干涉习题课
- 格式:ppt
- 大小:1.36 MB
- 文档页数:21
λdr y 0=∆第一章 光的干涉●1.波长为nm 500的绿光投射在间距d 为cm 022.0的双缝上,在距离cm 180处的光屏上形成干涉条纹,求两个亮条纹之间的距离.若改用波长为nm 700的红光投射到此双缝上,两个亮条纹之间的距离又为多少?算出这两种光第2级亮纹位置的距离.解:由条纹间距公式λd r y y y j j 01=-=∆+ 得:cm 328.0818.0146.1cm146.1573.02cm818.0409.02cm573.010700022.0180cm 409.010500022.018021222202221022172027101=-=-=∆=⨯===⨯===⨯⨯==∆=⨯⨯==∆--y y y drj y d rj y d r y d r y j λλλλ●2.在杨氏实验装置中,光源波长为nm 640,两狭缝间距为mm 4.0,光屏离狭缝的距离为cm 50.试求:(1)光屏上第1亮条纹和中央亮条纹之间的距离;(2)若p 点离中央亮条纹为mm 1.0,问两束光在p 点的相位差是多少?(3)求p 点的光强度和中央点的强度之比.式: 解:(1)由公得λd r y 0=∆ =cm 100.8104.64.05025--⨯=⨯⨯(2)由课本第20页图1-2的几何关系可知52100.01sin tan 0.040.810cm 50y r r d d dr θθ--≈≈===⨯521522()0.8106.4104r r πππϕλ--∆=-=⨯⨯=⨯(3) 由公式2222121212cos 4cos 2I A A A A A ϕϕ∆=++∆= 得8536.042224cos 18cos 0cos 421cos 2cos42cos 422202212212020=+=+==︒⋅=∆∆==πππϕϕA A A A I I pp●3. 把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置为中央亮条纹,试求插入的玻璃片的厚度.已知光波长为6×10-7m.解:未加玻璃片时,1S 、2S 到P 点的光程差,由公式2rϕπλ∆∆=可知为 Δr =215252r r λπλπ-=⨯⨯=现在1S 发出的光束途中插入玻璃片时,P 点的光程差为()210022r r h nh λλϕππ'--+=∆=⨯=⎡⎤⎣⎦所以玻璃片的厚度为421510610cm 10.5r r h n λλ--====⨯-4. 波长为500nm 的单色平行光射在间距为0.2mm 的双狭缝上.通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样.求干涉条纹间距和条纹的可见度.解:6050050010 1.250.2r y d λ-∆==⨯⨯=mm122I I = 22122A A =12A A =()()122122/0.94270.941/A A V A A ∴===≈+5. 波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。
光的干涉课后篇巩固提升必备知识基础练1.(多选)下列关于双缝干涉实验的说法正确的是()A.单缝的作用是获得频率保持不变的相干光源B.双缝的作用是获得两个振动情况相同的相干光源C.频率相同、相位差恒定、振动方向相同的两列单色光能够发生干涉现象D.照射单缝的单色光的波长越小,光屏上出现的条纹宽度越宽,单缝的作用是获得一个线光源,双缝的作用是获得两个振动情况完全相同的光源,故选项A错误,B正确;频率相同、相位差恒定的两列光可以发生干涉现象,选项C正确;由Δx=ldλ可知,波长越短,条纹间距越窄,选项D错误。
2.(2021河北博野中学高二开学考试)某一质检部门为检测一批矿泉水的质量,利用干涉原理测定矿泉水的折射率。
方法是将待测矿泉水填充到特制容器中,放置在双缝与光屏之间(可视为双缝与光屏之间全部为矿泉水),如图所示,特制容器未画出,通过比对填充后的干涉条纹间距x2和填充前的干涉条纹间距x1就可以计算出该矿泉水的折射率。
则下列说法正确的是(设空气的折射率为1)()A.x2=x1B.x2>x1C.该矿泉水的折射率为x1x2D.该矿泉水的折射率为x2x1n=cv和v=fλ可知光在水中的波长小于在空气中的波长,根据双缝干涉条纹的间距公式Δx=ldλ可知填充矿泉水后的干涉条纹间距x2小于填充前的干涉条纹间距x1,所以A、B错误;根据n=cv 和v=fλ可得n=λ1λ2,又由x1=ldλ1和x2=ldλ2得n=x1x2,故C正确,D错误。
3.如图所示,用频率为f 的单色光垂直照射双缝,在光屏上的P 点出现第3条暗条纹,已知光速为c ,则P 点到双缝距离之差S 2P-S 1P 应为( )A.c 2fB.3c 2fC.3c fD.5c 2fλ=c f ,又P 点出现第3级暗条纹,即S 2P-S 1P=5×λ2=5c 2f ,选项D 正确。
4.某同学自己动手利用如图所示的器材,观察光的干涉现象,其中,A 为单缝屏,B 为双缝屏,C 为像屏。
第三单元机械波第4课波的干涉一、基础巩固1.对声波的各种现象,以下说法中正确的是A.在空房子里讲话,声音特别响,这是声音的共鸣现象B.绕正在发音的音叉为圆心走一圈,可以听到忽强忽弱的声音,这是多普勒效应现象C.古代某和尚房里挂着的磐常自鸣自响,属于声波的共鸣现象D.把耳朵贴在铁轨上可以听到远处的火车声,属于声波的衍射现象【答案】C【解析】在空房子里讲话,声音特别响,是声波的反射,A错误;绕正在发音的音叉为圆心走一圈,可以听到忽强忽弱的声音,是干涉现象,B错误;把耳朵贴在铁轨上可以听到远处的火车声,是声波在固体中传播比气体中快,D错误;古代某和尚房里挂着的磐常自鸣自响,属于声波的共鸣现象,C选项正确.2.如图所示,实线和虚线分别表示振幅、频率均相同的两列波的波峰和波谷。
此刻M是波峰与波峰相遇点,设两列波的周期均为T,下列说法中正确的是()A.此时刻O处的质点正处在平衡位置B.M、P两处的两质点始终处在平衡位置C.随着时间的推移,M处的质点将向O点处移动D.从此时刻起,经过14T,M处的质点到达平衡位置且此时位移为零【答案】D【解析】由图知O点是波谷和波谷叠加,是振动加强点,此时刻质点振幅最大,不处在平衡位置。
故A错误;由图知M点是波峰和波峰叠加,是振动加强点,不始终处在平衡位置。
P点是波谷和波峰叠加,由于两列波振幅相同,所以始终处在平衡位置。
故B错误;振动的质点只是在各自的平衡位置附近振动,不会“随波逐流”,故C错误;此时刻,M处的质点在波峰,经过14T,到达平衡位置且此时位移为零。
故D正确。
故选D。
3.以下关于波的说法中正确的是()A.干涉现象是波的特征,因此任何两列波相遇时都会产生干涉现象B.因为声波的波长可以与通常的障碍物尺寸相比相差不大,所以声波很容易产生衍射现象C.声波是横波D.纵波传播时,媒质中的各质点将随波的传播一直向前移动【答案】B【解析】频率相同、相位恒定的两列波相遇才能产生稳定的干涉现象,A错误;由衍射条件知,B正确;声波是纵波,C错误;波的传播过程中,不论横波和纵波,质点并不随波发生迁移,D错误。
高中物理选择性必修一第四章光第三节光的干涉课后习题答案1.光的干涉现象对认识光的本性有什么意义?解析:干涉现象是一切波所具有的特性,所以光的干涉现象说明了光是一种波.2.两列光干涉时光屏上的亮条纹和暗条纹到两个光源的距离与波长有什么关系?解析:光屏上的点到两个光源的距离差ΔX=(2n+1)λ2(n=0,1,2,3......)时,出现暗条纹;光屏上的点到两个光源的距离差ΔX=nλ(n=0,1,2,3......)时,出现亮条纹。
3.在杨氏双缝干涉实验中,光屏上某点p到双缝S1和S2 的路程差为7.5×10-7m,如果用频率6.0×1014Hz的黄光照射双缝,试通过计算分析P点出现的是亮条纹还是暗条纹。
解析:根据题中的信息可得:λ=vf =3×1086×1014=12×10-6m ,所以ΔX12λ=3,即路程差是半波长的整数倍,所以P点是暗条纹。
4.劈尖干涉是一种薄膜干涉,如图所示。
将一块平板玻璃放置在另一平板玻璃之上,在一端夹入两张纸片,从而在两玻璃表面之间形成一个劈形空气薄膜,当光从上方入射后,从上往下看到的干涉条纹有如下特点:(1)任意一条明条纹或暗条纹所在位置下面的薄膜厚度相等;(2)任意相邻明条纹或暗条纹所对应的薄膜厚度差恒定。
现若在如图所示装置中抽去一张纸片,则当光入射到劈形空气薄膜后,从上往下可以观察到干涉条纹发生了怎样的变化?解析:从空气膜的上下表面分别反射的两列光是相干光,其光程差为△x=2d即光程差为空气层厚度的2倍,当光程差△x=2d=nλ时λ,显然此处表现为亮条纹,故相邻亮条纹之间的空气层的厚度差12抽去一张纸片后空气层的倾角变小,故相邻亮条纹(或暗条纹)之间的距离变大,故干涉条纹变疏。
解析二:由薄膜干涉的原理和特点可知,干涉条纹是由膜的上、下表面反射的光叠加干涉而形成的,某一明条纹或暗条纹的位置就由上、下表面反射光的路程差决定,且相邻明条纹或暗条纹对应的该路程差是恒定的,而该路程差又决定于条纹下对应膜的厚度,即相邻明条纹或暗条纹下面对应的膜的厚度也是恒定的.当抽去一纸片后,劈形空气膜的劈尖角-上、下表面所夹的角变小,相同的厚度差对应的水平间距离变大,所以相邻的明条纹或暗条纹间距变大,即条纹变疏。
λdr y 0=∆第一章 光的干涉●1.波长为nm 500的绿光投射在间距d 为cm 022.0的双缝上,在距离cm 180处的光屏上形成干涉条纹,求两个亮条纹之间的距离.若改用波长为nm 700的红光投射到此双缝上,两个亮条纹之间的距离又为多少?算出这两种光第2级亮纹位置的距离.解:由条纹间距公式λd r y y y j j 01=-=∆+ 得:cm 328.0818.0146.1cm146.1573.02cm818.0409.02cm573.010700022.0180cm 409.010500022.018021222202221022172027101=-=-=∆=⨯===⨯===⨯⨯==∆=⨯⨯==∆--y y y drj y d rj y d r y d r y j λλλλ●2.在杨氏实验装置中,光源波长为nm 640,两狭缝间距为mm 4.0,光屏离狭缝的距离为cm 50.试求:(1)光屏上第1亮条纹和中央亮条纹之间的距离;(2)若p 点离中央亮条纹为mm 1.0,问两束光在p 点的相位差是多少?(3)求p 点的光强度和中央点的强度之比.式: 解:(1)由公得λd r y 0=∆ =cm 100.8104.64.05025--⨯=⨯⨯(2)由课本第20页图1-2的几何关系可知52100.01sin tan 0.040.810cm 50y r r d d dr θθ--≈≈===⨯521522()0.8106.4104r r πππϕλ--∆=-=⨯⨯=⨯(3) 由公式2222121212cos 4cos 2I A A A A A ϕϕ∆=++∆= 得8536.042224cos 18cos 0cos 421cos 2cos42cos 422202212212020=+=+==︒⋅=∆∆==πππϕϕA A A A I I pp●3. 把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置为中央亮条纹,试求插入的玻璃片的厚度.已知光波长为6×10-7m .解:未加玻璃片时,1S 、2S 到P 点的光程差,由公式2rϕπλ∆∆=可知为 Δr =215252r r λπλπ-=⨯⨯=现在1S 发出的光束途中插入玻璃片时,P 点的光程差为()210022r r h nh λλϕππ'--+=∆=⨯=⎡⎤⎣⎦所以玻璃片的厚度为421510610cm 10.5r r h n λλ--====⨯-4. 波长为500nm 的单色平行光射在间距为0.2mm 的双狭缝上.通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样.求干涉条纹间距和条纹的可见度.解:6050050010 1.250.2r y d λ-∆==⨯⨯=mm122I I = 22122A A =12A A =()()122122/0.94270.941/A A V A A ∴===≈+5. 波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。