a>0).(1分)∵x1=﹣1,x2=2是函数f(x)的两个极值点,由,得,(3分)(或由f'(﹣1)=0,f'(2)=0.∴3a﹣2b﹣a2=0,12a+4b﹣a2=0,解得a=6,b=﹣9.)∴f(x)=6x3﹣9x2﹣36x,(4分)(2)∵x1、x2(x1≠x2)是函数f(x)=ax3+bx2﹣a2x(a>0)的两个极值点,∴f'(x1)=f'(x2)=0,∴x1,x2是方程3ax2+2bx﹣a2=0的两根,∵△=4b2+12a3,∴△>0对一切a>0,b∈R恒成立,而,a>0,∴x1•x2<0,∴|x1|+|x2|=|x1﹣x2|===,(6分)由,得=2,∴b2=3a2(6﹣a).(7分)∵b2≥0,∴3a2(6﹣a)≥0,0<a≤6.(8分)令h(a)=3a2(6﹣a),则h'(a)=﹣9a2+36a.0<a<4时,h'(a)>0∴h(a)在(0,4)内是增函数;4<a<6时,h'(a)<0,∴h (a)在(4,6)内是减函数.∴a=4时,h(a)有极大值为96,∴h(a)在(0,6]上的最大值是96,∴b 的最大值是.…(10分)(3)∵x1、x2是方程f'(x)=0的两根,f'(x)=3ax2+2bx﹣a2(a>0)∵,∴,(11分)∴∴g(x)=f'(x)﹣a(x﹣x1)=,(12分)对称轴为,∵a>0,∴,∴.(15分)点评:本题考查利用导数求闭区间上函数的最值的应用,考查运算求解力量,推理论证力量;考查化归与转化思想.对数学思维的要求比较高,有肯定的探究性.综合性强,难度大,是高考的重点.解题时要认真审题,认真解答.。
山东省临沂市沂水二中北校区2021届高三上学期10月月考数学试卷(理科)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(5分)已知集合A={x|1<x<3},B={x|1<log2x<2},则A∩B等于()A.{x|0<x<3} B.{x|2<x<3} C.{x|1<x<3} D.{x|1<x<4}2.(5分)设x∈R ,向量=(x,1),=(1,﹣2),且⊥,则|+|=()A.B.C.2D.103.(5分)在△ABC中,设命题p :==,命题q:△ABC是等边三角形,那么命题p是命题q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)设,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.b>a>c D.b>c>a5.(5分)已知函数f(x)=ax﹣x3在区间[1,+∞)上单调递减,则a的最大值是()A.0B.1C.2D.36.(5分)已知f(x)是定义在R上的奇函数,且x≥0时f(x)的图象如图所示,则f(﹣2)=()A.﹣3 B.﹣2 C.﹣1 D.27.(5分)函数y=sin(x ﹣)的一条对称轴可以是直线()A.x =B.x =πC.x=﹣πD.x=8.(5分)在△ABC中,角A、B、C所对应的边分别为a、b、c,已知bcosC+ccosB=2b ,则=()A.2B.C.D.19.(5分)函数y=2x﹣x2的图象大致是()A.B.C.D .10.(5分)若函数y=f(x)(x∈R)满足f(x﹣2)=f(x),且x∈[﹣1,1]时,f(x)=1﹣x2,函数g(x)=,则函数h(x)=f(x)﹣g(x)在区间[﹣5,6]内的零点的个数为()A.13 B.8C.9D.10二、填空题(本大题共5小题,每小题5分,共25分).11.(5分)在数列{a n}中,a1=15,3a n+1=3a n﹣2(n∈N+),则该数列中相邻两项的乘积是负数的为.12.(5分)向量=(1,sinθ),=(1,cosθ),若•=,则sin2θ=.13.(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是.14.(5分)设f1(x)=cosx,定义f n+1(x)为f n(x)的导数,即f n+1(x)=f′n(x)n∈N*,若△ABC的内角A满足f1(A)+f2(A)+…+f2021(A)=,则sin2A的值是.15.(5分)给出下列命题:①函数y=cos(2x ﹣)图象的一条对称轴是x=②在同一坐标系中,函数y=sinx与y=lgx的交点个数为3个;③将函数y=sin(2x+)的图象向右平移个单位长度可得到函数y=sin2x的图象;④存在实数x,使得等式sinx+cosx=成立;其中正确的命题为(写出全部正确命题的序号).三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤).16.(12分)已知集合A={x|2x<8},B={x|x2﹣2x﹣8<0},C={x|a<x<a+1}.(Ⅰ)求集合A∩B;(Ⅱ)若C⊆B,求实数a的取值范围.17.(12分)设命题p:函数y=kx+1在R上是增函数,命题q:曲线y=x2+(2k﹣3)x+1与x轴交于不同的两点,假如p∧q是假命题,p∨q是真命题,求k的取值范围.18.(12分)在平面直角坐标系中,角α,β的始边为x轴的非负半轴,点P(1,2cos2θ)在角α的终边上,点Q(sin2θ,﹣1)在角β的终边上,且.(1)求cos2θ;(2)求P,Q的坐标并求sin(α+β)的值.19.(12分)在△ABC中,a,b,c分别是角A,B,C的对边,已知3(b2+c2)=3a2+2bc.(Ⅰ)若,求tanC的大小;(Ⅱ)若a=2,△ABC 的面积,且b>c,求b,c.20.(13分)定义在实数集上的函数f(x)=x2+x,g(x)=x3﹣2x+m.(1)求函数f(x)的图象在x=1处的切线方程;(2)若f(x)≥g(x)对任意的x∈[﹣4,4]恒成立,求实数m的取值范围.21.(14分)已知点A(x1,f(x1)),B(x2,f(x2))是函数f(x)=2sin(ωx+φ)图象上的任意两点,且角φ的终边经过点,若|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为.(1)求函数f(x)的解析式;(2)求函数f(x)的单调递增区间;(3)当时,不等式mf(x)+2m≥f(x)恒成立,求实数m的取值范围.山东省临沂市沂水二中北校区2021届高三上学期10月月考数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(5分)已知集合A={x|1<x<3},B={x|1<log2x<2},则A∩B等于()A.{x|0<x<3} B.{x|2<x<3} C.{x|1<x<3} D.{x|1<x<4}考点:交集及其运算.专题:计算题.分析:直接求出集合B,然后求出A∩B即可.解答:解:由于集合A={x|1<x<3},B={x|1<log2x<2}={x|2<x<4},所以A∩B={x|2<x<3}.故选B.点评:本题考查对数函数的基本性质,集合的基本运算,考查计算力量.2.(5分)设x∈R ,向量=(x,1),=(1,﹣2),且⊥,则|+|=()A.B.C.2D.10考点:平面对量数量积的坐标表示、模、夹角.专题:计算题.分析:通过向量的垂直,求出向量,推出,然后求出模.解答:解:由于x∈R ,向量=(x,1),=(1,﹣2),且⊥,所以x﹣2=0,所以=(2,1),所以=(3,﹣1),所以|+|=,故选B.点评:本题考查向量的基本运算,模的求法,考查计算力量.3.(5分)在△ABC中,设命题p :==,命题q:△ABC是等边三角形,那么命题p是命题q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的推断.专题:简易规律.分析:依据正弦定理,利用充分条件和必要条件的定义进行推断即可得到结论.解答:解:由正弦定理可知,若===t,则,即a=tc,b=ta,c=bt,即abc=t3abc,即t=1,则a=b=c,即△ABC是等边三角形,若△ABC是等边三角形,则A=B=C=,则===1成立,即命题p是命题q的充要条件,故选:C点评:本题主要考查充分条件和必要条件的推断,利用正弦定理是解决本题的关键.4.(5分)设,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.b>a>c D.b>c>a考点:对数值大小的比较;不等式比较大小.分析:依据指数函数和对数函数的单调性推断出abc的范围即可得到答案.解答:解:∵a=20.1>20=10=ln1<b=ln<lne=1c=<log31=0∴a>b>c故选A.点评:本题主要考查指数函数和对数函数的单调性,即当底数大于1时单调递增,当底数大于0小于1时单调递减.5.(5分)已知函数f(x)=ax﹣x3在区间[1,+∞)上单调递减,则a的最大值是()A.0B.1C.2D.3考点:利用导数争辩函数的单调性.专题:计算题.分析:依据f(x)在区间[1,+∞)上单调递减,可得f'(x)≥0在区间[1,+∞)上恒成立,建立等量关系,求出参数a最大值即可.解答:解:∵f(x)=ax﹣x3∴f′(x)=a﹣3x2∵函数f(x)=ax﹣x3在区间[1,+∞)上单调递减,∴f′(x)=a﹣3x2≤0在区间[1,+∞)上恒成立,∴a≤3x2在区间[1,+∞)上恒成立,∴a≤3.故选D.点评:本小题主要考查运用导数争辩函数的单调性及恒成立等基础学问,考查综合分析和解决问题的力量.6.(5分)已知f(x)是定义在R上的奇函数,且x≥0时f(x)的图象如图所示,则f(﹣2)=()A.﹣3 B.﹣2 C.﹣1 D.2考点:函数奇偶性的性质.专题:函数的性质及应用.分析:依据函数奇偶性的性质结合函数图象即可得到结论.解答:解:∵函数f(x)是定义在R上的奇函数,∴f(﹣2)=﹣f(2)=﹣2,故选:B点评:本题主要考查函数值的计算,依据函数的奇偶性以及函数图象进行转化时解决本题的关键.7.(5分)函数y=sin(x ﹣)的一条对称轴可以是直线()A.x =B.x =πC.x=﹣πD.x=考点:正弦函数的对称性.专题:三角函数的图像与性质.分析:利用正弦函数的对称性可求得其对称轴方程为:x=kπ+(k∈Z),从而可得答案.解答:解:由x ﹣=kπ+(k∈Z)得:x=kπ+(k∈Z),∴函数y=sin(x ﹣)的对称轴方程为:x=kπ+(k∈Z),当k=1时,x=π,∴方程为x=π的直线是函数y=sin(x ﹣)的一条对称轴,故选:B.点评:本题考查正弦函数的对称性,求得其对称轴方程为:x=kπ+(k∈Z)是关键,属于中档题.8.(5分)在△ABC中,角A、B、C所对应的边分别为a、b、c,已知bcosC+ccosB=2b ,则=()A.2B.C.D.1考点:正弦定理.专题:解三角形.分析:利用正弦定理把已知等式中的边转化成角的正弦,进而利用两角和公式对等号左边进行化简求得sinA和sinB的关系,进而利用正弦定理求得a和b的关系.解答:解:∵bcosC+ccosB=2b,∴sinBcosC+cosBsinC=sin(B+C)=sinA=2sinB,∴=2,由正弦定理知=,∴==2,故选:A.点评:本题主要考查了正弦定理的应用,三角函数恒等变换的应用.考查了同学分析和运算力量.9.(5分)函数y=2x﹣x2的图象大致是()A.B.C.D .考点:函数的图象.专题:函数的性质及应用.分析:分别画出y=2x,y=x2的图象,由图象可以函数与x轴有三个交点,且当x<﹣1时,y<0,故排解BCD,问题得以解决.解答:解:y=2x﹣x2,令y=0,则2x﹣x2=0,分别画出y=2x,y=x2的图象,如图所示,由图象可知,有3个交点,∴函数y=2x﹣x2的图象与x轴有3个交点,故排解BC,当x<﹣1时,y<0,故排解D故选:A.点评:本题主要考查了图象的识别和画法,关键是把握指数函数和幂函数的图象,属于基础题.10.(5分)若函数y=f(x)(x∈R)满足f(x﹣2)=f(x),且x∈[﹣1,1]时,f(x)=1﹣x2,函数g(x)=,则函数h(x)=f(x)﹣g(x)在区间[﹣5,6]内的零点的个数为()A.13 B.8C.9D.10考点:函数的零点;函数的周期性.专题:函数的性质及应用.分析:由f(x+2)=f(x),知函数y=f(x)(x∈R)是周期为2的函数,进而依据f(x)=1﹣x2与函数g(x)=的图象得到交点为9个.解答:解:由于f(x﹣2)=f(x),所以函数y=f(x)(x∈R)是周期为2函数.由于x∈[﹣1,1]时,f(x)=1﹣x2,所以作出它的图象,利用函数y=f(x)(x∈R)是周期为2函数,可作出y=f(x)在区间[﹣5,6]上的图象,如图所示:故函数h(x)=f(x)﹣g(x)在区间[﹣5,6]内的零点的个数为9,故选C.点评:本题的考点是函数零点与方程根的关系,主要考查函数零点的定义,关键是正确作出函数图象,留意把握周期函数的一些常见结论:若f(x+a)=f(x),则周期为a;若f(x+a)=﹣f(x),则周期为2a;若f(x+a)=,则周期为2a,属于基础题.二、填空题(本大题共5小题,每小题5分,共25分).11.(5分)在数列{a n}中,a1=15,3a n+1=3a n﹣2(n∈N+),则该数列中相邻两项的乘积是负数的为a23•a24.考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:把等式3a n+1=3a n﹣2变形后得到a n+1﹣a n等于常数,即此数列为首项为15,公差为﹣的等差数列,写出等差数列的通项公式,令通项公式小于0列出关于n的不等式,求出不等式的解集中的最小正整数解,即可得到从这项开头,数列的各项为负,这些之前各项为正,得到该数列中相邻的两项乘积是负数的项.解答:解:由3a n+1=3a n﹣2,得到公差d=a n+1﹣a n=﹣,又a1=15,则数列{a n}是以15为首项,﹣为公差的等差数列,所以a n=15﹣(n﹣1)=﹣n+,令a n=﹣n+<0,解得n >,即数列{a n}从24项开头变为负数,所以该数列中相邻的两项乘积是负数的项是a23a24.故答案为:a23•a24点评:此题考查同学机敏运用等差数列的通项公式化简求值,把握确定一个数列为等差数列的方法,是一道综合题.12.(5分)向量=(1,sinθ),=(1,cosθ),若•=,则sin2θ=.考点:平面对量的综合题.专题:计算题.分析:由==可求解答:解:∵==∴sin2θ=故答案为:点评:本题主要考查了向量的数量积的坐标表示,三角函数的二倍角公式的应用,属于基础试题13.(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是(﹣,0).考点:二次函数的性质.专题:函数的性质及应用.分析:由条件利用二次函数的性质可得,由此求得m的范围.解答:解:∵二次函数f (x)=x2+mx ﹣1的图象开口向上,对于任意x∈[m,m+1],都有f(x)<0成立,∴,即,解得﹣<m<0,故答案为:(﹣,0).点评:本题主要考查二次函数的性质应用,体现了转化的数学思想,属于基础题.14.(5分)设f1(x)=cosx,定义f n+1(x)为f n(x)的导数,即f n+1(x)=f′n(x)n∈N*,若△ABC的内角A满足f1(A)+f2(A)+…+f2021(A)=,则sin2A的值是.考点:导数的运算.专题:导数的综合应用.分析:由已知分别求出f2(x),f3(x),f4(x),f5(x),可得从第五项开头,f n(x)的解析式重复消灭,每4次一循环,结合f1(A)+f2(A)+…+f2021(A)=求出cosA,进一步得到sinA,则答案可求.解答:解:∵f1(x)=cosx,∴f2(x)=f1′(x)=﹣sinx,f3(x)=f2′(x)=﹣cosx,f4(x)=f3′(x)=sinx,f5(x)=f4′(x)=cosx,…从第五项开头,f n(x)的解析式重复消灭,每4次一循环.∴f1(x)+f2(x)+f3(x)+f4(x)=0.∴f2021(x)=f4×503+1(x)=f1(x)=cosx.∵f1(A)+f2(A)+…+f2021(A)=.∴cosA=.∵A为三角形的内角,∴sinA=.∴sin2A=2sinAcosA=.故答案为:.点评:本题考查了导数及其运算,关键是找到函数解析式规律性,是中档题.15.(5分)给出下列命题:①函数y=cos (2x﹣)图象的一条对称轴是x=②在同一坐标系中,函数y=sinx与y=lgx的交点个数为3个;③将函数y=sin(2x+)的图象向右平移个单位长度可得到函数y=sin2x的图象;④存在实数x,使得等式sinx+cosx=成立;其中正确的命题为①②(写出全部正确命题的序号).考点:命题的真假推断与应用.专题:计算题;简易规律.分析:①由x=时,y=﹣1,可得结论;②利用函数图象,求解;③依据图象的平移规律可得结论;④依据sinx+cosx=sin(x+)≤<,可以推断.解答:解:①函数y=cos(2x ﹣),x=时,y=﹣1,所以函数y=cos(2x ﹣)图象的一条对称轴是x=,正确;②在同一坐标系中,画出函数y=sinx和y=lgx的图象,所以结合图象易知这两个函数的图象有3交点,正确;③将函数y=sin(2x+)的图象向右平移个单位长度可得到函数y=sin[2(x ﹣)+],即y=sin(2x ﹣)的图象,故不正确;④sinx+cosx=sin(x+)≤<,故不存在实数x,使得等式sinx+cosx=成立;故答案为:①②.点评:本题利用三角函数图象与性质,考查命题的真假推断与应用,考查同学分析解决问题的力量,属于中档题.三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤).16.(12分)已知集合A={x|2x<8},B={x|x2﹣2x﹣8<0},C={x|a<x<a+1}.(Ⅰ)求集合A∩B;(Ⅱ)若C⊆B,求实数a的取值范围.考点:集合的包含关系推断及应用.专题:集合.分析:(I)解指数不等式求出A,解二次不等式求出B,进而可得集合A∩B;(Ⅱ)若C⊆B ,则,解不等式组可得实数a的取值范围.解答:解:(Ⅰ)由2x<8,得2x<23,x<3.(3分)解不等式x2﹣2x﹣8<0,得(x﹣4)(x+2)<0,所以﹣2<x<4.(6分)所以A={x|x<3},B={x|﹣2<x<4},所以A∩B={x|﹣2<x<3}.(9分)(Ⅱ)由于C⊆B,所以(11分)解得﹣2≤a≤3.所以,实数a的取值范围是[﹣2,3].(13分)点评:本题考查的学问点是集合的包含关系推断及应用,集合的交集运算,解不等式,难度不大,属于基础题.17.(12分)设命题p:函数y=kx+1在R上是增函数,命题q:曲线y=x2+(2k﹣3)x+1与x轴交于不同的两点,假如p∧q是假命题,p∨q是真命题,求k的取值范围.考点:复合命题的真假.专题:简易规律.分析:易得p:k>0,q :或,由p∧q是假命题,p∨q是真命题,可得p,q一真一假,分别可得k的不等式组,解之可得.解答:解:∵函数y=kx+1在R上是增函数,∴k>0,又∵曲线y=x2+(2k﹣3)x+1与x轴交于不同的两点,∴△=(2k﹣3)2﹣4>0,解得或,∵p∧q是假命题,p∨q是真命题,∴命题p,q一真一假,①若p真q 假,则,∴;②若p假q 真,则,解得k≤0,综上可得k的取值范围为:(﹣∞,0]∪[,]点评:本题考查复合命题的真假,涉及不等式组的解法和分类争辩的思想,属基础题.18.(12分)在平面直角坐标系中,角α,β的始边为x轴的非负半轴,点P(1,2cos2θ)在角α的终边上,点Q(sin2θ,﹣1)在角β的终边上,且.(1)求cos2θ;(2)求P,Q的坐标并求sin(α+β)的值.考点:两角和与差的正弦函数;平面对量数量积的运算;同角三角函数间的基本关系;二倍角的余弦.专题:计算题.分析:(1)利用向量数量积运算得出sin2θ﹣2cos2θ=﹣1,再利用二倍角余弦公式求出cos2θ.(2)由(1)可以求出P,Q的坐标,再利用任意角三角函数的定义求出α,β的正、余弦值.代入两角和的正弦公式计算.解答:解(1)=(1,2cos2θ),=(sin2θ,﹣1),∵,∴sin2θ﹣2cos2θ=﹣1,∴,∴.(2)由(1)得:,∴,∴∴,,由任意角三角函数的定义,,同样地求出,,∴点评:本题考查向量的数量积运算、任意角三角函数的定义、利用三角函数公式进行恒等变形以及求解运算力量.19.(12分)在△ABC中,a,b,c分别是角A,B,C的对边,已知3(b2+c2)=3a2+2bc.(Ⅰ)若,求tanC的大小;(Ⅱ)若a=2,△ABC 的面积,且b>c,求b,c.考点:余弦定理的应用.专题:综合题;解三角形.分析:(Ⅰ)由3(b2+c2)=3a2+2bc,利用余弦定理,可得cosA ,依据,即可求tanC的大小;(Ⅱ)利用面积及余弦定理,可得b、c的两个方程,即可求得结论.解答:解:(Ⅰ)∵3(b2+c2)=3a2+2bc,∴=∴cosA=,∴sinA=∵,∴∴∴∴tanC=;(Ⅱ)∵ABC 的面积,∴,∴bc=①∵a=2,∴由余弦定理可得4=b2+c2﹣2bc ×∴b2+c2=5②∵b>c,∴联立①②可得b=,c=.点评:本题考查余弦定理,考查三角形面积的计算,考查同学的计算力量,属于中档题.20.(13分)定义在实数集上的函数f(x)=x2+x,g(x)=x3﹣2x+m.(1)求函数f(x)的图象在x=1处的切线方程;(2)若f(x)≥g(x)对任意的x∈[﹣4,4]恒成立,求实数m的取值范围.考点:利用导数求闭区间上函数的最值;利用导数争辩函数的单调性;利用导数争辩曲线上某点切线方程.专题:导数的综合应用.分析:(1)求切线方程,就是求k=f′(1),f(1),然后利用点斜式求直线方程,问题得以解决;(2)令h(x)=g(x)﹣f(x),要使f(x)≥g(x)恒成立,即h(x)max≤0,转化为求最值问题.解答:解:(1)∵f(x)=x2+x∴f′(x)=2x+1,f(1)=2,∴f′(1)=3,∴所求切线方程为y﹣2=3(x﹣1),即3x﹣y﹣1=0;(2)令h(x)=g(x)﹣f(x)=x3﹣2x+m﹣x2﹣x=x3﹣3x+m﹣x2∴h′(x)=x2﹣2x﹣3,当﹣4<x<﹣1时,h′(x)>0,当﹣1<x<3时,h′(x)<0,当3<x<4时,h′(x)>0,要使f(x)≥g(x)恒成立,即h(x)max≤0,由上知h(x)的最大值在x=﹣1或x=4取得,而h(﹣1)=,h(4)=m ﹣,∵m+,∴,即m.点评:导数再函数应用中,求切线方程就是求某点处的导数,再求参数的取值范围中,转化为求函数的最大值或最小值问题.21.(14分)已知点A(x1,f(x1)),B(x2,f(x2))是函数f(x)=2sin(ωx+φ)图象上的任意两点,且角φ的终边经过点,若|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为.(1)求函数f(x)的解析式;(2)求函数f(x)的单调递增区间;(3)当时,不等式mf(x)+2m≥f(x)恒成立,求实数m的取值范围.考点:三角函数的最值.专题:三角函数的图像与性质.分析:(1)利用三角函数的定义求出φ的值,由|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为,可得函数的周期,从而可求ω,进而可求函数f(x)的解析式;(2)利用正弦函数的单调增区间,可求函数f(x)的单调递增区间;(3)当时,不等式mf(x)+2m≥f(x )恒成立,等价于,由此可求实数m的取值范围.解答:解:(1)角φ的终边经过点,∴,…(2分)∵,∴.…(3分)由|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为,得,即,∴ω=3…..(5分)∴…(6分)(2)由,可得,…(8分)∴函数f(x )的单调递增区间为k∈z…(9分)(3 )当时,,…(11分)于是,2+f(x)>0,∴mf(x)+2m≥f(x )等价于…(12分)由,得的最大值为…(13分)∴实数m 的取值范围是.…(14分)点评:本题考查函数解析式的确定,考查三角函数的性质,考查分别参数法的运用,考查同学分析解决问题的力量,属于中档题.。
上高二中2021届高三数学(理科)第三次月考试卷1.已知全集U =R ,集合{}220M x N x x =∈-≤,{}21xA y y ==+,则()U M C A ⋂=( )A .{}1B .{0,1}C .{0,1,2}D .{}01x x ≤≤2. 若p 是q ⌝的充分不必要条件,则p ⌝是q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 3.若c>b>a>0,则( ) A. log a c>log b c lnc -c a >b -cbD. a b b c >a c b b 4. 某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是( )A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半5.已知函数()2sin f x x x =-+,若3(3)a f =,(2)b f =--,2(log 7)c f =,则,,a b c 的大小关系为( ) A .a b c << B .b c a <<C .c a b <<D .a c b <<6.已知()31ln1x f x x ++=--,则函数()f x 的图象大致为 ( ) A. B.C. D.7.下列命题中正确的共有( )个①. (0,),23x xx ∃∈+∞> ②. 23(0,1),log log x x x ∃∈<③. 131(0,),()log 2x x x ∀∈+∞> ④.1311(0,),()log 32x xx ∀∈< A .1B. 2C. 38.已知定义域为R 的函数f (x )满足f (-x )= -f (x+4),当x>2时,f (x )单调递增,如果x 1+x 2<4且(x 1-2)(x 2-2)<0,则f (x 1)+f (x 2)的值( )A .恒小于0B .恒大于0C .可能为0D .可正可负9.已知x ,y ∈R ,且满足020(0)2y ax y ax a x -≥⎧⎪-≤>⎨⎪≤⎩,若由不等式组确定的可行域的面积为1,则目标函数z =x +ay 的最大值为( ) A.32B.2C.3 10.已知函数f(x)=1+log a (x -2)(a>0,a ≠1)的图象经过定点A(m ,n),若正数x ,y 满足1m nx y+=,则2xx y y++的最小值是( ) B.10 C.5+11.已知函数y =f(x)在R 上可导且f(0)=2,其导函数f'(x)满足()()2f x f x x '-->0,对于函数g(x)=()xf x e ,下列结论错误..的是( ) A.函数g(x)在(2,+∞)上为单调递增函数 是函数g(x)的极小值点 ≤0时,不等式f(x)≤2e x 恒成立 D.函数g(x)至多有两个零点12.若关于x 的方程10x x xx em e x e+++=+有三个不等的实数解123,,x x x ,且1230x x x <<<,其中m R ∈, 71828.2=e 为自然对数的底数,则3122312x x x x x x m m m e e e ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的值为( )A .eB .2eC .()42m m +D .()41m m +13.已知2'()2(2)f x x xf =+,则曲线()y f x =在点(1,(1))f 处的切线方程为 .14.奇函数()f x 满足()()11f x f x +=-,当01x <≤时,()()2log 4f x x a =+,若1522f ⎛⎫=-⎪⎝⎭,则()a f a +=___________.15.设函数()(1)e x f x x =-.若关于x 的不等式()1f x ax <-有且仅有一个整数解,则正数a 的取值范围是_______.16.已知实数x ,y 满足y ≥2x>0,则92y xx x y++的最小值为 。
山东省试验中学2021级高三第三次诊断性考试数学试题(文科)2021.12说明:本试卷满分150分。
分为第I卷(选择题)和第Ⅱ卷(非选择题)两部分,第I卷为第1页至第3页,第Ⅱ卷为第4页至第6页.试题答集请用2B铅笔或0.5mm签字笔填涂到答题卡规定位置上,书写在试题上的答案无效,考试时间120分钟.第I卷(共60分)一、选择题(本大题共12小题。
每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合{}{}260,2A x x xB x x=--≤=≥,则集合A B⋂=A.[]2,3-B.[]2,2-C.(]0,3D.[]2,32.设向量()(),1,4,,//a xb x a b==且,则实数x的值是A.0 B.2-C.2 D.±23.对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本中的中位数、众数、极差分别是A.46,45,56B.46,45,53C.47,45,56D.45,47,534.设,αβ是两个不同的平面,直线mα⊂.则“//mβ”是“//αβ”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.已知,x y满足约束条件2212y xx y z x yx⎧⎪≥⎪+≤=+⎨⎪⎪≥⎩,则的最大值为A.32B.52C.3 D.46.已知等差数列{}na的前n项和为nS,若45624,48a a S+==,则公差d的值为:A.1 B.2 C.4 D.87.已知不共线的两个向量(),22a b a b a a b b-=⊥-=满足且,则A.2B.2 C. 22D.48.中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗仆人要求赔偿5斗粟.羊仆人说:“我羊所吃的禾苗只有马的一半.”马仆人说:“我马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?已知牛、马、羊的仆人应偿还a升,b升,c升,1斗为10升;则下列推断正确的是A.,,a b c依次成公比为2的等比数列,且507a=B.,,a b c依次成公比为2的等比数列,且507c=C.,,a b c依次成公比为12的等比数列,且507a=D.,,a b c够次成公比为12的等比数列,且507c=9.如图是函数()sin,0,0,02y x x R Aπωϕωϕ⎛⎫=+∈>><<⎪⎝⎭566ππ⎡⎤-⎢⎥⎣⎦在区间,上的图象,为了得到这个函数的图象,只需将y=sin x的图象A.向左平移3π个长度单位,再把所得各点的横坐标变为原来的12,纵坐标不变B.向左平移至3π个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变C.向左平移6π个长度单位,再把所得各点的横坐标变为原来的12,纵坐标不变D.向左平移6个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变10.函数()()sin ln 2x f x x =+的图象可能是11.三棱锥P ABC PA -⊥中,面ABC ,1,3AC BC AC BC PA ⊥===,为A .5πB 2πC .20πD .72π12已知定义在R 的函数()f x 是偶函数,且满足()()[]2202f x f x +=-,在,上的解析式为()21,011,12x x f x x x ⎧-≤<=⎨-≤≤⎩,过点()3,0-作斜率为k 的直线l ,若直线l 与函数()f x 的图象至少有4个公共点,则实数k 的取值范围是A .11,33⎛⎫- ⎪⎝⎭B .1,6423⎛-+ ⎝C .1,623⎛-- ⎝D .162,3⎛⎫- ⎪⎝⎭第II 卷(非选择题 共90分)二、填空题(本题共4小题,每小题5分,共20分.) 13.若点()4,tan θ在函数2log y x =的图象上,则sin cos θθ⋅=__________.14.一简洁组合体的三视图如图,则该组合体的体积为________.15.已知函数()()sin 01f x x x a bπ=<<≠,若,且()()f a f b =,则41a b +的最小值为_____________.16.己知数列{}111212312391:,,,,,,23344410101010n n n n a b a a ++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅=⋅若,数列{}n b 的前n 项和记为n S ,则2018S =_________.三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必需作答.第22、23题为选考题,考生依据要求作答.) (一)必考题:60分.17.(本小题满分12分)已知函数()23sin 22cos 1,f x x x x R=+-∈.(I)求函数()f x 的最小正周期和单调递减区间;(II)在ABC ∆中,A ,B ,C 的对边分别为(),,3,1,sin 2sin a b c c f C B A===,已知,求,a b 的值.18.(本小题满分12分)已知数列{}n a 的前n 项和为()211,5,1n n nS a nS n S n n +=-+=+.(I)求证:数列n S n ⎧⎫⎨⎬⎩⎭为等差数列;(II)令2n n nb a =,求数列{}n b 的前n 项和n T .19.(本小题满分12分)某省电视台为了解该省卫视一档成语类节目的收视状况,抽查东西两部各5个城市,得到观看该节目的人数(单位:千人)如下茎叶图所示,其中一个数字被污损.(I)求东部观众平均人数超过西部观众平均人数的概率.(II)节目的播出极大激发了观众随机统计了4位观众的周均学习成语学问的的时间y (单位:小时)与年龄x(单位:岁),并制作了对比表(如下表所示):由表中数据分析,x,y呈线性相关关系,试求线性回归方程y bx a=+,并猜测年龄为60岁观众周均学习成语学问的时间.参考数据:线性回归方程中,b a的最小二乘估量分别是()1221,ni iiniix y nxyb a y bxx n x==-==--∑∑.20.(本小题满分12分)正方形ADEF与梯形ABCD所在平面相互垂直,,//,2,4AD CD AB CD AB AD CD⊥===,点M是EC中点. (I)求证:BM∥平面ADEF;(II)求三棱锥M-BDE的体积.21.(本小题满分12分)已知函数()()0.xf x e ax a a R a=+-∈≠且(I)若函数()0f x x=在处取得极值,求实数a的值;并求此时()[]21f x-在,上的最大值;(Ⅱ)若函数()f x不存在零点,求实数a的取值范围;(二)选考题:共10分.请考生在第22、23题中任选一题作答,假如多做,则按所做的第一题计分.22.[选修4-4,坐标系与参数方程](10分)在极坐标系中,点M的坐标为3,2π⎛⎫⎪⎝⎭,曲线C的方程为22sin4πρθ⎛⎫=+⎪⎝⎭;以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,斜率为1-的直线l经过点M.(I)求直线l和曲线C的直角坐标方程:(II)若P为曲线C上任意一点,直线l和曲线C相交于A,B两点,求△PAB面积的最大值.23.[选修4—5:不等式选讲](10分)已知函数(),f x x a a R=-∈(I)当1a=时,求()11f x x≥++的解集;(II)若不等式()30f x x+≤的解集包含{}1x x≤-,求a的取值范围.山东省试验中学2021级高三第三次诊断性考试数学试题(文科)2021.12一、选择题 DDABC CBDAA AC二、填空题 13. 52 14. π312- 15. 9 16. 20198072三、解答题 17. 解:)62sin(22cos 2sin 3)(π+=+=x x x x f ……………2分 (1)周期为π=T …………………………3分由于)(2236222Z k k x k ∈+≤+≤+πππππ …………………………4分 所以ππππk x k +≤≤+326所以函数的单减区间为Z k k k ∈++],32,6[ππππ…………………………6分 (2)由于1)62sin(2)(=+=πC C f ,所以3π=C …………………………7分 所以3cos2)3(222πab b a -+=,322=-+ab b a (1)………………………9分又由于A B sin 2sin =,所以a b 2= (2) …………………………10分 由(1),(2)可得2,1==b a …………………………12分18. 解:⑴由()n n S n nS n n +=+-+211得111=-++nS n S nn ……………………………………3分 又511=S ,所以数列⎭⎬⎫⎩⎨⎧n S n 是首项为5,公差为1的等差数列…………………………4分 ⑵由⑴可知()415+=-+=n n nS n所以n n S n 42+=…………………………………5分 当2≥n 时,()()321414221+=----+=-=-n n n n n S S a n n n又1a 也符合上式,所以()*32N n n a n ∈+=……………………………………………6分所以()nn n b 232+= ……………………………………………………7分 所以()nn n T 23229272532++⋯⋯+⋅+⋅+⋅=()()13322322122927252+++++⋯⋯+⋅+⋅+⋅=n n n n n T所以()()()22122221023211431-+=+⋯⋯++--+=+++n n n n n n T…………………………12分19. 解:(1)设被污损的数字为a ,则a 有10种状况.令88+89+90+91+92>83+83+97+90+a+99,则a <8, ……………………2分 东部各城市观看该节目观众平均人数超过西部各城市观看该节目观众平均人数,有8种状况,其概率为54108=; ……………………4分 (2)由题意可知=35, =3.5,52541=∑=ii i yx 5400412=∑=i i x ……………6分所以2021,1007==∧∧a b ……………8分 所以20211007+=∧x y . ……………10分 当60=x 时, 201032021601007=+⋅=∧y =5.25小时. 猜测60岁观众的学习成语的时间为5.25小时。
2022-2021学年安徽省合肥市肥东县锦弘中学高三(上)第一次月考数学试卷(理科)(重点班)一、选择题:本大题10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.把答案直接填涂到答题卡上.1.“2a>2b”是“log2a>log2b”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.已知集合M={x||x﹣4|+|x﹣1|<5},N={x|a<x<6},且M∩N={2,b},则a+b=() A. 6 B. 7 C. 8 D. 93.方程的实数根的个数为()A. 0 B. 1 C. 2 D.不确定4.设函数f(x)是定义在R上的偶函数,且在(﹣∞,0 )上增函数,若|a|>|b|,则以下结论正确的是()A. f(a)﹣f(b)<0 B. f(a)﹣f(b)>0 C. f(a)+f(b)>0 D. f(a)+f(b)<05.若函数f(x)=x2+ax(a∈R),则下列结论正确的是()A.∃a∈R,f(x)是偶函数 B.∃a∈R,f(x)是奇函数C.∀a∈R,f(x)在(0,+∞)上是增函数 D.∀a∈R,f(x)在(0,+∞)上是减函数6.已知函数y=f′(x),y=g′(x)的导函数的图象如图,那么y=f(x),y=g(x)的图象可能是() A. B. C. D.7.集合M={f(x)|f(﹣x)=f(x),x∈R},N={f(x)|f(﹣x)=﹣f(x),x∈R},P={f(x)|f(1﹣x)=f(1+x),x∈R},Q={f(x)|f(1﹣x)=﹣f(1+x),x∈R}.若f(x)=(x﹣1)3,x∈R,则() A. f(x)∈M B. f(x)∈N C. f(x)∈P D. f(x)∈Q8.设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为() A. 1 B. C. D.9.若对于定义在R上的函数f(x),其函数图象是连续的,且存在常数λ(λ∈R),使得f(x+λ)+λf (x)=0对任意的实数x成立,则称f(x)是“λ﹣同伴函数”.下列关于“λ﹣同伴函数”的叙述中正确的是()A.“同伴函数”至少有一个零点B. f(x)=x2是一个“λ﹣同伴函数”C. f(x)=log2x是一个“λ﹣同伴函数”D. f(x)=0是唯一一个常值“λ﹣同伴函数”10.已知函数f(x)是定义在R上的奇函数,当x>0时,,则函数g(x)=xf(x)﹣1在[﹣6,+∞)上的全部零点之和为()A. 7 B. 8 C. 9 D. 10二、填空题:本大题共5个小题,每小题5分,共25分.请把答案填在题中横线上.11.已知函数y=f(x)是奇函数,当x>0时,f(x)=log2x,则f(f ())的值等于.12.曲线y=x3+3x2+6x﹣1的切线中,斜率最小的切线方程为.13.定义在R上的函数f(x)满足关系,则的值等于.14.已知命题p:不等式|x|+|x﹣1|>m的解集为R,命题q:f(x)=﹣(5﹣2m)x是减函数,若p或q为真命题,p且q为假命题,则实数m 的取值范围是.15.定义在R上的奇函数f(x),当x∈(0,+∞)时,f(x)>0且2f(x)+xf′(x)>0,有下列命题:①f(x)在R上是增函数;②当x1>x2时,x12f(x1)>x22f(x2)③当x1>x2>0时,>④当x1+x2>0时,x12f(x1)+x22f(x2)>0⑤当x1>x2时,x12f(x2)>x22f(x1)则其中正确的命题是(写出你认为正确的全部命题的序号)三、解答题:本大题共6个小题,满分75分,解答应写出必要的文字说明,证明过程或演算步骤.16.已知函数的定义域为集合A,函数g(x)=lg(﹣x2+2x+m)的定义域为集合B.(1)当m=3时,求A∩(∁R B);(2)若A∩B={x|﹣1<x<4},求实数m的值.17.已知函数y=g(x)与f(x)=log a(x+1)(a>1)的图象关于原点对称.(1)写出y=g(x)的解析式;(2)若函数F(x)=f(x)+g(x)+m为奇函数,试确定实数m的值;(3)当x∈[0,1)时,总有f(x)+g(x)≥n成立,求实数n的取值范围.18.已知定义在正实数集上的函数f(x)=x2+2ax ,g(x)=3a2lnx+b,其中a>0.设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同.(1)用a表示b,并求b的最大值;(2)求证:f(x)≥g(x).19.设函数f(x)=x3+ax2+bx(x>0)的图象与直线y=4相切于M(1,4).(1)求y=f (x)在区间(0,4]上的最大值与最小值;(2)是否存在两个不等正数s,t(s<t),当s≤x≤t时,函数f(x)=x3+ax2+bx的值域是[s,t],若存在,求出全部这样的正数s,t;若不存在,请说明理由.20.已知函数f(x)=ax3+bx2+cx+d(x∈R,a≠0),(1)若x=0为函数的一个极值点,且f(x)在区间(﹣6,﹣4),(﹣2,0)上单调且单调性相反,求的取值范围.(2)当b=3a,且﹣2是f(x)=ax3+3ax2+d的一个零点,求a的取值范围.21.已知函数f(x)=x3+bx2+cx+d,设曲线y=f(x)在与x轴交点处的切线为y=4x﹣12,f′(x)为f(x)的导函数,满足f′(2﹣x)=f′(x).(Ⅰ)设g(x)=x,m>0,求函数g(x)在[0,m]上的最大值;(Ⅱ)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1﹣t)<h(2x+2)恒成立,求实数t的取值范围.2022-2021学年安徽省合肥市肥东县锦弘中学高三(上)第一次月考数学试卷(理科)(重点班)参考答案与试题解析一、选择题:本大题10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.把答案直接填涂到答题卡上.1.“2a>2b”是“log2a>log2b”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件考点:对数函数的单调性与特殊点;指数函数的单调性与特殊点.专题:计算题;综合题.分析:分别解出2a>2b,log2a>log2b中a,b的关系,然后依据a,b的范围,确定充分条件,还是必要条件.解答:解:2a>2b⇒a>b,当a<0或b<0时,不能得到log2a>log2b,反之由log2a>log2b即:a>b>0可得2a>2b成立.故选B.点评:本题考查对数函数的单调性与特殊点,必要条件、充分条件与充要条件的推断,是基础题.2.已知集合M={x||x﹣4|+|x﹣1|<5},N={x|a<x<6},且M∩N={2,b},则a+b=() A. 6 B. 7 C. 8 D. 9考点:交集及其运算.专题:计算题.分析:集合M中的不等式表示数轴上到1的距离与到4的距离之和小于5,求出x的范围,确定出M,由M 与N的交集及N,确定出a与b的值,即可求出a+b的值.解答:解:由集合M中的不等式,解得:0<x<5,∴M={x|0<x<5},∵N={x|a<x<6},且M∩N=(2,b),∴a=2,b=5,则a+b=2+5=7.故选B点评:此题考查了交集及其运算,娴熟把握交集的定义是解本题的关键.3.方程的实数根的个数为()A. 0 B. 1 C. 2 D.不确定考点:根的存在性及根的个数推断.专题:计算题.分析:将方程的实数根的个数转化成y=与y=2x﹣1的图象的交点的个数,在同一坐标系下画出它们的图象,观看图象即可得到结论.解答:解:方程的实数根的个数可看成y=与y=2x﹣1的图象的交点的个数在同一坐标系下画出它们的图象明显一个交点,故方程的实数根的个数为1故选B.点评:本题主要考查了函数与方程的综合运用,以及指数函数与对数函数的图象,属于基础题.4.设函数f(x)是定义在R上的偶函数,且在(﹣∞,0 )上增函数,若|a|>|b|,则以下结论正确的是()A. f(a)﹣f(b)<0 B. f(a)﹣f(b)>0 C. f(a)+f(b)>0 D. f(a)+f(b)<0考点:奇偶性与单调性的综合.专题:计算题;函数的性质及应用.分析:利用偶函数的性质,偶函数f(x)在(﹣∞,0 )上增函数,则它在(0,+∞)上递减,由f(﹣x)=f(x)=f(|x|),|a|>|b|,即可作出推断.解答:解:∵函数f(x)是定义在R上的偶函数,∴其图象关于y轴对称,又∵f(x)在(﹣∞,0 )上增函数,∴f(x)在(0,+∞)上递减,∴当|a|>|b|时,f(|a|)<f(|b|),又由函数f(x)是定义在R上的偶函数知,f(﹣x)=f(x)=f(|x|),∴f(|a|)=f(a),f(|b|)=f(b),∴f(|a|)<f(|b|),即f(a)<f(b),∴f(a)﹣f(b)<0,故选:A.点评:本题考查函数奇偶性与单调性的综合应用,考查转化思想与推理力量,属于中档题.5.若函数f(x)=x2+ax(a∈R),则下列结论正确的是()A.∃a∈R,f(x)是偶函数 B.∃a∈R,f(x)是奇函数C.∀a∈R,f(x)在(0,+∞)上是增函数 D.∀a∈R,f(x)在(0,+∞)上是减函数考点:全称命题;特称命题;函数单调性的推断与证明;函数奇偶性的推断.分析:当a=0时,f(x)是偶函数;有x2的存在,f(x)不会是奇函数;在(0,∝)上,只有当a>0时,(x)在(0,+∞)上是增函数;∵g(x)=x2在(0,+∞)上是增函数,不存在a∈R,有f(x)在(0,+∞)上是减函数.解答:解:当a=0时,f(x)是偶函数故选A点评:本题通过规律用语来考查函数的单调性和奇偶性.6.已知函数y=f′(x),y=g′(x)的导函数的图象如图,那么y=f(x),y=g(x)的图象可能是()A. B. C.D.考点:利用导数争辩函数的单调性.专题:压轴题.分析:依据导函数的函数值反映的是原函数的斜率大小可得答案.解答:解:从导函数的图象可知两个函数在x0处斜率相同,可以排解B,再者导函数的函数值反映的是原函数的斜率大小,可明显看出y=f(x)的导函数的值在减小,所以原函数应当斜率渐渐变小,排解AC,故选D.点评:本题主要考查但函数的意义.建议让同学在最终一轮肯定要回归课本,抓课本基本概念.7.集合M={f(x)|f(﹣x)=f(x),x∈R},N={f(x)|f(﹣x)=﹣f(x),x∈R},P={f(x)|f(1﹣x)=f(1+x),x∈R},Q={f(x)|f(1﹣x)=﹣f(1+x),x∈R}.若f(x)=(x﹣1)3,x∈R,则() A. f(x)∈M B. f(x)∈N C. f(x)∈P D. f(x)∈Q考点:元素与集合关系的推断.专题:集合.分析: M中的f(x)是偶函数,图象关于y轴对称;N中的f(x)是奇函数,图象关于x轴对称;P中的f (x)图象关于直线x=1轴对称;Q中的f(x)图象关于点(1,0)对称;解答:解:∵f(x)=(x﹣1)3,x∈R的图象关于点(1,0)对称,而条件f(1﹣x)=﹣f(1+x),x∈R 说明函数f(x)的图象关于点(1,0)对称.∴f(x)∈Q故选D.点评:本题通过集合与元素的关系来考查函数图象的对称问题.要记住一些常的结论.8.设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为() A. 1 B. C. D.考点:导数在最大值、最小值问题中的应用.专题:计算题;压轴题;转化思想.分析:将两个函数作差,得到函数y=f(x)﹣g(x),再求此函数的最小值对应的自变量x的值.解答:解:设函数y=f(x)﹣g(x)=x2﹣lnx,求导数得=当时,y′<0,函数在上为单调减函数,当时,y′>0,函数在上为单调增函数所以当时,所设函数的最小值为所求t 的值为故选D点评:可以结合两个函数的草图,发觉在(0,+∞)上x2>lnx恒成立,问题转化为求两个函数差的最小值对应的自变量x的值.9.若对于定义在R上的函数f(x),其函数图象是连续的,且存在常数λ(λ∈R),使得f(x+λ)+λf (x)=0对任意的实数x成立,则称f(x)是“λ﹣同伴函数”.下列关于“λ﹣同伴函数”的叙述中正确的是()A.“同伴函数”至少有一个零点B. f(x)=x2是一个“λ﹣同伴函数”C. f(x)=log2x是一个“λ﹣同伴函数”D. f(x)=0是唯一一个常值“λ﹣同伴函数”考点:函数恒成立问题;抽象函数及其应用;函数的零点.专题:新定义.分析:令x=0,可得.若f(0)=0,f(x)=0有实数根;若f(0)≠0,.可得f(x )在上必有实根,可推断A假设f(x)=x2是一个“λ﹣同伴函数”,则(x+λ)2+λx2=0,则有λ+1=2λ=λ2=0,解方程可推断B由于f(x)=log2x的定义域不是R可推断C设f(x)=C则(1+λ)C=0,当λ=﹣1时,可以取遍实数集,可推断D解答:解:令x=0,得.所以.若f(0)=0,明显f(x)=0有实数根;若f(0)≠0,.又由于f(x)的函数图象是连续不断,所以f(x )在上必有实数根.因此任意的“同伴函数”必有根,即任意“同伴函数”至少有一个零点.:A正确,用反证法,假设f(x)=x2是一个“λ﹣同伴函数”,则(x+λ)2+λx2=0,即(1+λ)x2+2λx+λ2=0对任意实数x成立,所以λ+1=2λ=λ2=0,而此式无解,所以f(x)=x2不是一个“λ﹣同伴函数”.B错误由于f(x)=log2x的定义域不是R.C错误设f(x)=C是一个“λ﹣同伴函数”,则(1+λ)C=0,当λ=﹣1时,可以取遍实数集,因此f(x)=0不是唯一一个常值“λ﹣同伴函数”.D错误,点评:本题考查的学问点是函数的概念及构成要素,函数的零点,正确理解f(x)是λ﹣同伴函数的定义,是解答本题的关键.10.已知函数f(x)是定义在R上的奇函数,当x>0时,,则函数g(x)=xf(x)﹣1在[﹣6,+∞)上的全部零点之和为()A. 7 B. 8 C. 9 D. 10考点:奇偶性与单调性的综合;函数的零点.专题:压轴题;函数的性质及应用.分析:由已知可分析出函数g(x)是偶函数,则其零点必定关于原点对称,故g(x)在[﹣6,6]上全部的零点的和为0,则函数g(x)在[﹣6,+∞)上全部的零点的和,即函数g(x)在(6,+∞)上全部的零点之和,求出(6,+∞)上全部零点,可得答案.解答:解:∵函数f(x)是定义在R上的奇函数,∴f(﹣x)=﹣f(x).又∵函数g(x)=xf(x)﹣1,∴g(﹣x)=(﹣x)f(﹣x)﹣1=(﹣x)[﹣f(x)]﹣1=xf(x)﹣1=g(x),∴函数g(x)是偶函数,∴函数g(x)的零点都是以相反数的形式成对消灭的.∴函数g(x)在[﹣6,6]上全部的零点的和为0,∴函数g(x)在[﹣6,+∞)上全部的零点的和,即函数g(x)在(6,+∞)上全部的零点之和.由0<x≤2时,f(x)=2|x﹣1|﹣1,即∴函数f(x)在(0,2]上的值域为[,1],当且仅当x=2时,f(x)=1又∵当x>2时,f(x)=∴函数f(x)在(2,4]上的值域为[,],函数f(x)在(4,6]上的值域为[,],函数f(x)在(6,8]上的值域为[,],当且仅当x=8时,f(x)=,函数f(x)在(8,10]上的值域为[,],当且仅当x=10时,f(x)=,故f(x )<在(8,10]上恒成立,g(x)=xf(x)﹣1在(8,10]上无零点同理g(x)=xf(x)﹣1在(10,12]上无零点依此类推,函数g(x)在(8,+∞)无零点综上函数g(x)=xf(x)﹣1在[﹣6,+∞)上的全部零点之和为8故选B点评:本题考查的学问点是函数的奇偶性,函数的零点,函数的图象和性质,其中在查找(6,+∞)上零点个数时,难度较大,故可以用归纳猜想的方法进行处理.二、填空题:本大题共5个小题,每小题5分,共25分.请把答案填在题中横线上.11.已知函数y=f(x)是奇函数,当x>0时,f(x)=log2x,则f(f ())的值等于﹣1 .考点:对数的运算性质;函数的值.专题:计算题;函数的性质及应用.分析:由已知可得f(﹣x)=﹣f(x),结合已知可求f()=﹣2,然后再由f(﹣2)=﹣f(2),代入已知可求解答:解:∵y=f(x)是奇函数,∴f(﹣x)=﹣f(x)∵当x>0时,f(x)=log2x,∴=﹣2则f(f ())=f(﹣2)=﹣f(2)=﹣1故答案为:﹣1点评:本题主要考查了奇函数的性质的简洁应用,属于基础试题12.曲线y=x3+3x2+6x﹣1的切线中,斜率最小的切线方程为3x﹣y﹣2=0 .考点:利用导数争辩曲线上某点切线方程;直线的斜率.专题:计算题.分析:已知曲线y=x3+3x2+6x﹣1,对其进行求导,依据斜率与导数的关系进行求解;解答:解:∵曲线y=x3+3x2+6x﹣1,y'=3x2+6x+6=3(x+1)2+3≥3.当x=﹣1时,y'min=3,此时斜率最小,即k=3当x=﹣1时,y=﹣5.此切线过点(﹣1,﹣5)∴切线方程为y+5=3(x+1),即3x﹣y﹣2=0,故答案为3x﹣y﹣2=0;点评:此题主要利用导数争辩曲线上的某点切线方程,此题是一道基础题,还考查直线的斜率;13.定义在R上的函数f(x)满足关系,则的值等于7 .考点:函数的值.专题:计算题.分析:依据给出的式子的特点,令化简得f(x)+f(1﹣x)=2,即两个自变量的和是1则它们的函数值的和是2,由此规律求出所求式子的值.解答:解:由题意知,,令代入式子得,f(x)+f(1﹣x)=2,∴==6+∵+=2,∴=7.故答案为:7.点评:本题的考点是抽象函数求值,即依据所给式子的特点进行变形,找出此函数的规律,并利用此规律对所给的式子进行求值.14.已知命题p:不等式|x|+|x﹣1|>m的解集为R,命题q:f(x)=﹣(5﹣2m)x是减函数,若p或q为真命题,p且q为假命题,则实数m的取值范围是[1,2).考点:命题的真假推断与应用.专题:计算题;分类争辩.分析:由确定值得意义知,p:即 m<1;由指数函数的单调性与特殊点得,q:即 m<2.从而求得当这两个命题有且只有一个正确时实数m的取值范围.解答:解:p:∵不等式|x|+|x﹣1|>m的解集为R,而|x|+|x﹣1|表示数轴上的x到0和1的距离之和,最小值等于1,∴m<1.q:∵f(x)=﹣(5﹣2m)x是减函数,∴5﹣2m>1,解得m<2.∴当 1≤m<2时,p不正确,而q正确,两个命题有且只有一个正确,实数m的取值范围为[1,2).故答案为:[1,2).点评:本题考查在数轴上理解确定值的几何意义,指数函数的单调性与特殊点,分类争辩思想,化简这两个命题是解题的关键.属中档题.15.定义在R上的奇函数f(x),当x∈(0,+∞)时,f(x)>0且2f(x)+xf′(x)>0,有下列命题:①f(x)在R上是增函数;②当x1>x2时,x12f(x1)>x22f(x2)③当x1>x2>0时,>④当x1+x2>0时,x12f(x1)+x22f(x2)>0⑤当x1>x2时,x12f(x2)>x22f(x1)则其中正确的命题是②③④(写出你认为正确的全部命题的序号)考点:命题的真假推断与应用.分析:利用函数的性质和构建函数来求解.解答:解:通过审题,特殊是所要推断的项,我们可以得出当x∈(0,+∞),2f(x)+xf′(x)>0等价于:2xf(x)+x2f′(x)>0即可以看成是R(x)=x2f(x)的导函数∴R(x)与f(x)一样,也为奇函数,且在x∈(0,+∞)时,R(x)为单调递增函数通过奇函数的性质,可以发觉R(x)在R上都为单调增函数①通过分析,无法判定f(x)是增函数还是减函数②依据前面的分析,我们可以通过增函数的性质判定②是正确的③∵x1和x2都是大于0∴f(x1)和f(x2)也都大于0∴可以化简成x12f(x1)>x22f(x2),明显成立④x1+x2>0等价于x1>﹣x2∴x12f(x1)>(﹣x2)2f(﹣x2)=﹣x22f(x2)∴x12f(x1)+x22f(x2)>0⑤通过分析,无法判定等式肯定成立点评:涉及到多个函数,我们一般可以通过构造一个函数来进行简化分析.对于无法判定的选项,只要找出一个反例就行.机敏运用奇偶函数的性质.三、解答题:本大题共6个小题,满分75分,解答应写出必要的文字说明,证明过程或演算步骤.16.已知函数的定义域为集合A,函数g(x)=lg(﹣x2+2x+m)的定义域为集合B.(1)当m=3时,求A∩(∁R B);(2)若A∩B={x|﹣1<x<4},求实数m的值.考点:交、并、补集的混合运算;交集及其运算;对数函数的定义域.专题:计算题.分析:(1)先分别求出函数f(x)和g(x)的定义域,再求出集合B的补集,再依据交集的定义求出所求;(2)先求出集合A,再依据A∩B的范围以及结合函数g(x)的特点确定出集合B,然后利用根与系数的关系求出m的值.解答:解:函数的定义域为集合A={x|﹣1<x≤5}(1)函数g(x)=lg(﹣x2+2x+3)的定义域为集合B={x|﹣1<x<3}C R B={x|x≤﹣1或x≥3}∴A∩(∁R B)=[3,5](2)∵A∩B={x|﹣1<x<4},A={x|﹣1<x≤5}而﹣x2+2x+m=0的两根之和为2∴B={x|﹣2<x<4}∴m=8答:实数m的值为8点评:本题主要考查了对数函数、根式函数的定义域的求解,已经交、并、补集的混合运算等学问,属于基础题.17.已知函数y=g(x)与f(x)=log a(x+1)(a>1)的图象关于原点对称.(1)写出y=g(x)的解析式;(2)若函数F(x)=f(x)+g(x)+m为奇函数,试确定实数m的值;(3)当x∈[0,1)时,总有f(x)+g(x)≥n成立,求实数n的取值范围.考点:函数奇偶性的性质;对数函数的单调性与特殊点.专题:计算题.分析:(1)设M(x,y)是函数y=g(x)图象上任意一点,进而可得M(x,y)关于原点的对称点为N的坐标,代入f(x)中进而求得x和y的关系式.(2)跟函数F(x)为奇函数求得F(﹣x)=﹣F(x)代入解析式即可求得m的值.(3)利用f(x)+g(x)≥n 求得,设,只要Q(x)min≥n 即可,依据在[0,1)上是增函数进而求得函数的最小值,求得n的范围.解答:解:(1)设M(x,y)是函数y=g(x)图象上任意一点,则M(x,y)关于原点的对称点为N(﹣x,﹣y)N在函数f(x)=log a(x+1)的图象上,∴﹣y=log a(﹣x+1)(2)∵F(x)=log a(x+1)﹣log a(1﹣x)+m为奇函数.∴F(﹣x)=﹣F(x)∴log a(1﹣x)﹣log a(1+x)+m=﹣log a(1+x)+log a(1﹣x)﹣m∴,∴m=0(3)由设,由题意知,只要Q(x)min≥n即可∵在[0,1)上是增函数∴n≤0点评:本题主要考查了函数的奇偶性的应用.考查了同学分析问题和解决问题的力量.18.已知定义在正实数集上的函数f(x)=x2+2ax,g(x)=3a2lnx+b,其中a>0.设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同.(1)用a表示b,并求b的最大值;(2)求证:f(x)≥g(x).考点:利用导数争辩曲线上某点切线方程.专题:综合题;导数的综合应用.分析:(1)欲求出切线方程,只须求出其斜率即可,故先利用导数求出在切点处的导函数值,再结合导数的几何意义即可求出切线的斜率.最终用a表示b,利用导数的工具求b的最大值,从而问题解决.(2)先设F(x)=f(x)﹣g(x),利用导数争辩此函数的单调性,欲证f(x)≥g(x)(x>0),只须证明F(x)在(0,+∞)上的最小值是0即可.解答:解:(Ⅰ)设y=f(x)与y=g(x)(x>0)在公共点(x0,y0)处的切线相同,∵f′(x)=x+2a,g′(x)=,由题意f(x0)=g(x0),f′(x0)=g′(x0),∴+2ax=3a2lnx0+b,x0+2a=,由x0+2a=得x0=a,x0=﹣3a(舍去)即有b=(3分)令h(t)=,则h′(t)=2t(1﹣3lnt)当t(1﹣3lnt)>0,即0<t <时,h'(t)>0;当t(1﹣3lnt)<0,即t >时,h'(t)<0.故h(t)在(0,)为增函数,在(,+∞)为减函数,于是h(t)在(0,+∞)的最大值为h ()=(6分)(Ⅱ)设F(x)=f(x)﹣g(x)=,则F'(x)=x+2a ﹣=(10分)故F(x)在(0,a)为减函数,在(a,+∞)为增函数,于是函数F(x)在(0,+∞)上的最小值是F(a)=F(x0)=f(x0)﹣g(x0)=0.故当x>0时,有f(x)﹣g(x)≥0,即当x>0时,f(x)≥g(x)(12分)点评:考查同学会利用导数求曲线上过某点切线方程的斜率,会利用导数争辩函数的单调区间以及依据函数的增减性得到函数的最值.考查化归与转化思想.属于中档题.19.设函数f(x)=x3+ax2+bx(x>0)的图象与直线y=4相切于M(1,4).(1)求y=f(x)在区间(0,4]上的最大值与最小值;(2)是否存在两个不等正数s,t(s<t),当s≤x≤t时,函数f(x)=x3+ax2+bx的值域是[s,t],若存在,求出全部这样的正数s,t;若不存在,请说明理由.考点:利用导数争辩曲线上某点切线方程;利用导数求闭区间上函数的最值.专题:综合题.分析:(1)对f(x)进行求导,依据f(x)的图象与直线y=4相切于M(1,4),可得f′(1)=0和f (1)=0,求出f(x)的解析式,再求其最值;(2)依据函数的定义域是正数知,s>0,故极值点x=3不在区间[s,t]上分两种状况,若f(x)=x3﹣6x2+9x 在[s,t]上单调增;若f(x)=x3﹣6x2+9x在[s,t]上单调减,从而进行推断;解答:解:(1)f'(x)=3x2+2ax+b,(1分)依题意则有:,即解得(2分)∴f(x)=x3﹣6x2+9x令f'(x)=3x2﹣12x+9=0,解得x=1或x=3(3分)当x变化时,f'(x),f(x)在区间(0,4]上的变化状况如下表:x (0,1) 1 (1,3) 3 (3,4) 4f'(x) + 0 ﹣ 0 +f(x)单调递增↗ 4 单调递减↘ 0 单调递增↗ 4 所以函数f(x)=x3﹣6x2+9x在区间(0,4]上的最大值是4,最小值是0.(4分)(2)由函数的定义域是正数知,s>0,故极值点x=3不在区间[s,t]上;(5分)①若极值点x=1在区间[s,t],此时0<s≤1≤t<3,在此区间上f(x)的最大值是4,不行能等于t;故在区间[s,t]上没有极值点;(7分)②若f(x)=x3﹣6x2+9x在[s,t]上单调增,即0<s<t≤1或3<s<t,则,即,解得不合要求;(10分)③若f(x)=x3﹣6x2+9x在[s,t]上单调减,即1<s<t<3,则,两式相减并除s﹣t得:(s+t)2﹣6(s+t)﹣st+10=0,①两式相除可得[s(s﹣3)]2=[t(t﹣3)]2,即s(3﹣s)=t(3﹣t),整理并除以s﹣t得:s+t=3,②由①、②可得,即s,t是方程x2﹣3x+1=0的两根,即存在s=,t=不合要求.(13分)综上可得不存在满足条件的s、t.(14分)点评:此题主要考查利用导数求函数的单调区间及极值,是一道综合性比较强,其次问难度比较大,存在性问题,假设存在求出s,t,计算时要认真;20.已知函数f(x)=ax3+bx2+cx+d(x∈R,a≠0),(1)若x=0为函数的一个极值点,且f(x)在区间(﹣6,﹣4),(﹣2,0)上单调且单调性相反,求的取值范围.(2)当b=3a,且﹣2是f(x)=ax3+3ax2+d的一个零点,求a的取值范围.考点:导数在最大值、最小值问题中的应用;函数的零点;利用导数争辩函数的单调性.专题:导数的综合应用.分析:(1)由已知得f'(x)=3ax2+2bx+c,f'(0)=0,由此利用导数性质能求出的取值范围.(2)由已知得f(﹣2)=﹣8a+12a+d=0,从而f'(x)=3ax2+6ax,令f'(x)=0,x=0或x=﹣2.列表争辩能求出实数a的取值范围.解答:解:(1)由于f(x)=ax3+bx2+cx+d,所以f'(x)=3ax2+2bx+c.又f(x)在x=0处有极值,所以f'(0)=0即c=0,所以f'(x)=3ax2+2bx.令f'(x)=0,所以x=0或.又由于f(x)在区间(﹣6,﹣4),(﹣2,0)上单调且单调性相反,所以所以.(5分)(2)由于b=3a,且﹣2是f(x)=ax3+3ax2+d的一个零点,所以f(﹣2)=﹣8a+12a+d=0,所以d=﹣4a,从而f(x)=ax3+3ax2﹣4a,所以f'(x)=3ax2+6ax,令f'(x)=0,所以x=0或x=﹣2.(7分)列表争辩如下:x ﹣3 (﹣3,﹣2)﹣2[ (﹣2,0) 0 (0,2) 2a>0 a<0 a>0 a<0 a>0 a<0f'(x) + ﹣ 0 ﹣ + 0 + ﹣f(x)﹣4a↗↘ 0 ↘↗﹣4a ↗↘ 16a所以当a>0时,若﹣3≤x≤2,则﹣4a≤f(x)≤16a.当a<0时,若﹣3≤x≤2,则16a≤f(x)≤﹣4a.从而或,即或所以存在实数,满足题目要求.(13分)点评:本题考查实数的取值范围的求法,解题时要认真审题,留意导数的性质的机敏运用.21.已知函数f(x)=x3+bx2+cx+d,设曲线y=f(x)在与x轴交点处的切线为y=4x﹣12,f′(x)为f(x)的导函数,满足f′(2﹣x)=f′(x).(Ⅰ)设g(x)=x,m>0,求函数g(x)在[0,m]上的最大值;(Ⅱ)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1﹣t)<h(2x+2)恒成立,求实数t的取值范围.考点:利用导数求闭区间上函数的最值;函数恒成立问题.专题:综合题;压轴题.分析:(Ⅰ)f′(x)=x2+2bx+c,由f′(2﹣x)=f′(x),解得b=﹣1.由直线y=4x﹣12与x轴的交点为(3,0),解得c=1,d=﹣3.由此能求出函数g(x)在[0,m]上的最大值.(Ⅱ)h(x)=ln(x﹣1)2=2ln|x﹣1|,则h(x+1﹣t)=2ln|x﹣t|,h(2x+2)=2ln|2x+1|,由当x∈[0,1]时,|2x+1|=2x+1,知不等式2ln|x﹣t|<2ln|2x+1|恒成立等价于|x﹣t|<2x+1,且x≠t恒成立,由此能求出实数t的取值范围.解答:(本小题满分14分)解:(Ⅰ)f′(x)=x2+2bx+c,∵f′(2﹣x)=f′(x),∴函数y=f′(x)的图象关于直线x=1对称,则b=﹣1.∵直线y=4x﹣12与x轴的交点为(3,0),∴f(3)=0,且f′(x)=4,即9+9b+3c+d=0,且9+6b+c=4,解得c=1,d=﹣3.则.故f′(x)=x2﹣2x+1=(x﹣1)2,g(x)=x=x|x﹣1|=,如图所示.当时,x=,依据图象得:(ⅰ)当x<m时,g(x)最大值为m﹣m2;(ⅱ)当时,g(x )最大值为;(ⅲ)当m时,g(x)最大值为m2﹣m.…(8分)(Ⅱ)h(x)=ln(x﹣1)2=2ln|x﹣1|,则h(x+1﹣t)=2ln|x﹣t|,h(2x+2)=2ln|2x+1|,∵当x∈[0,1]时,|2x+1|=2x+1,∴不等式2ln|x﹣t|<2ln|2x+1|恒成立等价于|x﹣t|<2x+1,且x≠t恒成立,由|x﹣t|<2x+1恒成立,得﹣x﹣1<t<3x+1恒成立,∵当x∈[0,1]时,3x+1∈[1,4],﹣x﹣1∈[﹣2,﹣1],∴﹣1<t<1,又∵当x∈[0,1]时,由x≠t恒成立,得t∉[0,1],因此,实数t的取值范围是﹣1<t<0.…(14分)点评:本题考查函数最大值的求法,考查实数的取值范围的求法.考查推理论证力量的应用,考查计算推导力量.综合性强,难度大,是高考的重点.解题时要认真审题,认真解答,留意合理地进行等价转化.。
2021届高三年级第一学期期中考试数 学(满分150分,考试时间120分钟)2020.11第Ⅰ卷(选择题 共60分)一、 单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合A ={x|-2≤x<4},B ={x|-5<x ≤3},则A ∩B =( ) A. {x|-5<x<4} B. {x|-5<x ≤-2} C. {x|-2≤x ≤3} D. {x|3≤x<4}2. “a>1”是“(a -1)(a -2)<0”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件3. 已知变量x ,y 之间的一组数据如下表.若y 关于x 的线性回归方程为y =0.7x +a ,则a =( )x 3 4 5 6 y2.5344.5A. 0.1B. 0.2C. 0.35D. 0.454. 已知a ,b 为不同直线,α,β为不同平面,则下列结论正确的是( ) A. 若a ⊥α,b ⊥a ,则b ∥α B. 若a ,b ⊂α,a ∥β,b ∥β,则α∥βC. 若a ∥α,b ⊥β,a ∥b ,则α⊥βD. 若α∩β=b ,a ⊂α,a ⊥b ,则α⊥β 5. 高一某班有5名同学报名参加学校组织的三个不同社区服务小组,每个小组至多可接收该班2名同学,每名同学只能报一个小组,则报名方案有( )A. 15种B. 90种C. 120种D. 180种6. 已知α∈(π2,π),tan α=-3,则sin (α-π4)等于( )A.55 B. 255 C. 35 D. 357. 随着科学技术的发展,放射性同位素技术已经广泛应用于医学、航天等众多领域,并取得了显著经济效益.假设某放射性同位素的衰变过程中,其含量N(单位:贝克)与时间t(单位:天)满足函数关系P(t)=P 02-t30,其中P 0为t =0时该放射性同位素的含量.已知t =15时,该放射性同位素的瞬时变化率为-32ln 210,则该放射性同位素含量为4.5贝克时衰变所需时间为( )A. 20天B. 30天C. 45天D. 60天8. 定义运算:① 对∀m ∈R ,m0=0m =m ;②对∀m ,n ,p ∈R ,(m n)p =p(mn)+mp +np.若f(x)=e x-1e 1-x ,则有( )A. 函数y =f(x)的图象关于x =1对称B. 函数f(x)在R 上单调递增C. 函数f(x)的最小值为2D. f(223)>f(232)二、 多项选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,选对但不全的得3分,有选错的得0分.9. 中国的华为公司是全球领先的ICT(信息与通信)基础设施和智能终端提供商,其致力于把数字世界带给每个人、每个家庭、每个组织,构建万物互联的智能世界.其中华为的5G 智能手机是全世界很多年轻人非常喜欢的品牌.为了研究某城市甲、乙两个华为5G 智能手机专卖店的销售状况,统计了2020年4月到9月甲、乙两店每月的营业额(单位:万元),得到如图的折线图,则下列说法正确的是( )A. 根据甲店的营业额折线图可知,该店月营业额的平均值在[31,32]内B. 根据乙店的营业额折线图可知,该店月营业额总体呈上升趋势C. 根据甲、乙两店的营业额折线图可知,乙店的月营业额极差比甲店小D. 根据甲、乙两店的营业额折线图可知,7,8,9月份的总营业额甲店比乙店少 10. 若非零实数x ,y 满足x>y ,则下列判断正确的是( ) A. 1x <1y B. x 3>y 3 C. (12)x >(12)y D. ln(x -y +1)>0 11. 已知函数f(x)=cos (ωx +φ)(ω>0,0<φ<π2)的最小正周期为π,其图象的一条对称轴为x =5π12,则( )A. φ=π3B. 函数y =f(x)的图象可由y =sin 2x 的图象向左平移π3个单位长度得到 C. 函数f(x)在[0,π2]上的值域为[-1,32]D. 函数f(x)在区间[-π,-π2]上单调递减12. 已知函数f(x)=⎩⎪⎨⎪⎧2-4⎪⎪⎪⎪x -12,0≤x ≤1,af (x -1),x >1,其中a ∈R .下列关于函数f(x)的判断正确的是( )A. 当a =2时,f(32)=4B. 当|a|<1时,函数f(x)的值域为[-2,2]C. 当a =2且x ∈[n -1,n](n ∈N *)时,f(x)=2n -1(2-4⎪⎪⎪⎪x -2n -12)D. 当a>0时,不等式f(x)≤2ax -12在[0,+∞)上恒成立第Ⅱ卷(非选择题 共90分)三、 填空题:本大题共4小题,每小题5分,共20分. 13. (x 2+2x)5的展开式中x 4的系数为________.14. 若一直角三角形的面积为50,则该直角三角形的斜边的最小值为________.15. 已知f(x)是定义在R 上的奇函数,满足f(1-x)=f(1+x).若f(1)=1,则f(1)+f(2)+f(3)+…+f(2 021)=________.16. 已知菱形ABCD 边长为3,∠BAD =60°,点E 为对角线AC 上一点,AC =6AE.将△ABD 沿BD 翻折到△A′BD 的位置,E 记为E′,且二面角A ′BDC 的大小为120°,则三棱锥A′BCD 的外接球的半径为________;过E′作平面α与该外接球相交,所得截面面积的最小值为________.四、 解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17. (本小题满分10分)已知正三棱柱ABCA 1B 1C 1的底面边长为2,点E ,F 分别为棱CC 1与A 1B 1的中点. (1) 求证:直线EF ∥平面A 1BC ;(2) 若该正三棱柱的体积为26,求直线EF 与平面ABC 所成角的余弦值.18. (本小题满分12分) 在① csin B =bsinA +B 2,② cos B =217;③ bcos C +csin B =a 这三个条件中任选一个,补充在下面问题中的横线处,并完成解答.问题:△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,A =π3,点D 是边AB 上一点,AD =5,CD =7,且________,试判断AD 和DB 的大小关系.注:如果选择多个条件分别解答,按第一个解答计分.已知函数f(x)=x 3-3x 2+3bx +c 在x =0处取得极大值1. (1) 求函数y =f(x)的图象在x =1处的切线的方程;(2) 若函数f(x)在[t ,t +2]上不单调,求实数t 的取值范围.20.(本小题满分12分)在四棱锥PABCD 中,底面ABCD 为直角梯形,CD ∥AB ,∠ABC =90°,AB =2BC =2CD =4,侧面PAD ⊥平面ABCD ,PA =PD =2.(1) 求证:BD ⊥PA ;(2) 已知平面PAD 与平面PBC 的交线为l ,在l 上是否存在点N ,使二面角PDCN 的余弦值为13?若存在,请确定点N 位置;若不存在,请说明理由.2020年10月16日是第40个世界粮食日.中国工程院院士袁隆平海水稻团队迎来了海水稻的测产收割,其中宁夏石嘴山海水稻示范种植基地YC801测产,亩产超过648.5公斤,通过推广种植海水稻,实现亿亩荒滩变粮仓,大大提高了当地居民收入.某企业引进一条先进食品生产线,以海水稻为原料进行深加工,发明了一种新产品,若该产品的质量指标为m(m∈[70,100]),其质量指标等级划分如下表:质量指标值m[70,75) [75,80) [80,85) [85,90) [90,100] 质量指标等级良好优秀良好合格废品为了解该产品的经济效益并及时调整生产线,该企业先进行试生产.现从试生产的产品中随机抽取了1 000件,将其质量指标值m的数据作为样本,绘制如图所示的频率分布直方图:(1) 若将频率作为概率,从该产品中随机抽取3件产品,记“抽出的产品中至少有1件不是废品”为事件A,求事件A发生的概率;(2) 若从质量指标值m≥85的样本中利用分层抽样的方法抽取7件产品,然后从这7件产品中任取3件产品,求质量指标值m∈[90,95)的件数X的分布列及数学期望;(3) 若每件产品的质量指标值m与利润y(单位:元)的关系如下表(1<t<4):质量指标值m[70,75) [75,80) [80,85) [85,90) [90,100]利润y(元) 6t 8t 4t 2t -5 3et试分析生产该产品能否盈利?若不能,请说明理由;若能,试确定t为何值时,每件产品的平均利润达到最大(参考数值:ln 2≈0.7,ln 5≈1.6).已知函数f(x)=xe x-a(ln x+x).(1) 当a>0时,求f(x)的最小值;(2) 若对任意x>0恒有不等式f(x)≥1成立.①求实数a的值;②求证:x2e x>(x+2)ln x+2sin x.2021届高三年级第一学期期中考试(潍坊)数学参考答案及评分标准1. C2. B3. C4. C5. B6. B7. D8. A9. ABD 10. BD 11. BC 12. ACD 13. 40 14. 102 15. 1 16.212 94π(第一空2分,第二空3分)17. (1) 证明:取BB 1中点D ,连接ED ,FD ,(1分)在平行四边形BCC 1B 1中,点E 为CC 1的中点,点D 为BB 1的中点, 所以ED ∥CB.在△B 1BA 1中,点F 为A 1B 1的中点,点D 为BB 1的中点, 所以FD ∥A 1B.(3分)又ED ,FD ⊂平面EFD ,ED ∩FD =D ,所以平面EFD ∥平面A 1BC. 又EF ⊂平面EFD ,所以EF ∥平面A 1BC.(5分) (2) 解:设AA 1=h ,V ABCA 1B 1C 1=S △ABC ·h =34×4h , 所以3h =26,即h =2 2.(6分) 因为平面ABC ∥平面A 1B 1C 1,所以EF 与平面ABC 所成的角即为EF 与平面A 1B 1C 1所成的角. 因为CC 1⊥平面A 1B 1C 1,所以EF 在平面A 1B 1C 1上的射影为C 1F ,所以∠EFC 1为EF 与平面A 1B 1C 1所成的角.(8分) 因为EC 1=2,FC 1=3,所以EF =5, 所以cos ∠EFC 1=35=155,即EF 与平面ABC 所成角的余弦值为155.(10分)18. 解:设AC =x ,在△ACD 中,由余弦定理可得49=x 2+25-2·x·5·cos π3,(2分) 即x 2-5x -24=0,解得x =8或x =-3(舍去),所以AC =8.(3分) 选择条件①:由正弦定理得sin Csin B =sin BsinA +B2.(4分) 因为B ∈(0,π),所以sin B ≠0,所以sin C =sinA +B2.(5分) 因为A +B =π-C ,所以sin C =2sin C 2cos C 2=cos C2.(6分)因为C ∈(0,π),所以C 2∈(0,π2),所以cos C2≠0,所以sin C 2=12,即C 2=π6,C =π3.(10分)又A =π3,所以△ABC 是等边三角形,所以AB =8,(11分)所以DB =3,故AD >DB.(12分) 选择条件②: 由cos B =217,得sin B =277.(5分) 因为A +B +C =π,所以sin C =sin(A +B)=sin Acos B +cos Asin B =32×217+12×277=5714.(8分) 在△ABC 中,由正弦定理得AB sin C =AC sin B ,即AB 5714=8277,(10分) 解得AB =10.(11分)又AD =5,故AD =DB.(12分) 选择条件③:因为bcos C +csin B =a ,由正弦定理得sin Bcos C +sin Csin B =sin A .(4分)因为A +B +C =π,所以sin Bcos C +sin Csin B =sin(B +C)=sin Bcos C +sin Ccos B , 所以sin Csin B =sin Ccos B.因为sin C ≠0,所以sin B =cos B .(7分) 因为B ∈(0,π),故B =π4,所以∠ACB =5π12.(8分)在△ABC 中,由正弦定理得AB sin C =AC sin B ,即AB 6+24=822,(10分) 解得AB =4(3+1)>10.(11分)因为AD =5,所以AD <DB.(12分)19. 解:(1) 因为f′(x)=3x 2-6x +3b ,(1分)由题意可得{f′(0)=0,f (0)=1,解得b =0,c =1,(3分) 所以f(x)=x 3-3x 2+1; 经检验,适合题意.又f(1)=-1,f ′(1)=-3,(5分)所以函数y =f(x)图象在x =1处的切线的方程为y -(-1)=-3(x -1), 即3x +y -2=0.(6分) (2) 因为f′(x)=3x 2-6x ,令3x 2-6x =0,得x =0或x =2.(8分)当x <0时,f ′(x)>0,函数f(x)为增函数; 当0<x <2时,f ′(x)<0,函数f(x)为减函数; 当x >2时,f ′(x)>0,函数f(x)为增函数.(9分) 因为函数f(x)在[t ,t +2]上不单调, 所以t <0<t +2或t <2<t +2,(11分) 所以-2<t <0或0<t <2.(12分)20. (1) 证明:连接BD ,BD =CD 2+CB 2=22,AD =22, 所以BD 2+AD 2=AB 2,所以AD ⊥BD.(2分)因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,BD ⊂平面ABCD , 所以BD ⊥平面PAD.因为PA ⊂平面PAD ,所以BD ⊥PA.(4分)(2) 解:延长AD ,BC 相交于点M ,连接PM , 因为M ∈平面PAD ,M ∈平面PBC ,所以M ∈l. 又P ∈l ,所以PM 即为交线l.(5分) 取AB 中点Q ,连DQ ,则DQ ⊥DC ,过D 在平面PAD 内作AD 的垂线DH ,则DH ⊥平面ABCD.分别以DQ ,DC ,DH 所在直线为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,(6分)则P(1,-1,2),C(0,2,0),M(-2,2,0),D(0,0,0), 所以DP →=(1,-1,2),DC →=(0,2,0).设平面PDC 的法向量为m =(x ,y ,z),则m·DC →=0,m ·DP →=0, 所以{y =0,x +2z =0,取m =(-2,0,1).(8分) 设N(x 1,y 1,z 1),PN →=λPM →,则(x 1-1,y 1+1,z 1-2)=λ(-3,3,-22), 所以x 1=1-3λ,y 1=-1+3λ,z 1=2-2λ, PN →=(1-3λ,-1+3λ,2-2λ),DC →=(0,-2,0).设平面NDC 的法向量为n =(x 2,y 2,z 2),则n ·DC →=0,n ·PN →=0,所以{y 2=0,(1-3λ)x 2+(2-2λ)z 2=0,取n =(2-2λ,0,3λ-1),(10分)所以|cos 〈m ,n 〉|=|(-2)×2×(1-λ)+3λ-1|3·2(1-λ)2+(3λ-1)2=13, 所以8λ2-10λ+3=0,所以λ=12或λ=34,经检验λ=34时,不合题意,舍去.所以存在点N ,点N 为PM 的中点.(12分)21. 解:(1) 设事件A 的概率为P(A),则由频率分布直方图,可得1件产品为废品的概率为P =(0.04+0.02)×5=0.3,则P(A)=1-C 33(0.3)3=1-0.027=0.973.(2分)(2) 由频率分布直方图可知,质量指标值大于或等于85的产品中, m ∈[85,90)的频率为0.08×5=0.4; m ∈[90,95)的频率为0.04×5=0.2; m ∈[95,100]的频率为0.02×5=0.1.故利用分层抽样抽取的7件产品中,m ∈[85,90)的有4件,m ∈[90,95)的有2件,m ∈[95,100]的有1件.(4分)从这7件产品中任取3件产品,质量指标值m ∈[90,95)的件数X 的所有可能取值为0,1,2,P(X =0)=C 33C 37=27,P(X =1)=C 12C 25C 37=47,P(X =2)=C 22C 15C 37=17,所以X 的分布列为(7分)所以E(X)=0×27+1×47+2×17=67.(8分)(3) 由频率分布直方图可得该产品的质量指标值m 与利润y(元)的关系如下表所示(1<t<4):则y′=2.5-0.5e t ,令y′=2.5-0.5e t =0,得t =ln 5,故当t ∈(1,ln 5)时,y′>0,函数y =2.5t -0.5e t 单调递增; 当t ∈(ln 5,4)时,y ′<0,函数y =2.5t -0.5e t 单调递减. 所以当t =ln 5时,y 取得最大值,为2.5×ln 5-0.5e ln 5=1.5.所以生产该产品能够盈利,当t =ln 5≈1.6时,每件产品的利润取得最大值1.5元.(12分)22. (1) 解:(解法1)f(x)的定义域为(0,+∞).(1分) 由题意f′(x)=(x +1)(e x -ax )=(x +1)xe x -a x, 令xe x -a =0,得a =xe x ,令g(x)=xe x ,g ′(x)=e x +xe x =(x +1)e x >0,所以g(x)在x ∈(0,+∞)上为增函数,且g(0)=0,所以a =xe x 有唯一实根,即f′(x)=0有唯一实根,设为x 0,即a =x 0ex 0,(3分) 所以f(x)在(0,x 0)上为减函数,在(x 0,+∞)上为增函数, 所以f(x)min =f(x 0)=x 0ex 0-a(ln x 0+x 0)=a -aln a .(5分)(解法2)f(x)=xe x -a(ln x +x)=e ln x +x -a(ln x +x)(x >0).设t=ln x+x,则t∈R.记φ(t)=e t-at(t∈R),故f(x)最小值即为φ(t)最小值.(3分)φ′(t)=e t-a(a>0),当t∈(-∞,ln a)时,φ′(t)<0,φ(t)单调递减,当t∈(ln a,+∞)时,φ′(t)>0,φ(t)单调递增,所以f(x)min=φ(ln a)=e ln a-aln a=a-aln a,所以f(x)的最小值为a-aln a.(5分)(2) ①解:当a≤0时,f(x)单调递增,f(x)值域为R,不适合题意;(6分)当a>0时,由(1)可知f(x)min=a-aln a.设φ(a)=a-aln a(a>0),所以φ′(a)=-ln a,当a∈(0,1)时,φ′(a)>0,φ(a)单调递增,当a∈(1,+∞)时,φ′(a)<0,φ(a)单调递减,所以φ(a)max=φ(1)=1,即a-aln a≤1.(7分)由已知f(x)≥1恒成立,所以a-aln a≥1,所以a-aln a=1,所以a=1.(8分)②证明:由①可知xe x-ln x-x≥1,因此只需证x2+x>2ln x+2sin x.因为ln x≤x-1,只需证x2+x>2x-2+2sin x,即x2-x+2>2sin x.(10分) 当x>1时,x2-x+2>2≥2sin x,结论成立;当x∈(0,1]时,设g(x)=x2-x+2-2sin x,g′(x)=2x-1-2cos x,当x∈(0,1]时,g′(x)显然单调递增.g′(x)≤g′(1)=1-2cos 1<0,故g(x)单调递减,g(x)≥g(1)=2-2sin 1>0,即x2-x+2>2sin x.综上,结论成立.(12分)11。