2018-2019学年最新苏科版七年级数学上册《一元一次方程》提优训练卷及答案解析-精编试题
- 格式:docx
- 大小:158.75 KB
- 文档页数:7
一、初一数学一元一次方程解答题压轴题精选(难)1.如图1,已知,在内,在内,.(1)从图1中的位置绕点逆时针旋转到与重合时,如图2,________ ;(2)若图1中的平分,则从图1中的位置绕点逆时针旋转到与重合时,旋转了多少度?(3)从图2中的位置绕点逆时针旋转,试问:在旋转过程中的度数是否改变?若不改变,请求出它的度数;若改变,请说明理由.【答案】(1)100(2)解:∵平分,∴,设,则,,由,得:,解得:,∴从图1中的位置绕点逆时针旋转到与重合时,旋转了12度;(3)解:不改变①当时,如图,,,∵,,∴;② 时,如图,此时,与重合,此时,;③当时,如图,,,;综上,在旋转过程中,的度数不改变,始终等于【解析】【解答】(1)解:由题意:∠EOF= ∠AOB+ ∠COD=80°+20°=100°【分析】(1)根据∠EOF=∠BOE+∠BOF计算即可;(2)设,得,,再根据列方程求解即可;(3)分三种情形分别计算即可;2.有两个大小完全一样长方形OABC和EFGH重合着放在一起,边OA、EF在数轴上,O 为数轴原点(如图1),长方形OABC的边长OA的长为6个坐标单位.(1)数轴上点A表示的数为________.(2)将长方形EFGH沿数轴所在直线水平移动.①若移动后的长方形EFGH与长方形OABC重叠部分的面积恰好等于长方形OABC面积的一半时,则移动后点F在数轴上表示的数为________.②若长方形EFGH向左水平移动后,D为线段AF的中点,求当长方形EFGH移动距离x为何值时,D、E两点在数轴上表示的数时互为相反数?【答案】(1)6(2)①3或9②如图所示:据题意得出D所表示的数为,点E表示数为:,当D、E两点在数轴上表示的数时互为相反数时:则解得:,当移动x为4的时候D、E两点在数轴上表示的数时互为相反数.【解析】【解答】解:(1)根据题意可得:A表示数为的长,故答案为:6.( 2 )①当向左边移动的时候,刚好移到矩形长一半的时候,此时重叠面积为长方形面积的一半,此时为9,当向右边边移动的时候,刚好移到矩形长一半的时候,此时重叠面积为长方形面积的一半,此时为3;故答案为:3或9.【分析】(1)根据题意可以看出结果;(2)①分为两种情况,分别向左或向右平移;②根据题意得出D所表示的数为,当D、E两点在数轴上表示的数时互为相反数时点E表示数为:,则,解出答案即可.3.元旦假期,甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市当日累计购物超出了300元以后,超出部分按原价8折优惠;在乙超市当日累计购物超出200元之后,超出部分按原价8.5折优惠.设某位顾客在元旦这天预计累计购物x元(其中x>300).(1)当x=400时,顾客到哪家超市购物优惠.(2)当x为何值时,顾客到这两家超市购物实际支付的钱数相同.【答案】(1)解:在甲超市购物所付的费用是:元,在乙超市购物所付的费用是:元;当时,在甲超市购物所付的费用是:,在乙超市购物所付的费用是:,所以到乙超市购物优惠(2)解:根据题意由得:,解得:,答:当时,两家超市所花实际钱数相同【解析】【分析】(1)甲超市费用:利用300元+超出300元部分×0.8即得;乙超市费用:利用200元+超出200元部分×0.85即得;然后将x=400分别代入甲乙超市费用的代数式中计算即可.(2)由甲超市费用=乙超市费用建立方程,求出x值即可.4.用“※”定义一种新运算:对于任意有理数a和b,规定a※b=ab2+2ab+a.如:1※2=1×22+2×1×2+1=9(1)(﹣2)※3=________;(2)若※3=16,求a的值;(3)若2※x=m,( x)※3=n(其中x为有理数),试比较m,n的大小.【答案】(1)-32(2)因为※3= ×32+2× ×3+ =8a+8,所以8a+8=16,解得a=1;(3)根据题意,得m=2x2+2×2x+2=2x2+4x+2,n= x×32+2× x×3+ x=4x,则m﹣n=2x2+2>0,所以m>n.【解析】【解答】解:(1)原式=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2=﹣32,故答案为:﹣32.【分析】(1)根据新运算展开,再求出即可;(2)先根据新运算展开,再解一元一次方程即可;(3)先根据新运算展开,再求出m、n,即可得出答案.5.已知:如图所示,O为数轴的原点,A,B分别为数轴上的两点,A点对应的数为﹣30,B点对应的数为100.(1)A、B的中点C对应的数是________;(2)若点D数轴上A、B之间的点,D到B的距离是D到A的距离的3倍,求D对应的数.(提示:数轴上右边的点对应的数减去左边对应的数等于这两点间的距离);(3)若P点和Q点是数轴上的两个动点,当P点从B点出发,以6个单位长度/秒的速度向左运动时,Q点也从A点出发,以4个单位长度/秒的速度向右运动,设两点在数轴上的E点处相遇,那么E点对应的数是多少?【答案】(1)35(2)解:设点D对应的数是x,则由题意,得100﹣x=3[x﹣(﹣30)]解得,x=2.5所以点D对应的数是2.5.(3)解:设t秒后相遇,由题意,4t+6t=130,解得,t=13,BE=100﹣6t=78,100﹣78=22答:E点对应的数是22.【解析】【解答】解:(1)点A表示的数是﹣30,点B表示的数是100,所以AB=100﹣(﹣30)=130因为点C是AB的中点,∴AC=BC==65A、B的中点C对应的数是100﹣65=35.故答案为:35.【分析】(1)根据点A和点B的坐标,求出AB之间的距离,取其中点,找出C点对应的数字即可。
七年级数学提优训练第四章一元一次方程一、选择题(每题2分,共20分)1.下列方程中,一元一次方程是( )A.2a=1 B.3y-5 C.3+7=10 D.x2+x=l2.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是( )A.2(x-1)+3x=13 B.2(x+1)+3x=13C.2x+3(x+1)=13 D.2x+3(x-1)=133.下列变形正确的是( )A.4x-5=3x+2变形得4x-3x=-2+5B.211332x x-=+变形得4x-6=3x+18C.3(x-1)=2(x+3)变形得3x-1=2x+6D. 3x=2变形得x=2 34.解为x=5的方程是( )A. 5x+2=7x-8B. 5x-2=7x+8C.5x+2=7x+8 D.5x-2=7x-85.已知2是关于x的方程3x+a=0的一个解.那么a的值是( )A.-6 B.-3 C.-4 D.-56.班长去文具店买毕业留言卡50张.每张标价2元,店老板说可以按标价九折优惠,则班长应付( ) A.45元B.90元C.10元D.100元7.若方程6x+3a=22与方程5(x+1)=4x+7的解相同,则a的值是( )A.103B.310C.103-D.310-8.若1-(2-x)=1-x,则代数式2x2-7的值是( )A.-5 B.5 C.1 D.-19.某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为( ) A. 26元B.27元C.28元D.29元10.如图,宽为50 cm的长方形图案由10个相间的小长方形拼成,其中一个小长方形的面积为( ) A.400 cm2 B. 500 cm2C.600 cm2D.4000 cm2二、填空题(每空2分,共24分)11.小明准备为希望工程捐款,他现在有20元,以后每月打算存10元,若设x月后他能捐出100元,则可列方程为______________.12.一个长方形周长是42 cm,宽比长少3 cm,如果设长为x cm,那么根据题意列方程为______________.13.某商品的价格标签已丢失,售货员只知道“它的进价为80元,打七折售出后,仍可获利5%”.你认为售货员应标在标签上的价格为_______元.14.若9a x b3与-7a3x-4b3是同类项,则x=________.15.当m=________时,代数式53m+的值是2.16. 某校七(1)班的男生比女生多2人,女生占全班人数的48%.这个班男生有_____人,女生有___人.17. 已知x=23是一元一次方程3(m-34x)+32x=5m的解,则m的值是_______.18. 从甲地到乙地,公共汽车原需行驶7 h,开通高速公路后,车速平均每小时增加了20 km,只需5 h 即可到达.甲、乙两地的路程是________.19.x=9是方程123x b-=的解,那么b=_______.当b=l时.方程的解为_______.20.其商场在促销期间规定:商场内所有商品按标价的80%出售,同时.与顾客在该商场内消费满一定金额后。
一、初一数学一元一次方程解答题压轴题精选(难)1.同学们都知道,表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:(1)求=________.(2)若,则 =________(3)同理表示数轴上有理数x所对应的点到-1和2所对应的两点距离之和,请你找出所有符合条件的整数x,使得,这样的整数是________(直接写答案)【答案】(1)7(2)7或-3(3)-1,0,1,2.【解析】【解答】(1)|5-(-2)|=7,故答案为:7;( 2 )|x-2|=5,x-2=5或x-2=-5,x=7或-3,故答案为:7或-3;( 3 )如图,当x+1=0时x=-1,当x-2=0时x=2,如数轴,通过观察:-1到2之间的数有-1,0,1,2,都满足|x+1|+|x-2|=3,这样的整数有-1,0,1,2,故答案为: -1,0,1,2.【分析】(1)化简符号求出式子的值;(2)根据绝对值的性质得到x-2=5或x-2=-5,求出x的值;(3)根据题意画出数轴,得到-1到2之间的整数有-1,0,1,2,得到满足方程的整数值有-1,0,1,2.2.温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地10台,杭州厂可支援外地4台,现在决定给武汉8台,南昌6台,每台机器的运费如下表,设杭州厂运往南昌的机器为x台,(1)用含x的代数式来表示总运费(单位:元)(2)若总运费为8400元,则杭州厂运往南昌的机器应为多少台?(3)试问有无可能使总运费是7800元?若有可能请写出相应的调动方案;若无可能,请说明理由.【答案】(1)解:总费用为:400(6-x)+800(4+x)+300x +500(4-x)=200x+7600(2)解:由题意得200x+7600=8400,解得x=4,答:杭州运往南昌的机器应为4台(3)解:由题意得200x+7600=7800,解得x=1. 符合实际意义,答:有可能,杭州厂运往南昌的机器为1台.【解析】【分析】(1)根据总费用=四条线路的运费之和(每一条线路的费用=台数×运费),列式后化简即可。
一、初一数学一元一次方程解答题压轴题精选(难)1.如图,已知点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b﹣2)2=0.(1)求A、B两点的对应的数a、b;(2)点C在数轴上对应的数为x,且x是方程2x+1= x﹣8的解.①求线段BC的长;②在数轴上是否存在点P,使PA+PB=BC?求出点P对应的数;若不存在,说明理由.【答案】(1)解:∵|a+3|+(b﹣2)2=0,∴a+3=0,b﹣2=0,解得,a=﹣3,b=2,即点A表示的数是﹣3,点B表示的数是2 。
(2)解:①2x+1= x﹣8解得x=﹣6,∴BC=2﹣(﹣6)=8即线段BC的长为8;②存在点P,使PA+PB=BC理由如下:设点P的表示的数为m,则|m﹣(﹣3)|+|m﹣2|=8,∴|m+3|+|m﹣2|=8,当m>2时,解得 m=3.5,当﹣3<m<2时,无解当x<﹣3时,解得m=﹣4.5,即点P对应的数是3.5或﹣4.5【解析】【分析】(1)根据绝对值及平方的非负性,几个非负数的和为零则这几个数都为零从而得出解方程组得出a,b的值,从而得出A,B两点表示的数;(2)①解方程2x+1= x﹣8 ,得出x的值,从而得到C点的坐标,根据两点间的距离得出BC的长度;②存在点P,使PA+PB=BC理由如下:设点P的表示的数为m,根据两点间的距离公式列出方程|m﹣(﹣3)|+|m﹣2|=8,然后分类讨论:当m>2时,解得m=3.5,当﹣3<m<2时,无解,当x<﹣3时,解得m=﹣4.5,即点P对应的数是3.5或﹣4.5 。
2.甲、乙两班学生到集市上购买苹果,苹果的价格如下:苹果30千克.(1)乙班比甲班少付出多少元?(2)设甲班第一次购买苹果x千克.①则第二次购买的苹果为多少千克;②甲班第一次、第二次分别购买多少千克?【答案】(1)解:乙班购买苹果付出的钱数=8×30=240元,∴乙班比甲班少付出256-240=16元(2)解:①甲班第二次购买的苹果为(30-x)千克;②若x≤10,则10x+(30-x)×8=256,解得:x=8若10<x≤15,则9x+(30-x)×9=256无解.故甲班第一次购买8千克,第二次购买22千克【解析】【分析】(1)根据20kg以上每千克的价格为8元可求出乙班付出的钱数,从而可求出乙班比甲班少付出多少.(2)设甲班第一次购买x千克,第二次购买30-x千克,则需要讨论①x≤10,②10<x≤15,列出方程后求解即可得出答案.3.某商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.(1)若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,求能购进甲、乙两种商品各多少件?(2)按规定,甲种商品的进货不超过50件,甲、乙两种商品共100件的总利润不超过760元,请你通过计算求出该商场所有的进货方案;(3)在“五一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销活动:200元,第二天只购买乙种商品打折后一次性付款324元,那么这两天他在该商场购买甲、乙两种商品各多少件?【答案】(1)解:设:购进甲商品x件,购进乙商品(100-x)件。
一、初一数学一元一次方程解答题压轴题精选(难)1.已知关于的方程的解也是关于的方程的解.(1)求、的值;(2)若线段,在直线AB上取一点P,恰好使,点Q是PB的中点,求线段AQ的长.【答案】(1)解:(m−14)=−2,m−14=−6m=8,∵关于m的方程的解也是关于x的方程的解.∴x=8,将x=8,代入方程得:解得:n=4,故m=8,n=4;(2)解:由(1)知:AB=8, =4,①当点P在线段AB上时,如图所示:∵AB=8, =4,∴AP= ,BP= ,∵点Q为PB的中点,∴PQ=BQ= BP= ,∴AQ=AP+PQ= + = ;②当点P在线段AB的延长线上时,如图所示:∵AB=8, =4,∴PB= ,∵点Q为PB的中点,∴PQ=BQ= ,∴AQ=AB+BQ=8+ =故AQ= 或 .【解析】【分析】(1)先解求得m的值,然后把m的值代入方程,即可求出n的值;(2)分两种情况讨论:①点P在线段AB上,②点P在线段AB的延长线上,画出图形,根据线段的和差定义即可求解;2.已知数轴上A.B两点对应的数分别为−4和2,点P为数轴上一动点,其对应的数为x.(1)若点P到点A.点B的距离相等,写出点P对应的数;(2)数轴上是否存在点P,使点P到点A.点B的距离之和为10?若存在,求出x的值;若不存在,请说明理由;(3)若点A点B和点P(点P在原点)同时向右运动,它们的速度分别为2、1、1个长度单位/分,问:多少分钟后P点到点A点B的距离相等?(直接写出结果)【答案】(1)解:∵A、B两点对应的数分别为−4和2,∴AB=6,∵点P到点A. 点B的距离相等,∴P到点A. 点B的距离为3,∴点P对应的数是−1(2)解:存在;设P表示的数为x,①当P在AB左侧,PA+PB=10,−4−x+2−x=10,解得x=−6,②当P在AB右侧时,x−2+x−(−4)=10,解得:x=4(3)解:∵点B和点P的速度分别为1、1个长度单位/分,∴无论运动多少秒,PB始终距离为2,设运动t分钟后P点到点A. 点B的距离相等,|−4+2t|+t=2,解得:t=2【解析】【分析】(1)根据点P到点A、点B的距离相等,结合数轴可得答案;(2)此题要分两种情况:①当P在AB左侧时,②当P在AB右侧时,然后再列出方程求解即可;(3)根据题意可得无论运动多少秒,PB始终距离为2,且P在B的左侧,因此A也必须在A的左侧,才有P点到点A、点B的距离相等,设运动t分钟后P点到点A、点B 的距离相等,表示出AP的长,然后列出方程即可.3.某航空公司开展网络购机票优惠活动:凡购机票每张不超过2000元的一律八折优惠;超过2000元的,其中2000元按八折算,超过2000的部分按七折算.(1)甲旅客购买了一张机票的原价为1500元,需付款________元;(2)乙旅客购买了一张机票的原价为x(x>2000)元,需付款________元(用含x的代数式表示);(3)丙旅客因出差购买了两张机票,第一张机票实际付款1440元,第二张机票享受了七折优惠,他査看了所买机票的原价,发现两张票共节约了910元,求丙旅客第二张机票的原价和实际付款各多少元?【答案】(1)1200(2)0.7x+200(3)解:第一张机票的原价为1440÷0.8=1800(元).设丙旅客第二张机票的原价为y元,则购买两种票实际付款(1800+y-910)元,根据题意得:1440+0.7y+200=1800+y-910,解得:y=2500,∴1800+y-910-1440=1950.答:丙旅客第二张机票的原价为2500元,实际付款1950元【解析】【解答】解:(1)1500×0.8=1200(元).故答案为:1200.(2)根据题意得:需付款=2000×0.8+(x-2000)×0.7=0.7x+200(元).故答案为:(0.7x+200).【分析】(1)利用需付款=原价×0.8,即可求出结论;(2)根据需付款=2000×0.8+0.7×超出2000元部分,即可求出结论;(3)根据原价=需付款÷0.8可求出第一张机票的原价,设丙旅客第二张机票的原价为y元,则购买两种票实际付款(1800+y-910)元,根据(2)的结论,即可得出关于y的一元一次方程,解之即可得出结论.4.阅读理解:定义:若一元一次方程的解在一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“子方程”.例如:的解为,的解集为,不难发现在的范围内,所以是的“子方程”.问题解决:(1)在方程① ,② ,③ 中,不等式组的“子方程”是________;(填序号)(2)若关于x的方程是不等式组的“子方程”,求k的取值范围;(3)若方程,都是关于x的不等式组的“子方程”,直接写出m的取值范围.【答案】(1)③(2)解:解不等式3x-6>4-x,得:>,解不等式x-1≥4x-10,得:x≤3,则不等式组的解集为<x≤3,解:2x-k=2,得:x= ,∴<≤3,<,解得:3<k≤4;(3)解:解方程:2x+4=0得,解方程:得:,解关于x的不等式组当<时,不等式组为:,此时不等式组的解集为:>,不符合题意,所以:>所以得不等式的解集为:m-5≤x<1,∵2x+4=0,都是关于x的不等式组的“子方程”,∴,解得:2<m≤3.【解析】【解答】解:(1)解方程:3x-1=0得:解方程:得:,解方程:得:x=3,解不等式组:得:2<x≤5,所以不等式组的“子方程”是③.故答案为:③;【分析】(1)先求出方程的解和不等式组的解集,再判断即可;(2)解不等式组求得其解集,解方程求出x= ,根据“子方城”的定义列出关于k的不等式组,解之可得;(3)先求出方程的解和不等式组的解集,分<与>讨论,即可得出答案.5.已知,两正方形在数轴上运动,起始状态如图所示.A、F表示的数分别为-2、10,大正方形的边长为4个单位长度,小正方形的边长为2个单位长度,两正方形同时出发,相向而行,小正方形的速度是大正方形速度的两倍,两个正方形从相遇到刚好完全离开用时2秒.完成下列问题:(1)求起始位置D、E表示的数;(2)求两正方形运动的速度;(3)M、N分别是AD、EF中点,当正方形开始运动时,射线MA开始以15°/s的速度顺时针旋转至MD结束,射线NF开始以30°/s的速度逆时针旋转至NE结束,若两射线所在直...线.互相垂直时,求MN的长.【答案】(1)解:∵A、F表示的数分别为-2、10,大正方形的边长为4个单位长度,小正方形的边长为2个单位长度,∴D表示的数为:-2+2=0,E表示的数为:10-4=6(2)解:设小正方形的速度是2x个单位/秒,大正方形的速度是x个单位/秒,则有2(2x+x)=2+4,解得:x=1,∴小正方形的速度是2个单位/秒,故小正方形速度2个单位/秒,大正方形速度1个单位/秒(3)解:设运动时间为t,由题意可得若想要两射线所在直线互相垂直,则有①15°t+30°t=90°或②15°t+30°t=270°,①15°t+30°t=90°,解得t=2,此时小正方形运动了4个单位,D点在数字4的位置,大正方形运动了2个单位,E点也在数字4的位置,即D,E重合,∵M、N分别是AD、EF中点,∴MN=3;②15°t+30°t=270°,解得t=6,此时小正方形运动了12个单位,D点在数字12的位置,大正方形运动了6个单位,E点在数字0的位置,∵M、N分别是AD、EF中点,∴此时M点位于数字11的位置,N点位于数字2的位置,∴MN=11-2=9;综上:当t=2时,MN=3;当t=6时,MN=9.【解析】【分析】(1)利用图象和正方形的边长即可得出;(2)设小正方形的速度是2x 个单位/秒,大正方形的速度是x个单位/秒,然后列方程计算即可;(3)由题意可得若想要两射线所在直线互相垂直,则有①15°t+30°t=90°或②15°t+30°t=270°两种情况,根据两种情况分别讨论即可.6.已知,如图A、B分别为数轴上的两点,A点对应的数为-20,B点对应的数为80.(1)请写出AB的中点M对应的数.(2)现在有一只电子蚂蚁P从B点出发,以2个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以3个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C 点相遇,①你知道经过几秒两只电子蚂蚁相遇?②点C对应的数是多少?③经过多长时间两只电子蚂蚁在数轴上相距15个单位长度?【答案】(1)解:M点的数值为:;(2)解:①设所用时间为t,依题意得:3t﹢2t=100,解得:t=20;②依题意得:点C位置为: 80-2t=80-2×20=40;③设所用时间为x,依题意得:3x+2x=100-15或3x+2x=100+15,解得:x=17或x=23;∴当x=17或x=23时,两个电子蚂蚁再数轴上相距15个单位长度.【解析】【分析】(1)由AM=BM,结合两点间的距离公式,即可求出AB的中点;(2)①根据时间=路程÷速度,即可求出相遇的时间;②结合相遇的时间,即可求出点C;③根据题意,两个电子蚂蚁在数轴上相距15,可分为:相遇前相距15和相遇后相距15,两种情况进行讨论.7.为保持水土,美化环境,W中学准备在从校门口到柏油公路的这一段土路的两侧栽一些树,并要求土路两侧树的棵数相等间距也相等,且首、尾两端均栽上树,现在学校已备好一批树苗,若间隔30米栽一棵,则缺少22棵;若间隔35米栽一棵,则缺少14棵. (1)求学校备好的树苗棵数.(2)某苗圃负责人听说W中学想在校外土路两旁栽树的上述情况后,觉得两树间距太大,既不美观,又影响防风固沙的效果,决定无偿支援W中学300棵树苗.请问,这些树苗加上学校自己备好的树苗,间隔5米栽一棵,是否够用?【答案】(1)解:设学校备好的树苗为x棵,依题意,得:30(﹣1)=35(﹣1),解得:x=36.答:学校备好的树苗为36棵.(2)解:由(1)可知,校外土路长840米.若间隔5米栽树,则共需树苗2( +1)=338(棵),300+36=336(棵),∵336<338,∴如果间隔5米栽一棵树,这些树苗不够用.【解析】【分析】(1)设树苗x棵,则根据题意可分别表示出土路的长度分别为30(﹣1)和 35(﹣1),列出方程求解即可;(2)由(1)知校外土路长,再根据间距5米栽一棵,计算出所需总树苗数,通过与已有树苗数比较即可判断是否够用。
苏科版七年级上册数学第4章一元一次方程含答案一、单选题(共15题,共计45分)1、若关于x的一元一次方程k(x+4)﹣2k﹣x=5的解为x=﹣3,则k的值是()A.﹣2B.2C.D.﹣2、下面四个等式的变形中正确的是()A.由4x+8=0得x+2=0B.由x+7=5﹣3x得4x=2C.由x=4得x=D.由﹣4(x﹣1)=﹣2得4x=﹣63、下列各式的变形,能正确运用等式的性质的是()A.由得x=2B.由得x=1C.由-2a=-3得a=D.由x-1=4得x=54、要使方程﹣=1去分母,两边同乘以6得()A.3(6﹣2x)﹣4(18+3x)=1B.3(6﹣2x)﹣4(18+3x)=6C.3D.35、如果式子5-2x的值与互为倒数,则x=()A.1B.2C.3D.46、以下等式变形不正确的是()A.由x+2=y+2,得到x=yB.由2a﹣3=b﹣3,得到2a=bC.由am=an,得到m=n D.由m=n,得到2am=2an7、如图,天秤中的物体a、b、c使天秤处于平衡状态,则物体a与物体c的重量关系是( )A. 2a=3cB.4a=9cC.a=2cD.a=c8、有下列结论:①若a+b+c=0,则abc≠0;②若a(x﹣1)=b(x﹣1)有唯一的解,则a≠b;③若b=2a,则关于x的方程ax+b=0(a≠0)的解为x=﹣;④若a+b+c=1,且a≠0,则x=1一定是方程ax+b+c=1的解;其中结论正确的个数有()A.4个B.3个C.2个D.1个9、如果关于x的方程的解集是,那么a的值是()A.−2B.−1C.1D.210、小明爷爷今年的年龄是小明的5倍,4年后,爷爷的年龄是小明的4倍,求小明今年的年龄?设小明今年的年龄为岁,根据题意,列出方程正确的是()A. B. C. D.11、已知方程3x|m|+1=0是关于x的一元一次方程,则m的值是()A.±1B.1C.-1D.0和112、下列说法:①在等式2x=4两边都加上2,可得等式4x=6;②在等式2x=4两边都减去2,可得等式x=2;③在等式2x=4两边都乘以,等式变为x=2;④等式两边都除以同一个数,等式仍然成立.其中正确的说法有()A.1个B.2个C.3个D.4个13、下列等式变形正确的是()A.由a=b,得=B.由﹣3x=﹣3y,得x=﹣yC.由=1,得x=D.由x=y,得=14、下列等式变形正确的是()A.由2x+7=0,得2x=-7B.由2x-3=0,得2x-3+3=0C.由,得 D.由5x=4,得x=2015、下列结论:①若,则关于x的方程 ax-b+c=0(a 的解是x=-1;②若x=1是方程ax+b+c=1且a 的解,则a+b+c=1成立;③若,则;④A、B、C是平面内的三个点,AB与AC是两条线段,若AB=AC,则点C为线段AB的中点;⑤若,则的值为0。
初中数学试卷马鸣风萧萧一元一次方程应用提优行程问题:1. 从甲地到乙地,某人步行比乘公交车多用 3.6 小时,已知步行速度为每小时8千米,公交车的速度为每小时 40千米,设甲乙两地相距x千米,则列方程为:________________.2.甲,乙两地相距168 千米,一列慢车从甲地出发,每小时行驶36 千米,一列快车从乙地出发,每小时行驶 48 千米.如果慢车先开一小时,快车才出发,问快车出发几小时后两车相遇?3. 某人从家里骑自行车到学校.若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?4. 在800米跑道上有两人练中长跑,甲每分钟跑320米,乙每分钟跑280米, ?两人同时同地同向起跑,t 分钟后第一次相遇,t 等于分钟.5. 一列客车长 200 m, 一列货车长 280 m, 在平行的轨道上相向行驶 , 从两车头相遇到两车尾相离经过 16秒 , 已知客车与货车的速度之比是 3∶2, 问两车每秒各行驶多少米 ?行船问题:1. 一架飞机飞行在两个城市之间,风速为每小时 24千米,顺风飞行需要 2小时 40分钟,逆风飞行需要 3小时,求两城市间距离?2. 轮船在静水中的速度是 20千米 / 小时,从甲港顺流到乙港需 8小时,返航时行走了 6小时在距甲港 68千米处发生故障,求水流速度?工程问题:1.一项工程,甲单独做需要 10天完成,乙单独做需要 15天完成,两人合作 4天后,剩下的部分由乙单独做,需要几天完成?2.某工程由甲、乙两队完成,甲队单独完成需 16天,乙队单独完成需 12天.如先由甲队做 4天,然后两队合做,问再做几天后可完成工程的六分之五?3. 已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池注满,出水管工作24小时可以将满池的水放完;如果同时打开进水管和出水管,求几小时后可以把空池注满?和差倍分问题(生产、做工等各类问题):1.某车间加工 30个零件,甲工人单独做,能按计划完成任务,乙工人单独做能提前一天半完成任务,已知乙工人每天比甲工人多做 1个零件,问甲工人每天能做几个零件?原计划几天完成?2. 某工厂甲、乙、丙三个工人每天生产的零件数,甲和乙的比是产的件数比甲和丙两人的和少945件,问每个工人各生产多少件?3:4,乙和丙的比是2: 3.若乙每天所生年龄问题:1. 甲比乙大 15岁, 5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是________.2. 小华的爸爸现在的年龄比小华大25岁, 8年后小华爸爸的年龄是小华的3倍多 5岁,求小华现在的年龄?调配问题:1.某厂一车间有 64人,二车间有 56人.现因工作需要,要求第一车间人数是第二车间人数的一半.问需从第一车间调多少人到第二车间?2. 甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下来的人数是原乙队人数的一半还多15 人.求甲、乙两队原有人数各多少人?分配问题:1.学校分配学生住宿,如果每室住 8人,还少 12个床位,如果每室住 9人,则空出两个房间.求房间的个数和学生的人数?2. 小明看书若干日,若每日读书32页,尚余 31页;若每日读 36页,则最后一日需要读39页,才能读完,求书的页数?配套问题:1.某车间加工机轴和轴承,一个工人每天平均可加工 15个机轴或 10个轴承.该车间共有 80人,一根机轴和两个轴承配成一套,问应分配多少个工人加工机轴或轴承,才能使每天生产的机轴和轴承正好配套.2.某队有 45人参加挖土和运土劳动每人每天挖土 4方或运土 6 方应该怎样分配挖土和运土的人数才能书每天挖出的土?增长率问题:1. 民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超过部分每千克按飞机票价的 1.5 %购买行李票.一名旅客带了35千克行李乘机,机票连同行李费共付了1323元,求该旅客的机票票价?2.清风乐园门票价格如下表所示:某校七年级①、②两个班共104人去清风乐园春游,其中①班人数较少,不到50人,②班人数较多,超过50人,经估算若两班都以班为单位分别购票,则一共应付1240元.(1)请算出两个班各有多少名学生.(2)想一想:你认为他们如何购票比较合算?(3)假如①班先到达乐园,想要单独购票,你能帮他们想出一个比较合算的购票方案吗?利润与利润率:1.一家服装店将某种服装按成本提高 40%后标价,又以八折优惠卖出, ?结果每件仍获利 15元,这种服装每件的成本为 _________ .2.某商品的销售价格每件 900元,为了参加市场竞争,商店按售价的九折再让利40元销售,些时仍可获利10%,此商品的进价为______.3. 某件商品进价为800元,出售时标价为1200元,现准备打折出售该商品,但要保证利润率不低于5%,则最多可打()A.6折 B .7折 C .8折.D9折数字问题:1.有一个三位数,个位数字为百位数字的 2倍,十位数字比百位数字大 1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少 49,求原数 ?马鸣风萧萧2 . 一个两位数, 十位上的数字与个位上的数字之和为8, 把这个两位数减去36后,结果恰好成为十位数字与个位数字对调后组成的两位数,求原来的两位数?方案设计与比较问题:1.在“五一”黄金周期间,小明小亮等同学随家人一同到将狼山游玩,下面是购买门票是小明与他爸爸的对话:爸爸说:“大人总门票每张35元,学生门票五折优惠,我们总共有12人,共要 350元.”小敏说:“爸爸,等一下,让我算一算,换一种方式买票是否更省钱.”票价单:成人:35元一张.学生:按成人 5 折优惠,团体票: 16人以上(含 16人)按成人票 6折优惠.问题:( 1)小明他们一共去了几个成人?几个学生? (2) 小明算一算,用那种方式买票更省钱?并说明理由.2. 已知某电脑公司有 A 型、B 型、 C 型三种型号的电脑,价格分别为 A 型每台 6000 元,B 型每台 4000 元,C 型每台 2500 元,我市某中学计划用100500 元钱全部用于从该公司购进其中两种不同型号的电脑共36 台,请你设计出几种不同的购买方案供该校选择,并说明理由.3. 某食品加工厂,现有鲜葡萄9 吨,若在销售市场上直接销售,每吨可获利500 元,若制成饮料销售每吨可获利 1200 元,若制成葡萄干,每吨可获利2000 元,此工厂的生产能力是:如果制成饮料每天可加工 3 吨,制成葡萄干每天可加工 1 吨,受到人员限制,两种方式不能同时进行,受气温条件限制,这批葡萄干必须在 4 天内全部销售或加工完毕,为此该厂设计了两种可行的方案:方案一:尽可能的制成葡萄干,其余的直接销售葡萄。
一、初一数学一元一次方程解答题压轴题精选(难)1.用“ ”规定一种新运算:对于任意有理数 a 和b,规定.如:.(1)求的值;(2)若=32,求的值;(3)若,(其中为有理数),试比较m、n的大小.【答案】(1)解:∵∴ =(2)解:∵=32,∴可列方程为;解方程得:x=1(3)解:∵ = ,;∴;∴【解析】【分析】(1)利用规定的运算方法直接代入计算即可;(2)利用规定的运算方法得出方程,求得方程的解即可;(3)利用规定的运算方法得出m、n,再进一步作差比较即可.2.某城市平均每天产生垃圾700 t,由甲、乙两家垃圾处理厂处理.已知甲厂每小时可处理垃圾55 t,费用为550元;乙厂每小时可处理垃圾45 t,费用为495元.(1)如果甲、乙两厂同时处理该城市的垃圾,那么每天需几小时?(2)如果该城市规定每天用于处理垃圾的费用不得高于7370元,那么至少安排甲厂处理几小时?【答案】(1)解:设两厂同时处理每天需xh完成,根据题意,得(55+45)x=700,解得x=7.答:甲、乙两厂同时处理每天需7 h.(2)解:设安排甲厂处理y h,根据题意,得550y+495× ≤7370,解得y≥6.∴y的最小值为6.答:至少安排甲厂处理6 h.【解析】【分析】(1)设甲、乙两厂同时处理,每天需x小时,根据甲乙两厂同时处理垃圾每天需时=每天产生垃圾÷(甲厂每小时可处理垃圾量+乙厂每小时可处理垃圾量),列出方程,求出x的值即可;(2)设甲厂需要y小时,根据该市每天用于处理垃圾的费用=甲厂处理垃圾的费用+乙厂处理垃圾的费用,每厂处理垃圾的费用=每厂每小时处理垃圾的费用×每天处理垃圾的时间,列出不等式,求出y的取值范围,再求其中的最小值即可.3.仔细阅读下列材料.“分数均可化为有限小数或无限循环小数”,反之,“有限小数或无限小数均可化为分数”.例如: =1÷4=0.25; = =8÷5=1.6; =1÷3= ,反之,0.25= = ;1.6= = = .那么,怎么化成分数呢?解:∵ ×10=3+ ,∴不妨设 =x,则上式变为10x=3+x,解得x= ,即 = ;∵ = ,设 =x,则上式变为100x=2+x,解得x= ,∴ = =1+x=1+ =(1)将分数化为小数: =________, =________;(2)将小数化为分数:=________;=________。
苏科版七年级上册数学第4章一元一次方程含答案一、单选题(共15题,共计45分)1、下列方程中方程的解为x=2的是()A.2x=6B.﹣x=1C.2+x=0D.2x﹣1=32、方程3x﹣7=5的解是()A.x=2B.x=3C.x=4D.x=53、下列方程是一元一次方程的是()A. B.x 2+1=3x C.y 2+y=0 D.2x-3y=114、若(m﹣1)x|m|+5=0是一元一次方程,则m的值为()A.1B.-1C.±1D.不能确定5、运用等式性质进行的变形,不正确的是()A.如果a=b,那么a﹣c=b﹣cB.如果,那么a=bC.如果ac 2=bc 2,那么a=bD.如果a(c 2+1)=b(c 2+1),那么a=b6、已知关于x的一元一次方程的解为x=-3,那么关于y的一元一次方程的解为()A.y=1B.y=-1C.y=-3D.y=-47、已知方程x2k-1+k=0是关于x的一元一次方程,则方程的解等于()A.-1B.1C.D.-8、在方程中,一元一次方程有()个.A.2B.3C.4D.59、若方程=0与方程x+的解相同,则a=()A. B. C.- D.-10、若方程2x-3=5-6x与方程2mx=的解相同,则的值为( )A.1B.-1C.2D.-211、已知,,则值为()A.6B.7C.8D.912、下列等式变形中,错误的是()A.若,则B.若,则C.若,则 D.若,则13、已知x=-1是一元一次方程ax-1=x-2的解,则a的值为()A.-2B.2C.4D.-414、方程x﹣5=3x+7移项后正确的是()A.x+3x=7+5B.x﹣3x=﹣5+7C.x﹣3x=7﹣5D.x﹣3x=7+515、如果为有理数,那么下列等式不一定成立的是()A. B. C. D.二、填空题(共10题,共计30分)16、方程x+2=1的解是________17、已知关于x的方程3x+m=0与5x+10=0的解相同,则m=________。
2018-2019学年度苏科版数学七年级上册课时练习4.3 用一元一次方程解决问题学校:___________姓名:___________班级:___________一.选择题(共12小题)1.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏B.盈利20元C.亏损10元D.亏损30元2.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120 元B.100 元C.80 元D.60 元3.太原市出租车的收费标准是:白天起步价8元(即行驶距离不超过3km都需付8元车费),超过3km以后,每增加1km,加收1.6元(不足1km按1km计),某人从甲地到乙地经过的路程是xkm,出租车费为16元,那么x的最大值是()A.11 B.8 C.7 D.54.一轮船往返A、B两港之间,逆水航行需要3小时,顺水航行需2小时,水速是3千米每小时,则轮船在静水中的速度是()A.18千米∕小时B.15千米∕小时C.12千米∕小时D.20千米∕小时5.在如图的2018年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.72 B.69 C.51 D.276.某市按以下规定收取每月水费:若每月每户不超过20立方米,则每立方米按1.2元收费,若超过20立方米则超过部分每立方米按2元收费、如果某户居民在某月所交水费的平均水价为每立方米1.5元,那么这个月共用多少立方米的水设这个月共用x立方米的水,下列方程正确的是()A.1.2×20+2(x﹣20)=1.5x B.1.2×20+2x=1.5xC.D.2x﹣1.2×20=1.5x7.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了()A.3场 B.4场 C.5场 D.6场8.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/小时,乙车速度为80千米/小时,经过t小时两车相距50千米.则t的值是()A.2 B.2或2.25 C.2.5 D.2或2.59.如图,正方形ABCD的边长为1,电子蚂蚁P从点A分别以1个单位/秒的速度顺时针绕正方形运动,电子蚂蚁Q从点A以3个单位/秒的速度逆时针绕正方形运动,则第2018次相遇在()A.点A B.点B C.点C D.点D10.如图,小明将一个正方形纸剪出一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条,如果两次剪下的长条面积正好相等,那么每一个长条面积为()A.16cm2B.20cm2C.80cm2D.160cm211.某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m3,每立方米收费2元;若用水超过20m3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水()m3.A.38 B.34 C.28 D.4412.一个两位数的十位数字与个位数字的和是7,把这个两位数加上45后,结果恰好成为数字对调后组成的两位数,则这个两位数是()A.25 B.16 C.34 D.61二.填空题(共6小题)13.三角形的周长是84cm,三边长的比为17:13:12,则这个三角形最短的一边长为cm.14.一项工作甲单独做20h可以做完,乙单独做12h可以做完,若甲、乙两人合作,要做h才能做完.15.文具店销售某种笔袋,每个18元,小华去购买这种笔袋,结账时店员说:“如果你再多买一个就可以打九折,价钱比现在便宜36元”,小华说:“那就多买一个吧,谢谢,”根据两人的对话可知,小华结账时实际付款元.16.按照一定规律排列的n个数﹣2,4,﹣8,16,﹣32,64,…,若最后三个数的和为768,则n=.17.一环形跑道长400米,小明跑步每秒行5米,爸爸骑自行车每秒15米,两人同时同地反向而行,经过秒两人首次相遇.18.如图,已知点A、点B是直线上的两点,AB=12厘米,点C在线段AB上,且BC=4厘米.点P、点Q是直线上的两个动点,点P的速度为1厘米/秒,点Q 的速度为2厘米/秒.点P、Q分别从点C、点B同时出发在直线上运动,则经过秒时线段PQ的长为5厘米.三.解答题(共4小题)19.学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.20.A,B两地相距2400米,甲、乙两人分别从A,B两地同时出发相向而行,乙的速度是甲的2倍,已知乙到达A地15分钟后甲到达B地.(1)求甲每分钟走多少米?(2)两人出发多少分钟后恰好相距480米?21.为有效治理污染,改善生态环境,山西太原成为国内首个实现纯电动出租车的城市,绿色环保的电动出租车受到市民的广泛欢迎,给市民的生活带来了很大的方便,下表是行驶路程在15公里以内时普通燃油出租车和纯电动出租车的运营价格:张先生每天从家打出租车去单位上班(路程在15公里以内),结果发现,正常情况下乘坐纯电动出租车比乘坐燃油出租车平均每公里节省0.8元,求张先生家到单位的路程.22.现在,红旗商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.(1)顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?(2)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?(3)小张按合算的方案,把这台冰箱买下,如果红旗商场还能盈利25%,这台冰箱的进价是多少元?参考答案一.选择题(共12小题)1.C.2.C.3.B.4.B.5.A.6.A.7.C.8.D.9.C.10.C.11.C.12.B.二.填空题(共6小题)13.24cm.14.7.5.15.486.16.10.17.20.18.或1或3或9.三.解答题(共4小题)19.解:(1)设每套课桌椅的成本为x元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x,解得:x=82.答:每套课桌椅的成本为82元.(2)60×(100﹣82)=1080(元).答:商店获得的利润为1080元.20.解:(1)设甲每分钟走x米,则乙每分钟走2x米,根据题意得:﹣=15,解得:x=80,经检验,x=80是原分式方程的解,且符合题意.答:甲每分钟走80米.(2)设两人出发y分钟后恰好相距480米,根据题意得:|2400﹣80y﹣160y|=480,解得:y1=8,y2=12.答:两人出发8或12分钟后恰好相距480米.21.解:设老张家到单位的路程是x千米,依题意,得13+2.3(x﹣3)=8+2(x﹣3)+0.8x,解这个方程,得x=8.2,答:老张家到单位的路程是8.2千米.22.(1)解:设顾客购买x元金额的商品时,买卡与不买卡花钱相等.根据题意,得300+0.8x=x,解得x=1500,所以,当顾客消费少于1500元时不买卡合算;当顾客消费等于1500元时买卡与不买卡花钱相等;当顾客消费大于1500元时买卡合算;(2)小张买卡合算,3500﹣(300+3500×0.8)=400,所以,小张能节省400元钱;(3)设进价为y元,根据题意,得(300+3500×0.8)﹣y=25%y,解得y=2480答:这台冰箱的进价是2480元.。
第四章一元一次方程
一、选择题(每题2分,共20分)
1.下列方程中,一元一次方程是( )
A.2a=1 B.3y-5 C.3+7=10 D.x2+x=l
2.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是( )
A.2(x-1)+3x=13 B.2(x+1)+3x=13
C.2x+3(x+1)=13 D.2x+3(x-1)=13
3.下列变形正确的是( )
A.4x-5=3x+2变形得4x-3x=-2+5
B.21
13
32
x x
-=+变形得4x-6=3x+18
C.3(x-1)=2(x+3)变形得3x-1=2x+6
D. 3x=2变形得x=2 3
4.解为x=5的方程是( ) A. 5x+2=7x-8 B. 5x-2=7x+8
C.5x+2=7x+8 D.5x-2=7x-8
5.已知2是关于x的方程3x+a=0的一个解.那么a的值是( )
A.-6 B.-3 C.-4 D.-5
6.班长去文具店买毕业留言卡50张.每张标价2元,店老板说可以按标价九折优惠,则班长应付( )
A.45元B.90元C.10元D.100元
7.若方程6x+3a=22与方程5(x+1)=4x+7的解相同,则a的值是( )
A.
10
3
B.
3
10
C.
10
3
-D.
3
10
-
8.若1-(2-x)=1-x,则代数式2x2-7的值是( )
A.-5 B.5 C.1 D.-1
9.某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为( ) A. 26元B.27元C.28元D.29元
10.如图,宽为50 cm的长方形图案由10个相间的小长方形拼成,其中一个小长方形的面积为( ) A.400 cm2 B. 500 cm2C.600 cm2D.4000 cm2
二、填空题(每空2分,共24分)
11.小明准备为希望工程捐款,他现在有20元,以后每月打算存10元,若设x月后他能捐出100
元,则可列方程为______________.
12.一个长方形周长是42 cm,宽比长少 3 cm,如果设长为x cm,那么根据题意列方程为______________.
13.某商品的价格标签已丢失,售货员只知道“它的进价为80元,打七折售出后,仍可获利5%”.你认为售货员应标在标签上的价格为_______元.
14.若9a x b3与-7a3x-4b3是同类项,则x=________.
15.当m=________时,代数式
5
3
m+
的值是2.
16. 某校七(1)班的男生比女生多2人,女生占全班人数的48%.这个班男生有_____人,女生有___人.
17. 已知x=2
3
是一元一次方程3(m-
3
4
x)+
3
2
x=5m的解,则m的值是_______.
18. 从甲地到乙地,公共汽车原需行驶7 h,开通高速公路后,车速平均每小时增加了20 km,只需5 h即可到达.甲、乙两地的路程是________.
19.x=9是方程1
2
3
x b
-=的解,那么b=_______.当b=l时.方程的解为_______.
20.其商场在促销期间规定:商场内所有商品按标价的80%出售,同时.与顾客在该商场内消费满一定金额后。
按如下方案获得相应金额的奖券.(奖券购物不再享受优惠) 根据上述促销方法,顾客在该商场购物可获得双重优惠.如果胡老师在该商场购一家用电器获得的优惠额为120元.则这一家用电器的标价为_________元.
三、解答题(第21题8分,第22、23题每题4分,第24~27题每题10分,共56分)
21.解下列方程:
(1)5(x+8)-6(2x-7)+5:(2)
223
1
46
x x
+-
-=.
消费金额的
范围(元)
200至400
(不含400)
400至500
(不含500)
500至700
(不含700)
…
获得奖券的
金额(元)
30 60 100 …
22.设a,b,c,d为有理数,现规定一种新的运算:a b
ad bc
c d
=-,那么当
35-x
7
2 7
=时,x
的值是多少?
23.2004年4月我国铁路第5次大提速.假设K120次空调快速列车的平均速度提速后比提速前提高了44 km/h,提速前的列车时刻表如下表所示:
请你根据题目提供的信息填写提速后的列车时刻表,并写出计算过程.24.整理一批图书,如果由一个人单独做要花60小时.现先由一部分人整理一小时,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?
25.如果关于x的方程
232
3
53
x
x
-
=-与
1
3
4
n-=3(x+n)-2n的解相同,求(n-
35
8
)2的值.
26.在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:
(1)小明他们一共去了几个成人,几个学生?
(?)请你帮助小明算一算,用哪种方式购票更省钱?说明理由.- 27.甲、乙两辆车在一条公路上匀速行驶,为了确定汽车的位置.我们用O x表示这条公路,原点O 为零千米路标,并作如下约定:速度为正,表示汽车向数轴的正方向行驶;速度为负,表示汽车向数轴的负方向行驶;速度为零,表示汽车静止.行程为正,表示汽车位于零千米的右侧;行程为负,表示汽车位于零千米的左侧:行程为零,表示汽车位于零千米处。
就上面表格的空白,提出问题,并写出解题过程.
(1)甲、乙两车能否相遇,如果相遇,求相遇时的时刻及在公路上的位置;如果不能相遇,请说明理由;
(2)甲、乙汽车能否相距180 km,如果能,求相距180 km的时刻及其位置;如不能,请说明理由.
参考答案
1.A 2.A 3.B 4.A 5.A 6.B 7.A 8.A 9.C 10.A 11.10x+20=100 12.x+(x-3)=21
13.120 14.2 15.1
3
16.26 24 l7.m=-
1
4
18.350 km
19.1 x=9或x=3.
20.450
21.(1)去括号.得5x+40=12x-42+5 移项、台并同类项.得x=77.
系数化1.得x=11.
(2)去分母.得3(x+2)-2(2x-3)=12.
去括号.得3x+6-4x+6=12.
.移项、合并同类项.得x=0.
22.x=-2
23.设列车提速后行驶时间为x h.根据题意得
264
44264
4
x
⎛⎫
+=
⎪
⎝⎭
.x=2. 4.
经检验x=2.4符合题意.
答:到站时刻为4:2 4.,历时2.4 h.提速后的列车时刻表为:
行驶
区间
车次起始时刻到站时间历时全程里程
A 地
B 地
K120 2:00 4:24 2.4 h 264 km
24.设先安排整理的人员有x 人.依题意得,
()21516060
x x ++=解得.x=10. 答:先安排整理的人员有10人. 25.由方程
232
353
x x -=-可得: 3(2x -3)=10x -45,
6x -9=10x -45,
45-9=10x -6x,
36=4x ,
x=9.
由题意可知x=9是方程1
34
n -
=3(x+n)-2n 的解. 则:1
34
n -
=3(9+n)-2n , 134n -=27+3n -2n , 2n=27+14,
n=
1098
当n=
1098时,(n -358)2=102=100 即(n -35
8
)2=100 26.(1)设成人人数为x 人,则学生人数为 (12-x)人.则
35x+
()35
123502
x -= 解得,x=8
故学生人数为12-8=4人,成人人数为8人.
(2)如果买团体票,按16人计算,共需费用:
35×0.6×16=336(元)
336<350 所以,购团体票更省钱.
27.由表格可以看出甲车的速度为-40 km /h ,
乙车的速度为50 km/h ,乙车的起始位置是-80 km .
(1)设两车x h 相遇.由题意,得
190-40x=-80+50x; 解得:x=3,经检验,符合题意.
190-40x=70:
所以甲、乙两车能够相遇,3 h 相遇在公路上的70 km 处的位置.
(2)设两车在y h 时相距180 km ,由题意,得
190-40y=-80+50y+180或190-40y+180=-80+50x .
解得:y=1,或者y=5,经检验,符合题意.
190-407=150或者190-40y=-10.
-80+50y=30或者-80+50y=170.
所以甲、乙两车能够相距180 km,在1 h时甲车的位置是150 km处,乙车的位置是-30 km处:或在5 h时甲车的位置是-10 km.乙车的位置是170 km处。