一元二次不等式与分式不等式练习
- 格式:doc
- 大小:82.00 KB
- 文档页数:2
不等式练习题一、基本不等式1. 已知a > b,求证:a + c > b + c。
2. 已知x > 3,求证:x^2 > 9。
3. 已知0 < x < 1,求证:x^3 < x。
4. 已知a, b均为正数,求证:a^2 + b^2 > 2ab。
5. 已知|x| > |y|,求证:x^2 > y^2。
二、一元一次不等式1. 解不等式:3x 7 > 2x + 4。
2. 解不等式:5 2(x 3) ≤ 3x 1。
3. 解不等式:2(x 1) 3(x + 2) > 7。
4. 解不等式:4 3(x 2) ≥ 2x + 5。
5. 解不等式:5(x 3) + 2(2x + 1) < 7x 9。
三、一元二次不等式1. 解不等式:x^2 5x + 6 > 0。
2. 解不等式:2x^2 3x 2 < 0。
3. 解不等式:x^2 4x + 4 ≤ 0。
4. 解不等式:3x^2 + 4x 4 > 0。
5. 解不等式:x^2 + 5x 6 < 0。
四、分式不等式1. 解不等式:x / (x 1) > 2。
2. 解不等式:1 / (x + 3) 1 / (x 2) ≤ 0。
3. 解不等式:(x 1) / (x + 1) < 0。
4. 解不等式:(2x + 3) / (x 4) ≥ 1。
5. 解不等式:(3x 2) / (x^2 5x + 6) > 0。
五、含绝对值的不等式1. 解不等式:|x 2| > 3。
2. 解不等式:|2x + 1| ≤ 5。
3. 解不等式:|3x 4| < 2。
4. 解不等式:|x + 3| |x 2| > 1。
5. 解不等式:|x 5| + |x + 1| < 6。
六、综合应用题1. 已知不等式组:$\begin{cases} 2x 3y > 6 \\ x + 4y ≤ 8 \end{cases}$,求x的取值范围。
§1.5一元二次方程、不等式学习目标1.会从实际情景中抽象出一元二次不等式.2.结合二次函数图象,会判断一元二次方程的根的个数,以及解一元二次不等式.3.了解简单的分式、绝对值不等式的解法.知识梳理1.二次函数与一元二次方程、不等式的解的对应关系判别式Δ=b2-4acΔ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象方程ax2+bx+c=0(a>0)的根有两个不相等的实数根x1,x2(x1<x2)有两个相等的实数根x1=x2=-b2a没有实数根ax2+bx+c>0(a>0)的解集{x|x<x1,或x>x2}⎩⎨⎧⎭⎬⎫x⎪⎪x≠-b2a Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅2.分式不等式与整式不等式(1)f(x)g(x)>0(<0)⇔f(x)g(x)>0(<0);(2)f(x)g(x)≥0(≤0)⇔f(x)g(x)≥0(≤0)且g(x)≠0.3.简单的绝对值不等式|x|>a(a>0)的解集为(-∞,-a)∪(a,+∞),|x|<a(a>0)的解集为(-a,a).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若方程ax2+bx+c=0无实数根,则不等式ax2+bx+c>0的解集为R.(×)(2)若不等式ax2+bx+c>0的解集为(x1,x2),则a<0.(√)(3)若ax 2+bx +c >0恒成立,则a >0且Δ<0.( × ) (4)不等式x -ax -b ≥0等价于(x -a )(x -b )≥0.( × )教材改编题1.若集合A ={x |x 2-9x >0},B ={x |x 2-2x -3<0},则A ∪B 等于( ) A .R B .{x |x >-1} C .{x |x <3或x >9} D .{x |x <-1或x >3} 答案 C解析 A ={x |x >9或x <0},B ={x |-1<x <3}, ∴A ∪B ={x |x <3或x >9}.2.若关于x 的不等式ax 2+bx +2>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <13,则a +b =________. 答案 -14解析 依题意知⎩⎨⎧-b a =-12+13,2a =⎝⎛⎭⎫-12×13,解得⎩⎪⎨⎪⎧a =-12,b =-2,∴a +b =-14.3.一元二次不等式ax 2+ax -1<0对一切x ∈R 恒成立,则实数a 的取值范围是________. 答案 (-4,0)解析 依题意知⎩⎪⎨⎪⎧ a <0,Δ<0,即⎩⎪⎨⎪⎧a <0,a 2+4a <0,∴-4<a <0.题型一 一元二次不等式的解法 命题点1 不含参的不等式例1 (1)不等式-2x 2+x +3<0的解集为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ -1<x <32 B.⎩⎨⎧⎭⎬⎫x ⎪⎪ -32<x <1C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <-1或x >32 D.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <-32或x >1 答案 C解析 -2x 2+x +3<0可化为2x 2-x -3>0, 即(x +1)(2x -3)>0, ∴x <-1或x >32.(2)(多选)已知集合M ={}x ||x -1|≤2,x ∈R ,集合N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪5x +1≥1,x ∈R ,则( ) A .M ={}x |-1≤x ≤3 B .N ={}x |-1≤x ≤4 C .M ∪N ={}x |-1≤x ≤4 D .M ∩N ={}x |-1<x ≤3 答案 ACD解析 由题设可得M =[-1,3],N =(-1,4], 故A 正确,B 错误;M ∪N ={x |-1≤x ≤4},故C 正确; 而M ∩N ={x |-1<x ≤3},故D 正确. 命题点2 含参的不等式例2 解关于x 的不等式ax 2-(a +1)x +1<0(a >0). 解 原不等式变为(ax -1)(x -1)<0, 因为a >0,所以⎝⎛⎭⎫x -1a (x -1)<0. 所以当a >1时,解得1a <x <1;当a =1时,解集为∅; 当0<a <1时,解得1<x <1a.综上,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a ; 当a =1时,不等式的解集为∅;当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a<x <1. 延伸探究 在本例中,把a >0改成a ∈R ,解不等式. 解 当a >0时,同例2,当a =0时,原不等式等价于-x +1<0,即x >1, 当a <0时,1a<1,原不等式可化为⎝⎛⎭⎫x -1a (x -1)>0, 解得x >1或x <1a.综上,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a , 当a =1时,不等式的解集为∅,当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a<x <1, 当a =0时,不等式的解集为{x |x >1},当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <1a或x >1. 教师备选解关于x 的不等式x 2-ax +1≤0. 解 由题意知,Δ=a 2-4, ①当a 2-4>0,即a >2或a <-2时,方程x 2-ax +1=0的两根为x =a ±a 2-42,∴原不等式的解为a -a 2-42≤x ≤a +a 2-42.②若Δ=a 2-4=0,则a =±2.当a =2时,原不等式可化为x 2-2x +1≤0, 即(x -1)2≤0,∴x =1;当a =-2时,原不等式可化为x 2+2x +1≤0, 即(x +1)2≤0,∴x =-1.③当Δ=a 2-4<0,即-2<a <2时, 原不等式的解集为∅.综上,当a >2或a <-2时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪a -a 2-42≤x ≤a +a 2-42; 当a =2时,原不等式的解集为{1}; 当a =-2时,原不等式的解集为{-1}; 当-2<a <2时,原不等式的解集为∅.思维升华 对含参的不等式,应对参数进行分类讨论,常见的分类有 (1)根据二次项系数为正、负及零进行分类.(2)根据判别式Δ与0的关系判断根的个数. (3)有两个根时,有时还需根据两根的大小进行讨论.跟踪训练1 (1)(多选)已知关于x 的不等式ax 2+bx +c ≥0的解集为{x |x ≤-3或x ≥4},则下列说法正确的是( ) A .a >0B .不等式bx +c >0的解集为{x |x <-4}C .不等式cx 2-bx +a <0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-14或x >13 D .a +b +c >0 答案 AC解析 关于x 的不等式ax 2+bx +c ≥0的解集为(-∞,-3]∪[4,+∞), 所以二次函数y =ax 2+bx +c 的开口方向向上,即a >0,故A 正确; 对于B ,方程ax 2+bx +c =0的两根分别为-3,4,由根与系数的关系得⎩⎨⎧-ba=-3+4,ca =-3×4,解得⎩⎪⎨⎪⎧b =-a ,c =-12a .bx +c >0⇔-ax -12a >0, 由于a >0,所以x <-12,所以不等式bx +c >0的解集为{}x |x <-12, 故B 不正确;对于C ,由B 的分析过程可知⎩⎪⎨⎪⎧b =-a ,c =-12a ,所以cx 2-bx +a <0⇔-12ax 2+ax +a <0⇔12x 2-x -1>0⇔x <-14或x >13,所以不等式cx 2-bx +a <0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-14或x >13,故C 正确; 对于D ,a +b +c =a -a -12a =-12a <0,故D 不正确. (2)解关于x 的不等式(x -1)(ax -a +1)>0.解 ①当a =0时,原不等式可化为x -1>0,即x >1; 当a ≠0时,(x -1)(ax -a +1)=0的两根分别为1,1-1a .②当a >0时,1-1a<1,∴原不等式的解为x >1或x <1-1a .③当a <0时,1-1a >1,∴原不等式的解为1<x <1-1a.综上,当a =0时,原不等式的解集为{x |x >1};当a >0时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >1或x <1-1a ; 当a <0时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1-1a . 题型二 一元二次不等式恒(能)成立问题 命题点1 在R 上恒成立问题例3 (2022·漳州模拟)对∀x ∈R ,不等式(a -2)x 2+2(a -2)x -4<0恒成立,则a 的取值范围是( ) A .-2<a ≤2 B .-2≤a ≤2 C .a <-2或a ≥2 D .a ≤-2或a ≥2答案 A解析 不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,当a -2=0,即a =2时,-4<0恒成立,满足题意;当a -2≠0时,要使不等式恒成立,需⎩⎪⎨⎪⎧ a -2<0,Δ<0,即有⎩⎪⎨⎪⎧a <2,4(a -2)2+16(a -2)<0,解得-2<a <2.综上可得,a 的取值范围为(-2,2]. 命题点2 在给定区间上恒成立问题例4 已知函数f (x )=mx 2-mx -1.若对于x ∈[1,3],f (x )<5-m 恒成立,则实数m 的取值范围为________. 答案 ⎝⎛⎭⎫-∞,67 解析 要使f (x )<-m +5在x ∈[1,3]上恒成立,即m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立.有以下两种方法: 方法一 令g (x )=m ⎝⎛⎭⎫x -122+34m -6, x ∈[1,3].当m >0时,g (x )在[1,3]上单调递增,所以g (x )max =g (3),即7m -6<0, 所以m <67,所以0<m <67;当m =0时,-6<0恒成立; 当m <0时,g (x )在[1,3]上单调递减, 所以g (x )max =g (1),即m -6<0, 所以m <6,所以m <0.综上所述,m 的取值范围是⎝⎛⎭⎫-∞,67. 方法二 因为x 2-x +1=⎝⎛⎭⎫x -122+34>0, 又因为m (x 2-x +1)-6<0在x ∈[1,3]上恒成立, 所以m <6x 2-x +1在x ∈[1,3]上恒成立.令y =6x 2-x +1,因为函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可. 所以m 的取值范围是⎝⎛⎭⎫-∞,67. 命题点3 给定参数范围的恒成立问题例5 (2022·宿迁模拟)若不等式x 2+px >4x +p -3,当0≤p ≤4时恒成立,则x 的取值范围是( ) A .[-1,3] B .(-∞,-1] C .[3,+∞)D .(-∞,-1)∪(3,+∞) 答案 D解析 不等式x 2+px >4x +p -3 可化为(x -1)p +x 2-4x +3>0,由已知可得[(x -1)p +x 2-4x +3]min >0(0≤p ≤4), 令f (p )=(x -1)p +x 2-4x +3(0≤p ≤4),可得⎩⎪⎨⎪⎧f (0)=x 2-4x +3>0,f (4)=4(x -1)+x 2-4x +3>0,∴x <-1或x >3.教师备选函数f (x )=x 2+ax +3.若当x ∈[-2,2]时,f (x )≥a 恒成立,则实数a 的取值范围是________. 若当a ∈[4,6]时,f (x )≥0恒成立,则实数x 的取值范围是________________. 答案 [-7,2](-∞,-3-6]∪[-3+6,+∞)解析 若x 2+ax +3-a ≥0在x ∈[-2,2]上恒成立, 令g (x )=x 2+ax +3-a ,则有①Δ≤0或②⎩⎪⎨⎪⎧Δ>0,-a2<-2,g (-2)=7-3a ≥0.或③⎩⎪⎨⎪⎧Δ>0,-a2>2,g (2)=7+a ≥0,解①得-6≤a ≤2,解②得a ∈∅, 解③得-7≤a <-6.综上可得,满足条件的实数a 的取值范围是[-7,2]. 令h (a )=xa +x 2+3.当a ∈[4,6]时,h (a )≥0恒成立.只需⎩⎪⎨⎪⎧ h (4)≥0,h (6)≥0,即⎩⎪⎨⎪⎧x 2+4x +3≥0,x 2+6x +3≥0,解得x ≤-3-6或x ≥-3+ 6.∴实数x 的取值范围是(-∞,-3-6]∪[-3+6,+∞). 思维升华 恒成立问题求参数的范围的解题策略(1)弄清楚自变量、参数.一般情况下,求谁的范围,谁就是参数.(2)一元二次不等式在R 上恒成立,可用判别式Δ,一元二次不等式在给定区间上恒成立,不能用判别式Δ,一般分离参数求最值或分类讨论.跟踪训练2 (1)已知关于x 的不等式-x 2+4x ≥a 2-3a 在R 上有解,则实数a 的取值范围是( )A .{a |-1≤a ≤4}B .{a |-1<a <4}C .{a |a ≥4或a ≤-1}D .{a |-4≤a ≤1}答案 A解析 因为关于x 的不等式-x 2+4x ≥a 2-3a 在R 上有解,即x 2-4x +a 2-3a ≤0在R 上有解,只需y =x 2-4x +a 2-3a 的图象与x 轴有公共点, 所以Δ=(-4)2-4×(a 2-3a )≥0, 即a 2-3a -4≤0,所以(a -4)(a +1)≤0, 解得-1≤a ≤4,所以实数a 的取值范围是{a |-1≤a ≤4}.(2)当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围是( ) A .(-∞,4] B .(-∞,-5) C .(-∞,-5] D .(-5,-4)答案 C解析 令f (x )=x 2+mx +4, ∴当x ∈(1,2)时,f (x )<0恒成立,∴⎩⎪⎨⎪⎧f (1)≤0,f (2)≤0, 即⎩⎪⎨⎪⎧1+m +4≤0,4+2m +4≤0, 解得m ≤-5.课时精练1.不等式9-12x ≤-4x 2的解集为( ) A .RB .∅C.⎩⎨⎧⎭⎬⎫x ⎪⎪x =32 D.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠32 答案 C解析 原不等式可化为4x 2-12x +9≤0, 即(2x -3)2≤0, ∴2x -3=0,∴x =32,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x =32. 2.(2022·揭阳质检)已知p :|2x -3|<1,q :x (x -3)<0,则p 是q 的( ) A .充要条件 B .充分不必要条件C .既不充分也不必要条件D .必要不充分条件 答案 B解析 ∵p :|2x -3|<1,则-1<2x -3<1, 可得p :1<x <2,又∵q :x (x -3)<0,由x (x -3)<0,可得q :0<x <3, 可得p 是q 的充分不必要条件.3.(2022·南通模拟)不等式(m +1)x 2-mx +m -1<0的解集为∅,则m 的取值范围是( ) A .m <-1 B .m ≥233C .m ≤-233D .m ≥233或m ≤-233答案 B解析 ∵不等式(m +1)x 2-mx +m -1<0的解集为∅, ∴不等式(m +1)x 2-mx +m -1≥0恒成立.①当m +1=0,即m =-1时,不等式化为x -2≥0, 解得x ≥2,不是对任意x ∈R 恒成立,舍去; ②当m +1≠0,即m ≠-1时,对任意x ∈R , 要使(m +1)x 2-mx +m -1≥0,只需m +1>0且Δ=(-m )2-4(m +1)(m -1)≤0, 解得m ≥233.综上,实数m 的取值范围是m ≥233.4.(2022·合肥模拟)不等式x 2+ax +4≥0对一切x ∈[1,3]恒成立,则a 的最小值是( ) A .-5 B .-133 C .-4 D .-3答案 C解析 ∵x ∈[1,3]时,x 2+ax +4≥0恒成立, 则a ≥-⎝⎛⎭⎫x +4x 恒成立, 又x ∈[1,3]时,x +4x ≥24=4,当且仅当x =2时取等号.∴-⎝⎛⎭⎫x +4x ≤-4, ∴a ≥-4.故a 的最小值为-4.5.(多选)满足关于x 的不等式(ax -b )(x -2)>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪12<x <2,则满足条件的一组有序实数对(a ,b )的值可以是( )A .(-2,-1)B .(-3,-6)C .(2,4)D.⎝⎛⎭⎫-3,-32 答案 AD解析 不等式(ax -b )(x -2)>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪12<x <2, ∴方程(ax -b )(x -2)=0的实数根为12和2, 且⎩⎪⎨⎪⎧ a <0,b a =12,即a =2b <0,故选AD. 6.(多选)(2022·湖南长郡中学月考)已知不等式x 2+ax +b >0(a >0)的解集是{x |x ≠d },则下列四个结论中正确的是( )A .a 2=4bB .a 2+1b≥4 C .若不等式x 2+ax -b <0的解集为(x 1,x 2),则x 1x 2>0D .若不等式x 2+ax +b <c 的解集为(x 1,x 2),且|x 1-x 2|=4,则c =4答案 ABD解析 由题意,知Δ=a 2-4b =0,所以a 2=4b ,所以A 正确;对于B ,a 2+1b =a 2+4a 2≥2a 2·4a 2=4,当且仅当a 2=4a 2,即a =2时等号成立, 所以B 正确;对于C ,由根与系数的关系,知x 1x 2=-b =-a 24<0,所以C 错误; 对于D ,由根与系数的关系,知x 1+x 2=-a ,x 1x 2=b -c =a 24-c , 则|x 1-x 2|=(x 1+x 2)2-4x 1x 2 =a 2-4⎝⎛⎭⎫a 24-c =2c =4, 解得c =4,所以D 正确.7.不等式3x -1>1的解集为________.答案 (1,4)解析 ∵3x -1>1, ∴3x -1-1>0,即4-x x -1>0, 即1<x <4.∴原不等式的解集为(1,4).8.一元二次方程kx 2-kx +1=0有一正一负根,则实数k 的取值范围是________. 答案 (-∞,0)解析 kx 2-kx +1=0有一正一负根,∴⎩⎪⎨⎪⎧ Δ=k 2-4k >0,1k<0,解得k <0. 9.已知关于x 的不等式-x 2+ax +b >0.(1)若该不等式的解集为(-4,2),求a ,b 的值;(2)若b =a +1,求此不等式的解集.解 (1)根据题意得⎩⎪⎨⎪⎧2-4=a ,2×(-4)=-b , 解得a =-2,b =8.(2)当b =a +1时,-x 2+ax +b >0⇔x 2-ax -(a +1)<0,即[x -(a +1)](x +1)<0.当a +1=-1,即a =-2时,原不等式的解集为∅;当a +1<-1,即a <-2时,原不等式的解集为(a +1,-1);当a +1>-1,即a >-2时,原不等式的解集为(-1,a +1).综上,当a <-2时,不等式的解集为(a +1,-1);当a =-2时,不等式的解集为∅; 当a >-2时,不等式的解集为(-1,a +1).10.若二次函数f (x )=ax 2+bx +c (a ≠0),满足f (x +2)-f (x )=16x 且f (0)=2.(1)求函数f (x )的解析式;(2)若存在x ∈[1,2],使不等式f (x )>2x +m 成立,求实数m 的取值范围.解 (1)由f (0)=2,得c =2,所以f (x )=ax 2+bx +2(a ≠0),由f (x +2)-f (x )=[a (x +2)2+b (x +2)+2]-(ax 2+bx +2)=4ax +4a +2b ,又f (x +2)-f (x )=16x ,得4ax +4a +2b =16x ,所以⎩⎪⎨⎪⎧4a =16,4a +2b =0,故a =4,b =-8, 所以f (x )=4x 2-8x +2.(2)因为存在x ∈[1,2],使不等式f (x )>2x +m 成立,即存在x ∈[1,2],使不等式m <4x 2-10x +2成立,令g (x )=4x 2-10x +2,x ∈[1,2],故g (x )max =g (2)=-2,所以m <-2,即m 的取值范围为(-∞,-2).11.(多选)已知函数f (x )=4ax 2+4x -1,∀x ∈(-1,1),f (x )<0恒成立,则实数a 的取值可能是( )A .0B .-1C .-2D .-3答案 CD解析 因为f (x )=4ax 2+4x -1,所以f (0)=-1<0成立.当x ∈(-1,0)∪(0,1)时,由f (x )<0可得4ax 2<-4x +1,所以4a <⎝⎛⎭⎫1x 2-4x min ,当x ∈(-1,0)∪(0,1)时,1x∈(-∞,-1)∪(1,+∞), 所以1x 2-4x =⎝⎛⎭⎫1x-22-4≥-4, 当且仅当x =12时,等号成立, 所以4a <-4,解得a <-1.12.(2022·南京质检)函数y =lg(c +2x -x 2)的定义域是(m ,m +4),则实数c 的值为________. 答案 3解析 依题意得,一元二次不等式-x 2+2x +c >0,即x 2-2x -c <0的解集为(m ,m +4),所以m ,m +4是方程x 2-2x -c =0的两个根,所以⎩⎪⎨⎪⎧m +m +4=2,m (m +4)=-c ,解得m =-1,c =3. 13.若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是________.答案 [-4,3]解析 原不等式为(x -a )(x -1)≤0,当a <1时,不等式的解集为[a,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3,综上可得-4≤a ≤3.14.若不等式x 2+ax -2>0在[1,5]上有解,则a 的取值范围是________.答案 ⎝⎛⎭⎫-235,+∞ 解析 对于方程x 2+ax -2=0,∵Δ=a 2+8>0,∴方程x 2+ax -2=0有两个不相等的实数根,又∵两根之积为负,∴必有一正根一负根,设f (x )=x 2+ax -2,于是不等式x 2+ax -2>0在[1,5]上有解的充要条件是f (5)>0,即5a +23>0,解得a >-235. 故a 的取值范围是⎝⎛⎭⎫-235,+∞.15.(2022·湖南多校联考)若关于x 的不等式x 2-(2a +1)x +2a <0恰有两个整数解,则a 的取值范围是( )A.⎩⎨⎧⎭⎬⎫a ⎪⎪ 32<a ≤2 B.⎩⎨⎧⎭⎬⎫a ⎪⎪-1<a ≤-12 C.⎩⎨⎧⎭⎬⎫a ⎪⎪-1<a ≤-12或32≤a <2 D.⎩⎨⎧⎭⎬⎫a ⎪⎪ -1≤a <-12或32<a ≤2 答案 D解析 令x 2-(2a +1)x +2a =0,解得x =1或x =2a .当2a >1,即a >12时, 不等式x 2-(2a +1)x +2a <0的解集为{x |1<x <2a },则3<2a ≤4,解得32<a ≤2; 当2a =1,即a =12时, 不等式x 2-(2a +1)x +2a <0无解,所以a =12不符合题意; 当2a <1,即a <12时,不等式x 2-(2a +1)x +2a <0的解集为{x |2a <x <1}, 则-2≤2a <-1,解得-1≤a <-12. 综上,a 的取值范围是⎩⎨⎧⎭⎬⎫a ⎪⎪-1≤a <-12或32<a ≤2. 16.已知f (x )=2x 2+bx +c ,不等式f (x )<0的解集是(0,5).(1)若不等式组⎩⎪⎨⎪⎧f (x )>0,f (x +k )<0的正整数解只有一个,求实数k 的取值范围; (2)若对于任意x ∈[-1,1],不等式t ·f (x )≤2恒成立,求t 的取值范围. 解 (1)因为不等式f (x )<0的解集是(0,5),所以0,5是一元二次方程2x 2+bx +c =0的两个实数根,可得⎩⎨⎧ 0+5=-b 2,0×5=c 2, 解得⎩⎪⎨⎪⎧b =-10,c =0. 所以f (x )=2x 2-10x .不等式组⎩⎪⎨⎪⎧ f (x )>0,f (x +k )<0, 即⎩⎪⎨⎪⎧2x 2-10x >0,2(x 2+2kx +k 2)-10(x +k )<0, 解得⎩⎪⎨⎪⎧x <0或x >5,-k <x <5-k , 因为不等式组的正整数解只有一个,可得该正整数解为6,可得6<5-k ≤7,解得-2≤k <-1,所以k 的取值范围是[-2,-1).(2)tf (x )≤2,即t (2x 2-10x )≤2,即tx 2-5tx -1≤0,当t =0时显然成立,当t >0时,有⎩⎪⎨⎪⎧ t ·1-5t ·(-1)-1≤0,t ·1-5t ·1-1≤0, 即⎩⎪⎨⎪⎧t +5t -1≤0,t -5t -1≤0, 解得-14≤t ≤16, 所以0<t ≤16; 当t <0时,函数y =tx 2-5tx -1在[-1,1]上单调递增, 所以只要其最大值满足条件即可,所以t -5t -1≤0,解得t ≥-14, 即-14≤t <0, 综上,t 的取值范围是⎣⎡⎦⎤-14,16.。
一元二次不等式及其解法一、知识回顾一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表0>∆0=∆0<∆二次函数c bx ax y ++=2(0>a )的图象c bx ax y ++=2c bx ax y ++=2c bx ax y ++=2一元二次方程()的根002>=++a c bx ax有两相异实根)(,2121x x x x < 有两相等实根ab x x 221-==无实根 的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02><++a c bx ax{}21x x x x <<∅∅二、例题讲解⒈ 一元二次不等式与特殊的高次不等式解法 例1 解不等式0)1)(4(<-+x x .例2:解不等式:(x-1)(x+2)(x-3)>0;例3 解不等式:(x-2)2(x-3)3(x+1)<0.2.分式不等式的解法 例4 解不等式:073<+-x x .例5 解不等式:0322322≤--+-x x x x .例6. 解关于x 的不等式:(x-x 2+12)(x+a)<0. 三、练习【1】设关于x 的不等式x >ax+23的解集为{x 4<x<m},求实数a 和m 的值。
【2】已知关于x 的不等式ax 2+bx+c<0的解集是{x x<-2或x>21-},求ax 2-bx+c>0的解集。
【3】若对x ∈R 恒有n x x x x >++++122322,(n ∈N *),试求n 的值。
一元二次不等式及其解法1.一元二次不等式(20(0)ax bx c a ++>>)与相应的二次函数(2(0)y ax bx c a =++>)及一元二次方程(20(0)ax bx c a ++=>)的关系(简称三个二次之间的关系)判别式Δ=b 2-4acΔ>0 Δ=0 Δ<0 二次函数y =ax 2+bx +c (a >0)的图象一元二次方程 ax 2+bx +c =0 (a >0)的根有两相异实根1212,()x x x x < 有两相等实根 122b x x a==-没有实数根 ax 2+bx +c >0 (a >0)的解集R ax 2+bx +c <0 (a >0)的解集∅ 注:(1)若0a <时,可以先将二次项系数化为正数,若对应方程有两实根,则可根据“大于取两边,小于取中间”求解集。
2.简单的分式不等式(1)()0()f x g x >⇔______________; (2)()0()f xg x <⇔____________ (3)()0()f x g x ≥⇔ ___________ (4)()0()f x g x ≤⇔_____________ 3.二次不等式恒成立的条件(1)ax 2+bx +c >0 (a ≠0)对一切x ∈R 恒成立的充要条件是___________ (2)ax 2+bx +c <0 (a ≠0)对一切x ∈R 恒成立的充要条件是___________1.(人教A 版教材习题改编)不等式2x 2-x -1>0的解集是( )A .(-12,1) B .(1,+∞)C .(-∞,1)∪(2,+∞)D .(-∞,-12)∪(1,+∞)2.不等式x -12x +1≤0的解集为( )A .(-12,1]B .{x |x ≥1或x <-12}C .[-12,1]D .{x |x ≥1或x ≤-12} 3.(2012·福建高考)已知关于x 的不等式x 2-ax +2a >0在R 上恒成立,则实数a 的取值范围是________.4.一元二次不等式ax 2+bx +2>0的解集是(-12,13),则a +b 的值是________.(一)考向1 一元二次不等式的解法例1 求下列不等式的解集(1)22730x x ++> (2)3+2x -x 2≥0;(3)2830x x -+-> (4)213502x x -+-> (5)22320x x -+-< (6)2xx -1≤1解一元二次不等式的步骤: (1)把二次项系数化为正数;(2)先考虑因式分解法,再考虑求根公式法或配方法或判别式法; (3)写出不等式的解集. 变式训练1 解下列不等式:(1)2310x x -+≤ (2)23520x x +-> (3)22530x x --+> (4)29610x x -+-<(5)3012x x+≤- (6)-1≤x 2+2x -1≤2;(二)考向2 三个二次的关系例2 已知关于x 的不等式x 2+ax +b <0的解集(-1,2),试求关于x 的不等式ax 2+x +b <0的解集. 【思路点拨】 不等式解集的端点值是相应方程的根.(1)给出一元二次不等式的解集,则可知二次项系数的符号和相应一元二次方程的两根.(2)三个二次的关系体现了数形结合,以及函数与方程的思想方法.变式训练2 若关于x的不等式axx-1<1的解集是{x|x<1或x>2},求实数a的取值范围.(三)考向3含参数的一元二次不等式的解法例3求不等式12x2-ax>a2(a∈R)的解集.【思路点拨】先求方程12x2-ax=a2的根,讨论根的大小,确定不等式的解集.解含参数的一元二次不等式的步骤(1)二次项若含有参数应讨论参数是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程实根的个数,讨论判别式Δ与0的关系.(3)确定方程无实根时可直接写出解集,确定方程有两个相异实根时,要讨论两实根的大小关系,从而确定解集形式.变式训练3 解关于x的不等式x2-(a+1)x+a<0.(四)考向4 不等式恒成立问题例4 若不等式mx 2-mx -1<0对一切实数x 恒成立,求实数m 的取值范围.【思路点拨】分m =0与m ≠0两种情况讨论,当m ≠0时,用判别式法求解.1.不等式ax 2+bx +c >0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c >0;当a ≠0时,⎩⎪⎨⎪⎧a >0,Δ<0;不等式ax 2+bx +c <0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c <0;当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ<0.2.解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.变式训练4 对任意a ∈[-1,1]不等式x 2+(a -4)x +4-2a >0恒成立,则实数x 的取值范围是________.一个过程解一元二次不等式的一般过程是:一看(看二次项系数的符号),二算(计算判别式,判断方程根的情况),三写(写出不等式的解集).两点联想不等式ax 2+bx +c >0(或ax 2+bx +c <0)(a ≠0)的求解,善于联想:(1)二次函数y =ax 2+bx +c 的图象与x 轴的交点,(2)方程ax 2+bx +c =0(a ≠0)的根,运用好“三个二次”间的关系.三个防范1.二次项系数中含有参数时,参数的符号影响不等式的解集;不要忘了二次项系数是否为零的情况.2.解含参数的一元二次不等式,可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏.3.不同参数范围的解集切莫取并集,应分类表述.课时训练1.设集合M={}2230x x x --<,N=12log 0,x x M N ⎧⎫<⋂⎨⎬⎩⎭则等于 ( )A .-(1,1) B.(1,3) C.(0,1) D.(-1,0)2.在R 上定义运算:(1)x y x y ⊗⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 成立,则 ( )A 、11a -<<B 、02a <<C 、1322a -<<D 、3122a -<<3.“|x -1|<2成立”是“x (x -3)<0成立”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.定义02x x <>或运算a b ad bc c d ⎛⎫=- ⎪⎝⎭,则不等式1011x x ⎛⎫<< ⎪⎝⎭的解集为() A .(1,1)- B. (1,0)(0,1)-⋃C. (1)(1-⋃D.5.设A ={x ∈Z ||x -2|≤5},则A 中最小元素为( )A .2B .-3C .7D .06、不等式20x ax b --<的解集为{}223,10x x bx ax <<-->则的解集为( )A 、{}23x x <<B 、1132x x ⎧⎫<<⎨⎬⎩⎭C 、1123x x ⎧⎫-<<-⎨⎬⎩⎭D 、{}32x x -<<-7.设x ∈R ,则“x >12”是“2x 2+x -1>0”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.不等式102xx-≥+的解集为 ( ) A.[]2,1- B. (]2,1- C. ()(),21,-∞-⋃+∞ D. (](),21,-∞-⋃+∞ 9. “关于x 的不等式x 2-2ax +a >0的解集为R ”是“0≤a ≤1”( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 10.不等式22530x x --≥成立的一个必要不充分条件是 ( )A .0x ≥ B. 02x x <>或 C. 12x <- D. 132x x ≤-≥或 11.不等式22253x x a a -+≥-对任意实数x 恒成立,则实数a 的取值范围为 ( )A .[]1,4- B. [)(,2)5,-∞-⋃+∞ C. (][),14,-∞-⋃+∞ D. []2,5-12、若函数222,0(),0x x x f x x ax x ⎧-≥=⎨-+<⎩是奇函数,则满足()f x a x >的的取值范围是________13.若不等式2(1)0x a x a --+≤的解集是[-4,3]的子集,则a 的取值范围是________14.已知不等式|x -2|>1的解集与不等式x 2+ax +b >0的解集相等,则a +b 的值为________.15. 设命题p :2x 2-3x +1≤0; 命题q :x 2-(2a +1)x +a (a +1)≤0, 若命题p 是命题q 的必要不充分条件,则实数a 的取值范围是________. 16.不等式ax 2+4x +a >1-2x 2对一切x ∈R 恒成立,则实数a 的取值范围是________.一元二次不等式及其解法答案1、D 【解析】 ∵2x 2-x -1=(x -1)(2x +1)>0, ∴x >1或x <-12.故原不等式的解集为(-∞,-12)∪(1,+∞).2、A 【解析】 原不等式等价于(1)(21)0210x x x -+≤⎧⎨+≠⎩.∴原不等式的解集为(-12,1].3、(0,8) 【解析】 ∵x 2-ax +2a >0在R 上恒成立, ∴Δ=a 2-4×2a <0,∴0<a <8.4、-14 【解析】 由已知得方程ax 2+bx +2=0的两根为-12,13.则⎩⎨⎧-b a =-12+132a =(-12)×13解得⎩⎪⎨⎪⎧a =-12,b =-2, ∴a +b =-14.典例分析:例1:(1)原不等式可化为(3)(21)0x x ++> 故原不等式的解集为132x x x ⎧⎫<->-⎨⎬⎩⎭或(2)原不等式化为x 2-2x -3≤0, 即(x -3)(x +1)≤0, 故原不等式的解集为{x |-1≤x ≤3}. (3)原不等式可化为2830x x -+<284(1)(3)520∆=-⨯-⨯-=>212830413413x x x x ∴-+-===方程有两个实根,故原不等式的解集为{}413413x x << (4)原不等式可化为26100x x -+≤ 26411040∆=-⨯⨯=-<∴原不等式的解集为∅(5)原不等式可化为22620x x -+> 2(6)42270∆=--⨯⨯=-<∴故原不等式的解集为R(6) ∵2x x -1≤1⇔2xx -1-1≤0 ⇔x +1x -1≤0 ⇔(1)(1)01110x x x x ≤⎧⇔-≤<⎨-≠⎩-+∴原不等式的解集为[-1,1).变式训练1 (1)9450∆=-=> 12353522x x ∴==对应的方程有两实数根 ∴原不等式的解集为35352x ⎧-+⎪≤≤⎨⎪⎪⎩⎭(2)原不等式可化为(31)(2)0x x -+> ∴原不等式的解集为123x x x ⎧⎫<->⎨⎬⎩⎭或(3)∵-2x 2-5x +3>0, ∴2x 2+5x -3<0,∴(2x -1)(x +3)<0, ∴原不等式的解集为{x |-3<x <12}.(4)原不等式可化为2(31)0x -> ∴原不等式的解集为13x x ⎧⎫≠⎨⎬⎩⎭(5)原不等式可化为(3)(12)0120x x x +-≤⎧⎨-≠⎩ (3)(21)0120x x x +-≥⎧⎨-≠⎩则 13212x x x ⎧≤-≥⎪⎪∴⎨⎪≠⎪⎩或∴原不等式的解集为132x x x ⎧⎫≤->⎨⎬⎩⎭或(6)这是一个双向不等式,可转化为不等式组⎩⎪⎨⎪⎧x 2+2x -1≥-1,x 2+2x -1≤2,即⎩⎪⎨⎪⎧x 2+2x ≥0, ①x 2+2x -3≤0. ② 由①得x ≥0或x ≤-2; 由②得-3≤x ≤1. 故得所求不等式的解集为{x |-3≤x ≤-2或0≤x ≤1}.例2 由于x 2+ax +b <0的解集是(-1,2),所以⎩⎪⎨⎪⎧1-a +b =0,4+2a +b =0,解得⎩⎪⎨⎪⎧a =-1,b =-2.故不等式即为-x 2+x -2<0, ∵⎩⎪⎨⎪⎧-1<0,Δ=1-8=-7<0∴不等式ax 2+x +b <0的解集为R .,变式训练2 解: axx -1<1⇔(a -1)x +1x -1<0⇔[(a -1)x +1](x -1)<0,由原不等式的解集是{x |x <1或x >2}, 知⎩⎪⎨⎪⎧a -1<0,-1a -1=2⇒a =12. ∴实数a 的取值范围是{12}. 例3 ∵12x 2-ax >a 2, ∴12x 2-ax -a 2>0,即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 得:x 1=-a 4,x 2=a3.①a >0时,-a 4<a 3,解集为{x |x <-a 4或x >a3};②a =0时,x 2>0,解集为{x |x ∈R 且x ≠0};③a <0时,-a 4>a 3,解集为{x |x <a 3或x >-a4}.综上所述:当a >0时,不等式的解集为{x |x <-a 4或x >a3};当a =0时,不等式的解集为{x |x ∈R 且x ≠0};当a <0时,不等式的解集为{x |x <a3或x >-变式训练3 【解】 原不等式可化为(x -a )(x -1)<0.当a >1时,原不等式的解集为(1,a ); 当a =1时,原不等式的解集为空集; 当a <1时,原不等式的解集为(a ,例4 要使mx 2-mx -1<0对一切实数x 恒成立,若m =0,显然-1<0;若m ≠0,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,解得-4<m <0, 故实数m 的取值范围是(-4,0].,变式训练4 【解析】 设f (a )=(x -2)a +x 2-4x +4,则原问题可转化为一次函数(或常数函数)f (a )在区间[-1,1]上恒正时x 应满足的条件,故应有⎩⎪⎨⎪⎧f (-1)>0,f (1)>0. 即⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-3x +2>0, 化为⎩⎪⎨⎪⎧(x -2)(x -3)>0,(x -1)(x -2)>0. 解之,得x <1或x >3.课时训练1、B 解:由2230x x --<, 得13x -<<由12log 0x <,得1x > 所以{}13M N x x ⋂=<<2、C 解:()()1x a x a -⊗+<对任意实数x 成立, 即()(1)1x a x a ---<对任意实数x 成立2210x x a a ∴--++>恒成立 214(1)0a a ∴∆=--++< 1322a ∴-<< 3. B 【解析】 ∵|x -1|<2⇔-1<x <3,又x (x -3)<0⇔0<x <3.则(0,3)(-1,3). 4、C 解:由题意可知原不等式即为2011x <-< ,212x ∴<<1221x x ∴<<<-或5. B 【解析】 由|x -2|≤5,得-3≤x ≤7, 又x ∈Z ,∴A 中的最小元素为-36、C 解:由题意知2,3是方程20x ax b --=的解235,236a ab b +==⎧⎧∴∴⎨⎨⨯=-=-⎩⎩ 22106510bx ax x x ∴-->--->不等式为2116+5+1023x x x x ⎧⎫<∴-<<-⎨⎬⎩⎭即, 7、 A 【解析】 2x 2+x -1>0的解集为{x |x >12或x <-1}, 故由x >12⇒2x 2+x -1>0,但2x 2+x -1>0D ⇒/x >12. 则“x >12”是“2x 2+x -1>0”的充分不必要条件. 8、B 解:由102x x -≥+,得(1)(2)020x x x -+≥⎧⎨+≠⎩ 则(1)(2)020x x x -+≤⎧⎨+≠⎩解得21x -<≤ (]2,1∴-原不等式的解集为9、A 【解析】 关于x 的不等式x 2-2ax +a >0的解集为R ,则Δ=4a 2-4a <0,解得0<a <1,由集合的包含关系可知选A.10、B 解:原不等式可化为(21)(3)0x x +-≥,解得132x x ≤-≥或 所以原不等式成立的一个必要不充分条件是02x x <>或11、A 解:由题意知,2225(1)4x x x -+=-+的最小值为4,所以22253x x a a -+≥- 对任意实数x 恒成立,只需234a a -≤,解得14a -≤≤12、(13,)-+∞ 解:()(1)(1)f x f f ∴-=-是奇函数, 即1(12)a --=--2()2a f x ∴=->-,则不等式等价于22002222x x x x x x ≥<⎧⎧⎨⎨->--->-⎩⎩,或,解得030x x ≥<<,或-1- 即(13,)x ∈--+∞13、43a -≤≤ 解:原不等式可化为()(1)0x a x --≤,当1a <时,不等式的解集为[],1a , 此时只要4a ≥-即可,即41a -≤<,当1a =时,不等式的解集为1x =,此时符合要求; 当1a >时,不等式的解集为[]1,a ,此时只要3a ≤即可,即13a <≤,综上可得43a -≤≤14. -1 【解析】 由|x -2|>1得x -2<-1或x -2>1,即x <1或x >3.依题意得知,不等式x 2+ax +b >0的解集是(-∞,1)∪(3,+∞)于是有⎩⎪⎨⎪⎧1×3=b ,1+3=-a ,即a =-4,b =3,a +b =-1. 15、[0,12], 解:由2x 2-3x +1≤0,得12≤x ≤1, 由x 2-(2a +1)x +a (a +1)≤0,得a ≤x ≤a +1,由命题p 是命题q 的必要不充分条件知,p 是q 的充分不必要条件,即{x |12≤x ≤1}{x |a ≤x ≤a +1}, ∴⎩⎪⎨⎪⎧a ≤12,a +1≥1,∴0≤a ≤12. 16、 (2,+∞) 【解析】 由题意知,不等式(a +2)x 2+4x +a -1>0对一切x ∈R 恒成立,则有⎩⎪⎨⎪⎧a +2>0,Δ=16-4(a +2)(a -1)<0,解得a >2.。
一元二次不等式与特殊的高次不等式解法例1 解不等式0)1)(4(<-+x x .分析:由乘法运算的符号法则可知,若原不等式成立,则左边两个因式必须异号,∴原不等式的解集是下面两个不等式组:⎩⎨⎧<+>-0401x x 与⎩⎨⎧>+<-0401x x 的解集的并集,即{x|⎩⎨⎧<+>-0401x x }∪⎩⎨⎧>+<-0401|{x x x }=φ∪{x|-4<x<1}={x|-4<x<1}.书写时可按下列格式:解:∵(x-1)(x+4)<0⇔⎩⎨⎧<+>-0401x x 或⎩⎨⎧>+<-0401x x ⇔x∈φ或-4<x<1⇔-4<x<1,∴原不等式的解集是{x|-4<x<1}.小结:一元二次不等式)a ()c bx ax (c bx ax 00022≠<++>++或的代数解法:设一元二次不等式)a (c bx ax 002≠>++相应的方程)a (c bx ax 002≠=++的两根为2121x x x x ≤且、,则00212>--⇔>++)x x )(x x (a c bx ax ;①若⎩⎨⎧>>⎩⎨⎧<<⇒⎩⎨⎧>->-⎩⎨⎧<-<->.x x ,x x ,x x ,x x .x x ,x x ,x x ,x x ,a 2121212100000或或则得 当21x x <时,得1x x <或2x x >;当21x x =时,得1x x ,R x ≠∈且. ②若⎩⎨⎧><⎩⎨⎧><⇒⎩⎨⎧>-<-⎩⎨⎧>-<-<.x x ,x x ,x x ,x x .x x ,x x ,x x ,x x ,a 2121212100000或或则得 当21x x <时,得21x x x <<;当21x x =时,得∅∈x .分析二:由于不等式的解与相应方程的根有关系,因此可求其根并由相应的函数值的符号表示出来即可求出不等式的解集.解:①求根:令(x-1)(x+4)=0,解得x (从小到大排列)分别为-4,1,这两根将x 轴分为三部分:(-∞,-4)(-4,1)(1,+∞);②分析这三部分中原不等式左边各因式的符号例2:解不等式:(x-1)(x+2)(x-3)>0;解:①检查各因式中x 的符号均正;②求得相应方程的根为:-2,1,3;③列表如下:④由上表可知,原不等式的解集为:{x|-2<x<1或x>3}.小结:此法叫列表法,解题步骤是:①将不等式化为(x-x1)(x-x2)…(x-x n)>0(<0)形式(各项x的符号化“+”),令(x-x1)(x-x2)…(x-x n)=0,求出各根,不妨称之为分界点,一个分界点把(实数)数轴分成两部分,n个分界点把数轴分成n+1部分……;②按各根把实数分成的n+1部分,由小到大横向排列,相应各因式纵向排列(由对应较小根的因式开始依次自上而下排列);③计算各区间内各因式的符号,下面是乘积的符号;④看下面积的符号写出不等式的解集.练习:解不等式:x(x-3)(2-x)(x+1)>0. {x|-1<x<0或2<x<3}.思考:由函数、方程、不等式的关系,能否作出函数图像求解例2图练习图直接写出解集:{x|-2<x<1或x>3}. {x|-1<x<0或2<x<3}在没有技术的情况下:可大致画出函数图星求解,称之为串根法①将不等式化为(x-x1)(x-x2)…(x-x n)>0(<0)形式,并将各因式x的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间.注意:奇穿偶不穿例3解不等式:(x-2)2(x-3)3(x+1)<0.解:①检查各因式中x的符号均正;②求得相应方程的根为:-1,2,3(注意:2是二重根,3是三重根);③在数轴上表示各根并穿线,每个根穿一次(自右上方开始),如下图:④∴原不等式的解集为:{x|-1<x<2或2<x<3}.说明:∵3是三重根,∴在C 处穿三次,2是二重根,∴在B 处穿两次,结果相当于没穿.由此看出,当左侧f(x)有相同因式(x-x 1)n 时,n 为奇数时,曲线在x 1点处穿过数轴;n 为偶数时,曲线在x 1点处不穿过数轴,不妨归纳为“奇穿偶不穿”.练习:解不等式:(x-3)(x+1)(x 2+4x+4)≤0.解:①将原不等式化为:(x-3)(x+1)(x+2)2≤0;②求得相应方程的根为:-2(二重),-1,3;③在数轴上表示各根并穿线,如图:④∴原不等式的解集是{x|-1≤x ≤3或x=-2}.说明:注意不等式若带“=”号,点画为实心,解集边界处应有等号;另外,线虽不穿-2点,但x=-2满足“=”的条件,不能漏掉.2.分式不等式的解法 例4 解不等式:073<+-x x .错解:去分母得03<-x ∴原不等式的解集是{}3<x |x .解法1:化为两个不等式组来解:∵073<+-x x ⇔⎩⎨⎧>+<-⎩⎨⎧<+>-07030703x x x x 或\ ⇔x ∈φ或37<<-x ⇔37<<-x ,∴原不等式的解集是{}37<<-x |x . 解法2:化为二次不等式来解: ∵073<+-x x ⇔⎩⎨⎧≠+<+-070)7)(3(x x x ⇔37<<-x ,∴原不等式的解集是{}37<<-x |x 说明:若本题带“=”,即(x-3)(x+7)≤0,则不等式解集中应注意x ≠-7的条件,解集应是{x| -7<x ≤3}. 小结:由不等式的性质易知:不等式两边同乘以正数,不等号方向不变;不等式两边同乘以负数,不等号方向要变;分母中有未知数x ,不等式两边同乘以一个含x 的式子,它的正负不知,不等号方向无法确定,无从解起,若讨论分母的正负,再解也可以,但太复杂.因此,解分式不等式,切忌去分母.解法是:移项,通分,右边化为0,左边化为)x (g )x (f 的形式. 例5 解不等式:0322322≤--+-x x x x . 解法1:化为不等式组来解较繁.解法2:∵0322322≤--+-x x x x ⇔⎪⎩⎪⎨⎧≠--≤--+-0320)32)(23(222x x x x x x ⇔⎩⎨⎧≠+-≤+---0)1)(3(0)1)(3)(2)(1(x x x x x x ,∴原不等式的解集为{x| -1<x ≤1或2≤x<3}.练习:解不等式253>+-x x . 答案: 2.{x|-13<x<-5}. 练习:解不等式:123422+≥+--x x x x.(答:{x|x ≤0或1<x<2})三、小 结1.特殊的高次不等式即右边化为0,左边可分解为一次或二次式的因式的形式不等式,一般用区间法解,注意:①左边各因式中x 的系数化为“+”,若有因式为二次的(不能再分解了)二次项系数也化为“+”,再按我们总结的规律作;②注意边界点(数轴上表示时是“0”还是“.”).2.分式不等式,切忌去分母,一律移项通分化为)x (g )x (f >0(或)x (g )x (f <0)的形式,转化为:)0)(0)()((0)(0)()(⎩⎨⎧≠<⎩⎨⎧≠>x g x g x f x g x g x f 或,即转化为一次、二次或特殊高次不等式形式 . 3.一次不等式,二次不等式,特殊的高次不等式及分式不等式,我们称之为有理不等式. 4.注意必要的讨论.5.一次、二次不等式组成的不等式组仍要借助于数轴. 五、思考题:1. 解关于x 的不等式:(x-x 2+12)(x+a)<0.解:①将二次项系数化“+”为:(x 2-x-12)(x+a)>0,②相应方程的根为:-3,4,-a ,现a 的位置不定,应如何解? ③讨论:ⅰ当-a>4,即a<-4时,各根在数轴上的分布及穿线如下:∴原不等式的解集为{x| -3<x<4或x>-a}.ⅱ当-3<-a<4,即-4<a<3时,各根在数轴上的分布及穿线如下:∴原不等式的解集为{x| -3<x<-a 或x>4}.ⅲ当-a<-3,即a>3时,各根在数轴上的分布及穿线如下:∴原不等式的解集为{x| -a<x<-3或x>4}.ⅳ0当-a=4,即a=-4时,各根在数轴上的分布及穿线如下:∴原不等式的解集为{x| x>-3}.ⅴ当-a=-3,即a=3时,各根在数轴上的分布及穿线如下:∴原不等式的解集为{x| x>4}.2.若不等式13642222<++++x x kkx x 对于x 取任何实数均成立,求k 的范围.(提示:4x 2+6x+3恒正)(答:1<k<3)。
微专题05一元二次不等式、分式不等式【知识点总结】一、一元二次不等式一元二次不等式20(0)ax bx c a ++>≠,其中24b ac ∆=-,12,x x 是方程20(0)ax bx c a ++>≠的两个根,且12x x <(1)当0a >时,二次函数图象开口向上.(2)①若0∆>,解集为{}21|x x x x x ><或.②若0∆=,解集为|2b x x R x a ⎧⎫∈≠-⎨⎬⎩⎭且.③若0∆<,解集为R .(2)当0a <时,二次函数图象开口向下.①若0∆>,解集为{}12|x x x x <<②若0∆≤,解集为∅二、分式不等式(1)()0()()0()f x f xg x g x >⇔⋅>(2)()0()()0()f x f xg x g x <⇔⋅<(3)()()0()0()0()f x g x f x g x g x ⋅≥⎧≥⇔⎨≠⎩(4)()()0()0()0()f x g x f x g x g x ⋅≤⎧≤⇔⎨≠⎩三、绝对值不等式(1)22()()[()][()]f xg x f x g x >⇔>(2)()()(()0)()()()()f x g x g x f x g x f x g x >>⇔><-或;()()(()0)()()()f x g x g x g x f x g x <>⇔-<<;(3)含有两个或两个以上绝对值符号的不等式,可用零点分段法和图象法求解【方法技巧与总结】(1)已知关于x 的一元二次不等式02>++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆>00a ;(2)已知关于x 的一元二次不等式02>++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆<00a ;(3)已知关于x 的一元二次不等式02<++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆<00a ;(4)已知关于x 的一元二次不等式02<++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆>00a .【题型归纳目录】题型一:一元二次不等式的解法题型二:分式不等式的解法题型三:绝对值不等式的解法题型四:高次不等式的解法题型五:一元二次不等式恒成立问题【典型例题】题型一:一元二次不等式的解法例1.(2022·全国·高一课时练习)不等式20x ax b --<的解集是{|23}x x <<,则210bx ax -->的解集是()A .{|23}x x <<B .11{|}32x x <<C .11{|}23x x -<<-D .{|32}x x -<<-【答案】C【解析】因为不等式20x ax b --<的解集是{|23}x x <<,所以方程20x ax b --=的两根为122,3x x ==,所以由韦达定理得23a +=,23b ⨯=-,即,=5=-6a b ,所以2216510bx ax x x --=--->,解不等式得解集为11{|}23x x -<<-故选:C例2.(2022·福建·厦门一中高一期中)已知关于x 的不等式20ax bx c ++<的解集为{|1x x <-或4}x >,则下列说法正确的是()A .0a >B .不等式20ax cxb ++>的解集为{|22x x <<+C .0a b c ++<D .不等式0ax b +>的解集为{}|3x x >【答案】B【解析】因为关于x 的不等式20ax bx c ++<的解集为{|1x x <-或4}x >,所以0a <,所以选项A 错误;由题得014,3,414a b b a c a a c a ⎧⎪<⎪⎪-+=-∴=-=-⎨⎪⎪-⨯=⎪⎩,所以20ax cx b ++>为2430,22x x x --<∴<<B 正确;设2()f x ax bx c =++,则(1)0f a b c =++>,所以选项C 错误;不等式0ax b +>为30,3ax a x ->∴<,所以选项D 错误.故选:B例3.(2022·江苏南京·高一期末)已知,b c ∈R ,关于x 的不等式20x bx c ++<的解集为()2,1-,则关于x 的不等式210cx bx ++>的解集为()A .1,12⎛⎫- ⎪⎝⎭B .11,2⎛⎫- ⎪⎝⎭C .()1,1,2∞∞⎛⎫--⋃+ ⎪⎝⎭D .()1,12∞∞⎛⎫--⋃+ ⎪⎝⎭【答案】A【解析】因为不等式20x bx c ++<的解集为()2,1-,所以2121-=-+⎧⎨=-⨯⎩b c 即12=⎧⎨=-⎩b c ,不等式210cx bx ++>等价于2210x x -++>,解得112x -<<.故选:A .例4.(2022·全国·高一课时练习)已知不等式组22430680x x x x ⎧-+<⎨-+<⎩的解集是关于x 的不等式230x x a -+<解集的子集,则实数a 的取值范围是().A .0a <B .0a ≤C .2a ≤D .2a <【答案】B【解析】不等式组22430680x x x x ⎧-+<⎨-+<⎩解得1324x x <<⎧⎨<<⎩,所以不等式组的解集是{|23}x x <<,关于x 的不等式230x x a -+<解集包含{|23}x x <<,令2()3f x x x a =-+,∴940(2)20(3)0a f a f a ∆=->⎧⎪=-+⎨⎪=⎩,解得0a ,故选:B .例5.(多选题)(2022·江苏·苏州中学高一阶段练习)关于x 的不等式20ax bx c ++<的解集为(,2)(3,)-∞-⋃+∞,则下列正确的是()A .0a <B .关于x 的不等式0bx c +>的解集为(,6)-∞-C .0a b c ++>D .关于x 的不等式20cx bx a -+>的解集为121,,3⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【答案】ACD【解析】A .由已知可得0a <且2,3-是方程20ax bx c ++=的两根,A 正确,B .由根与系数的关系可得:2323b ac a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,解得,6b a c a =-=-,则不等式0bx c +>可化为:60ax a -->,即60x +>,所以6x >-,B 错误,C .因为660a b c a a a a ++=--=->,C 正确,D .不等式20cx bx a -+>可化为:260ax ax a -++>,即2610x x -->,解得12x >或13x <-,D 正确,故选:ACD .例6.(多选题)(2022·全国·高一)若不等式20ax bx c ++>的解集为()1,2-,则下列说法正确的是()A .0a <B .0a b c ++>C .关于x 的不等式230bx cx a ++>解集为()3,1-D .关于x 的不等式230bx cx a ++>解集为()(),31,-∞-⋃+∞【答案】ABD【解析】因为不等式20ax bx c ++>的解集为()1,2-,所以0,1,2b ca a a<-==-,故,2b a c a =-=-,此时20a b c a ++=->,所以A 正确,B 正确;22230230230bx cx a ax ax a x x ++>⇔--+>⇔+->,解得:3x <-或1x >.所以D 正确;C 错误.故选:ABD例7.(2022·全国·高一专题练习)关于x 的不等式22430(0)x ax a a -+-≥>的解集为[]12,x x ,则12123ax x x x ++的最小值是_____________.【答案】4【解析】关于x 的不等式22430(0)x ax a a -+-≥>可化为()()30(0)x a x a a --≤>所以不等式的解集为[],3a a ,所以12,3x a x a ==.所以122123314443a a x x a a x x a a ++=+=+≥=(当且仅当14a a=,即12a =时取“=”).故答案为:4.例8.(2022·江苏·盐城市大丰区新丰中学高一期中)已知关于x 的一元二次不等式220bx x a -->的解集为{|}x x c ≠,且a ,b ,R c ∈,0b c +≠,则2210a b b c +++的最小值为_______.【答案】【解析】由题意,关于x 的一元二次不等式220bx x a -->的解集为{|}x x c ≠,可得0b >,且440ab ∆=+=,所以1ab =-且0b >,所以1a b=-,又由不等式220bx x a -->的解集为{|}x x c ≠,所以212c b b--==,令12t b c b b=+=+≥,则22222211()22a b b b t b b +=+=+-=-,所以2221088a b t t b c t t +++==+≥+t =时取等号.所以2210a b b c+++的最小值为故答案为:题型二:分式不等式的解法例9.(2022·河南·高一期中)不等式351x x x +>-的解集是______.【答案】()(),11,5-∞-⋃【解析】不等式351x x x +>-化为以下两个不等式组:21035x x x x -<⎧⎨+<-⎩或21035x x x x ->⎧⎨+>-⎩,解21035x x x x -<⎧⎨+<-⎩,即21450x x x <⎧⎨-->⎩,解得1x <-,解21035x x x x ->⎧⎨+>-⎩,即21450x x x >⎧⎨--<⎩,解得15x <<,所以原不等式的解集是()(),11,5-∞-⋃.故答案为:()(),11,5-∞-⋃例10.(2022·全国·高一专题练习)不等式3113x x+>--的解集是_______.【答案】()23-,【解析】由3113x x +>--可得31103x x ++>-,即2403x x +<-,即()()3240x x -+<解得23x -<<所以不等式3113x x+>--的解集是()23-,故答案为:()23-,例11.(2022·湖南·新邵县第二中学高一开学考试)不等式2131x x +>-的解是___________.【答案】(1,4)【解析】由题设,2143011x xx x +--=>--,∴(1)(4)0x x --<,可得14x <<,原不等式的解集为(1,4).故答案为:(1,4).例12.(2022·上海市延安中学高一期中)已知关于x 的不等式221037kx kx x x -+≤-+的解集为空集,则实数k 的取值范围是___________.【答案】[)0,4【解析】2231937024x x x ⎛⎫-+=-+> ⎪⎝⎭恒成立,∴不等式等价于210kx kx -+≤的解集是φ,当0k =时,10≤不成立,解集是φ,当0k ≠时,240k k k >⎧⎨∆=-<⎩,解得:04k <<,综上:04k ≤<.故答案为:[)0,4例13.(2022·湖北·武汉市钢城第四中学高一阶段练习)不等式301x x -≥+的解集是____________.【答案】()[),13,-∞-+∞【解析】原不等式等价于()()31010x x x ⎧-+≥⎨+≠⎩,解得:3x ≥或1x <-,故答案为:()[),13,-∞-+∞.例14.(2022·上海市奉贤区曙光中学高一阶段练习)设关于x 的不等式0ax b +>的解集为(,1)-∞,则关于x 的不等式06ax bx -≥-的解集为______;【答案】[)1,6-【解析】由于关于x 的不等式0ax b +>的解集是(,1)-∞,则1为关于0ax b +=的根,且0a <,0a b ∴+=,得=-b a ,不等式06ax b x -≥-即为06ax a x +≥-,即106x x +≤-,解该不等式得[)1,6x ∈-故答案为:[)1,6-例15.(2022·黑龙江·牡丹江市第三高级中学高一开学考试)若不等式2510ax x ++≤的解集为1123x x ⎧⎫-≤≤-⎨⎬⎩⎭,则不等式13x ax -≤-的解集为______.【答案】{}3x x >【解析】∵不等式2510ax x ++≤的解集为11{|}23x x -≤≤-∴12-,13-是方程2510ax x ++=的两根,∴6a =,∴13x a x -≤-可化为303x -≤-∴3x >∴不等式13x ax -≤-的解集为{|3}x x >,故答案为:{|3}x x >.例16.(2022·上海·高一专题练习)关于x 的不等式212x ax -≤--的解集是523x x ⎧⎫≤<⎨⎬⎩⎭,则a 的值为____.【答案】3【解析】由题知,22122x a x x x --≤-=---,整理得()3202x a x -+≤-,所以()()()3220x a x -+-≤,且2x ≠,因为不等式()()()3220x a x -+-≤,且2x ≠,的解集为523x x ⎧⎫≤<⎨⎬⎩⎭,所以()53203a ⋅-+=,3a =.故答案为:3.题型三:绝对值不等式的解法例17.(2022·上海交大附中高一阶段练习)不等式组12511x x ⎧-≤⎪⎨≥⎪+⎩的解集为______________;【答案】(]1,3-;【解析】不等式12x -≤等价于212x -≤-≤,解之得:13x -≤≤,不等式511x ≥+等价于()5101x x -+≥+,解之得:14x -<≤,故不等式组12511x x ⎧-≤⎪⎨≥⎪+⎩的解集为:(]1,3-.故答案为:(]1,3-.例18.(2022·上海交大附中高一期中)已知集合102x A xx ⎧⎫-=≤⎨⎬+⎩⎭,{|}1||2B x x =-≤,则A B =___.【答案】(23]-,【解析】解不等式102x x -≤+即(1)(2)020x x x -+≤⎧⎨+≠⎩,解得21x -<≤,故10(2,1]2x A xx ⎧⎫-=≤=-⎨⎬+⎩⎭,解|1|2x -≤,即212x -≤-≤,解得13x -≤≤,故121{|||]3}[B x x =-≤=-,,则(23]A B ⋃=-,,故答案为:(23]-,.例19.(2022·上海浦东新·高一期中)不等式221x x ->+的解集是_________.【答案】1|33x x ⎧⎫-<<⎨⎬⎩⎭【解析】当12x ≤-时,不等式221x x ->+转化为()()221x x -->-+,解得3x >-,此时132x -<≤-,当122x -<<时,不等式221x x ->+转化为()221x x -->+,解得13x <,此时1123x -<<,当2x ≥时,不等式221x x ->+转化为221x x ->+,解得3x <-,此时无解,综上:221x x ->+的解集是1|33x x ⎧⎫-<<⎨⎬⎩⎭.故答案为:1|33x x ⎧⎫-<<⎨⎬⎩⎭例20.(2022·全国·高一专题练习)设集合A ={x ||x ﹣a |<1,x ∈R },B ={x |1<x <5,x ∈R },若A 是B 的真子集,则a 的取值范围为___.【答案】2≤a ≤4【解析】由|x ﹣a |<1,得﹣1<x ﹣a <1,∴a ﹣1<x <a +1,由A 是B 的真子集,得1115a a ->⎧⎨+<⎩,∴2<a <4.又当a =2时,A ={x |1<x <3},a =4时,A ={x |3<x <5},均满足A 是B 的真子集,∴2≤a ≤4.故答案为:2≤a ≤4题型四:高次不等式的解法例21.(2022·全国·高一课时练习)不等式22132x x x +≥-+的解集为___________.【答案】[0,1)(2,4]⋃【解析】22132x x x +≥-+等价于221032+-≥-+x x x ,即224032x x x x -+≥-+,即(4)0(1)(2)x x x x -≤--,又等价于()()()()()1240120x x x x x x ⎧---≤⎪⎨--≠⎪⎩,利用数轴标根法解得01x ≤<或24x <≤,所以原不等式的解集为[0,1)(2,4]⋃,故答案为:[0,1)(2,4]⋃例22.(2022·天津·静海一中高一阶段练习)不等式()()222344032x x x x x +-+≤+-的解集为___________.【答案】3[,1){2}(3,)2--+∞【解析】由题得2320,3x x x +-≠∴≠且1x ≠-.由题得()()()()2222322320,023(3)(1)x x x x x x x x +-+-≥∴≥---+,所以()()223(1)2(3)0x x x x ++--≥,()()223(1)2(3)0x x x x ++--=零点为3,1,2,32--.当32x <-时,不等式不成立;当312x -≤<-时,不等式成立;当12x -≤<时,不等式不成立;当2x =时,不等式成立;当23x <≤时,不等式不成立;当3x >时,不等式成立.故不等式的解集为:3[,1){2}(3,)2--+∞故答案为:3[,1){2}(3,)2--+∞例23.(2022·上海·华师大二附中高一阶段练习)不等式201712xx x <≤-+的解集为________.【答案】(0,2][6,)⋃+∞【解析】20712xx x <⇒-+()()340x x x -->,根据数轴穿根法可解得03x <<或4x >,22228121100712712712x x x x x x x x x x -+≤⇒-≤⇒≥-+-+-+()()()()2234607120x x x x x x ⎧----≥⇒⎨-+≠⎩,解得2x ≤或34x <<或6x ≥,所以2034017122346x x xx x x x x ⎧<<≤⇒⎨-+≤<<≥⎩或或或,解得(0,2][6,)x ∈⋃+∞.故答案为:(0,2][6,)⋃+∞例24.(2022·上海·华师大二附中高一期末)不等式2411x x x --≥-的解集为______.【答案】[1,1)[3,)-+∞【解析】不等式2411x x x --≥-化为24101x x x ---≥-,22301x x x --≥-,(1)(3)(1)010x x x x +--≥⎧⎨-≠⎩,解得3x ≥或11x -≤<.故答案为:[1,1)[3,)-+∞.例25.(2022·上海·高一专题练习)不等式()()()()2321120x x x x ++--≤的解集为________【答案】(]{}[],211,2-∞--【解析】如下图所示:根据图象可知:当2x -≤或1x =-或12x ≤≤时,()()()()2321120x x x x ++--≤,所以不等式的解集为:(]{}[],211,2-∞--,故答案为:(]{}[],211,2-∞--.例26.(2022·浙江·诸暨中学高一期中)不等式()()2160x x x -+-<的解集为______.【答案】()(),31,2-∞-【解析】因为()()2160x x x -+-<,所以()()()1320x x x -+-<,解得3x <-或12x <<.所以不等式()()2160x x x -+-<的解集为:()(),31,2-∞-.故答案为:()(),31,2-∞-例27.(2022·上海·高一专题练习)不等式()()22221221x xx x x x ++>++的解集为_________.【答案】()()(),11,02,-∞--+∞.【解析】()()22221221xxx x x x ++>++等价于()()2120,x x x +->当1x =-时,不等式不成立,当1x ≠-时,不等式等价于()20x x ->,解得0x <或2x >且1x ≠-,故不等式的解集为()()(),11,02,-∞--+∞.故答案为:()()(),11,02,-∞--+∞.例28.(2022·上海市复兴高级中学高一期中)不等式()()()()2233021x x x x x --≥-+-的解集是______.【答案】23x x ⎧≤⎨⎩或}13x <≤【解析】不等式()()()()2233021x x x x x --≥-+-等价为()()()23310x x x ---≥且10x -≠,∴23x ≤或13x <≤,∴不等式()()()()2233021x x x x x --≥-+-的解集是23x x ⎧≤⎨⎩或}13x <≤故答案为:23x x ⎧≤⎨⎩或}13x <≤例29.(2022·贵州·遵义航天高级中学高一阶段练习)不等式()()232101xx x x -++≤-的解集为()A .[-1,2]B .[-2,1]C .[-2,1)∪(1,3]D .[-1,1)∪(1,2]【答案】D【解析】由()()232101x x x x -++≤-可得,()()()12101x x x x --+≤-,∴()()21010x x x ⎧-+≤⎨-≠⎩,解得12x -≤≤且1x ≠,故原不等式的解集为[1,1)(1,2]-.故选:D .题型五:一元二次不等式恒成立问题例30.(2022·江苏·高一专题练习)若正实数,x y 满足244x y xy ++=,且不等式()2222340x y a a xy +++-≥恒成立,则实数a 的取值范围是()A .532⎡⎤-⎢⎥⎣⎦,B .(]5,3,2⎡⎫-∞-+∞⎪⎢⎣⎭C .532⎛⎤- ⎥⎝⎦,D .(]5,3,2⎛⎫-∞-+∞ ⎪⎝⎭【答案】B【解析】正实数x ,y 满足244x y xy ++=,可得244x y xy +=-,∴不等式()2222340x y a a xy +++-≥恒成立,即()24422340xy a a xy -++-≥恒成立,变形可得()222214234xy a a a +≥-+恒成立,即2221721a a xy a -+≥+恒成立,0x >,0y >,2x y ∴+≥2x y =时等号成立,4244xy x y ∴=++≥+220≥,≥≤舍)可得2xy ≥,要使2221721a a xy a -+≥+恒成立,只需22217221a a a -+≥+恒成立,化简可得22150a a +-≥,即()()3250a a +-≥,解得3a ≤-或52a ≥,故实数a 的取值范围是(]5,3,2⎡⎫-∞-+∞⎪⎢⎣⎭故选:B .例31.(2022·全国·高一单元测试)在R 上定义运算():1x y x y ⊗⊗=-.若不等式()()1x a x a -⊗+<对任意实数x 都成立,则实数a 的取值范围为()A .1322a a ⎧⎫-<<⎨⎬⎩⎭B .{}02a a <<C .{}11a a -<<D .3122a a ⎧⎫-<<⎨⎬⎩⎭【答案】A【解析】由()()1x a x a -⊗+<,得()()11x a x a ---<,即221a a x x --<-,令2t x x =-,此时只需2min 1a a t --<,又221124t x x x ⎛⎫=-=-- ⎪⎝⎭,所以2114a a --<-,即24430a a --<,解得1322a -<<.故选:A .例32.(2022·河南濮阳·高一期末(理))已知命题“R x ∀∈,214(2)04x a x +-+>”是假命题,则实数a 的取值范围为()A .(][),04,-∞+∞UB .[]0,4C .[)4,+∞D .()0,4【答案】A【解析】若“R x ∀∈,214(2)04x a x +-+>”是真命题,即判别式()21Δ24404a =--⨯⨯<,解得:04a <<,所以命题“R x ∀∈,214(2)04x a x +-+>”是假命题,则实数a 的取值范围为:(][),04,-∞+∞U .故选:A .例33.(2022·浙江·金华市曙光学校高一阶段练习)“不等式20x x m -+>在R 上恒成立”的充要条件是()A .14m >B .14m <C .1m <D .1m >【答案】A【解析】∵不等式20x x m -+>在R 上恒成立,∴24(10)m ∆--<=,解得14m >,又∵14m >,∴140m ∆=-<,则不等式20x x m -+>在R 上恒成立,∴“14m >”是“不等式20x x m -+>在R 上恒成立”的充要条件,故选:A .例34.(2022·四川·广安二中高一阶段练习(理))已知关于x 的不等式()()221110a x a x ----<的解集为R ,则实数a 的取值范围()A .3,15⎛⎫- ⎪⎝⎭B .3,15⎛⎤- ⎥⎝⎦C .[)3,1,5⎛⎫-∞-⋃+∞ ⎪⎝⎭D .()3,1,5⎛⎫-∞-⋃+∞ ⎪⎝⎭【答案】B【解析】当1a =时,不等式为10-<,对x R ∀∈恒成立,所以满足条件当1a =-时,不等式为210x -<,解集为1,2∞⎛⎫- ⎪⎝⎭,不满足题意当210a ->时,对应的二次函数开口向上,()()221110a x a x ----<的解集一定不是R ,不满足题意当210a -<,11a -<<时,若不等式()()221110a x a x ----<的解集为R ,则()()221410a a ∆=-+-<,解得:315a -<<,综上,315a -<≤故选:B例35.(2022·全国·高一单元测试)已知12x ≤≤,20x ax ->恒成立,则实数a 的取值范围是()A .{}1a a ≥B .{}1a a >C .{}1a a ≤D .{}1a a <【答案】D【解析】由12x ≤≤,20x ax ->恒成立,可得a x <在[]1,2上恒成立,即即1a <.故选:D .例36.(2022·陕西安康·高一期中)若对任意的2[1,0],2420x x x m ∈--+++≥恒成立,则m 的取值范围是()A .[4,)+∞B .[2,)+∞C .(,4]-∞D .(,2]-∞【答案】A【解析】因为对任意的2[1,0],2420x x x m ∈--+++≥恒成立,所以对任意的2[1,0],242x m x x ≥-∈--恒成立,因为当[1,0]x ∈-,()[]22142,4y x =--∈-,所以()2max2424m x x --≥=,[1,0]x ∈-,即m 的取值范围是[4,)+∞故选:A例37.(2022·广西·南宁市东盟中学高一期中)已知命题“21,2,2102x x ax ⎡⎤∃∈-+≤⎢⎥⎣⎦”为假命题,则实数a 的取值范围是()A .a -<<B .a <C .3a <D .9 2a <【答案】B【解析】由题知,命题“21,2,2102x x ax ⎡⎤∃∈-+≤⎢⎥⎣⎦”为假命题,则21,2,2102x x ax ⎡⎤∀∈-+>⎢⎥⎣⎦为真命题,即11,2,22x x a x ⎡⎤∀∈+>⎢⎥⎣⎦恒成立.又12x x +≥12x x =≥2x =等号成立,所以a <故选:B例38.(2022·全国·高一课时练习)已知命题p :“15x ∃≤≤,250x ax -->”为真命题,则实数a 的取值范围是()A .4a <B .4a <-C .4a >D .4a >-【答案】A【解析】由题意,当15x ≤≤时,不等式250x ax -->有解,等价于“15x ∀≤≤,250x ax --≤恒成立”为真时对应a 取值集合的补集若15x ∀≤≤,250x ax --≤恒成立为真命题,需满足,25550a --≤且150a --≤,解得4a ≥.因此p 命题成立时a 的范围时4a <故选:A .【过关测试】一、单选题1.(2022·江西·丰城九中高一期末)已知集合{}2870A x x x =-+<,{}14B x x =<<,则“x A ∈”是“x B ∈”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由题意得{}17A x x =<<,所以AB .所以“x A ∈”是“x B ∈”的必要不充分条件.故选:B2.(2022·全国·高一)若关于x 的不等式()2330x m x m -++<的解集中恰有3个整数,则实数m 的取值范围为()A .(]6,7B .[)1,0-C .[)(]1,06,7-⋃D .[]1,7-【答案】C【解析】不等式()2330x m x m -++<,即()()30x x m --<,当3m >时,不等式解集为()3,m ,此时要使解集中恰有3个整数,这3个整数只能是4,5,6,故67m <≤;当3m =时,不等式解集为∅,此时不符合题意;当3m <时,不等式解集为(),3m ,此时要使解集中恰有3个整数,这3个整数只能是0,1,2,故10m -≤<;故实数m 的取值范围为[)(]1,06,7-⋃.故选:C3.(2022·江苏·高一专题练习)若存在正实数y ,使得54y xx y xy-=+,则实数x 的最大值为()A .15B .54C .1D .4【答案】A 【解析】115454y x x y x y xy x y-=+⇔-=+,因为0y >,所以144y y +≥,所以154x x-≥,当0x >时,154x x-≥⇔25410x x +-≤,解得105x <≤,当0x <时,154x x-≥⇔25410x x +-≥,解得1x <-,故x 的最大值为15.故选:A4.(2022·江苏·高一)已知关于x 的不等式ax b >的解集是{|2}x x <,则关于x 的不等式()()10ax b x +->的解集是()A .()()12-∞⋃+∞,,B .()12,C .()()21-∞-⋃+∞,,D .()21-,【答案】D【解析】关于x 的不等式ax b >的解集为{|2}x x <,0a ∴<,20a b -=,()()10ax b x ∴+->可化为()()210a x x +->,21x ∴-<<,∴关于x 的不等式()()10ax b x +->的解集是()21-,.故选:D .5.(2022·全国·高一课时练习)关于x 的不等式22(11)m x mx m x +<+++对R x ∈恒成立,则实数m 的取值范围是()A .(0)∞-,B .30,(4)⎛⎫∞+∞⎪- ⎝⎭,C .(]0-∞,D .(]40,3∞∞⎛⎫-⋃+ ⎪⎝⎭,【答案】C【解析】因为不等式22(11)m x mx m x +<+++对R x ∈恒成立,所以210mx mx m ++-<对R x ∈恒成立,所以,当0m =时,10-<对R x ∈恒成立.当0m ≠时,由题意,得20Δ410m m mm <⎧⎨=--<⎩,即20340m m m <⎧⎨->⎩,解得0m <,综上,m 的取值范围为(]0-∞,.故选:C6.(2022·江苏·高一)已知不等式20ax bx c ++>的解集为{}|21x x -<<,则不等式20cx bx a -+<的解集为()A .11,2⎛⎫- ⎪⎝⎭B .1,12⎛⎫- ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .()2,1-【答案】A【解析】关于x 的不等式20ax bx c ++>的解集为{}|21x x -<<0a ∴<,且2-和1是方程20ax bx c ++=的两个根,则4200a b c a b c -+=⎧⎨++=⎩b a ∴=,2c a =-,关于x 的不等式20cx bx a -+<,即220ax ax a --+<,2210x x ∴+-<,解得112x -<<,故不等式的解集为11,2⎛⎫- ⎪⎝⎭,故选:A7.(2022·北京师大附中高一期末)关于x 的不等式21x x a x +≥-对任意x ∈R 恒成立,则实数a 的取值范围是()A .[]1,3-B .(],3-∞C .(],1-∞D .(][),13,-∞⋃+∞【答案】B【解析】当0x =时,不等式为01≥-恒成立,a R ∴∈;当0x ≠时,不等式可化为:11a x x≤++,0x >,12x x ∴+≥(当且仅当1x x=,即1x =±时取等号),3a ∴≤;综上所述:实数a 的取值范围为(],3-∞.故选:B .8.(2022·广西·桂林中学高一期中)已知0ax b ->的解集为(,2)-∞,关于x 的不等式2056ax bx x +≥--的解集为()A .(,2](1,6)-∞--B .(,2](6,)-∞-+∞C .[2,1)(1,6)---D .[2,1)(6,)--+∞【答案】A【解析】因0ax b ->的解集为(,2)-∞,则0a <,且2ba=,即有2,0b a a =<,因此,不等式2056ax bx x +≥--化为:22056ax a x x +≥--,即22056x x x +≤--,于是有:220560x x x +≤⎧⎨-->⎩或220560x x x +≥⎧⎨--<⎩,解220560x x x +≤⎧⎨-->⎩得2x -≤,解220560x x x +≥⎧⎨--<⎩得16x -<<,所以所求不等式的解集为:(,2](1,6)-∞--.故选:A 二、多选题9.(2022·湖北黄石·高一阶段练习)下列结论错误的是()A .不存在实数a 使得关于x 的不等式210ax x ++≥的解集为∅B .不等式20ax bx c ++≤在R 上恒成立的必要条件是0a <且240b ac ∆=-≤C .若函数()20y ax bx c a =++≠对应的方程没有实根,则不等式20ax bx c ++>的解集为RD .不等式11x>的解集为1x <【答案】CD【解析】对于选项A ,当0a ≥时,210ax x ++≥的解集不为∅,而当0a <时,要使不等式210ax x ++≥的解集为∅,只需140a ∆=-<,即14a >,因0a <,故不存在实数a 使得关于x 的不等式210ax x ++≥的解集为∅,因此A 正确;对于选项B ,当0a <且240b ac ∆=-≤时,20ax bx c ++≤在R 上恒成立,故不等式20ax bx c ++≤在R 上恒成立的必要条件是0a <且240b ac ∆=-≤,因此B 正确;对于选项C ,因函数()20y ax bx c a =++≠对应的方程没有实根,但a 正负不确定,故20ax bx c ++>或20ax bx c ++<恒成立,因此不等式20ax bx c ++>的解集不一定为R ,故C错;对于选项D ,由11x>,得10x x ->,即()10x x ->,解得01x <<,故D 错.故选:CD .10.(2022·黑龙江·尚志市尚志中学高一阶段练习)设p :实数x 满足1021x x -≤-,则p 成立的一个必要不充分条件是()A .11 2x ≤≤B .112x <≤C .01x ≤≤D .01x <≤【答案】ACD【解析】由题设,若p 成立,(1)(21)0210x x x --≤⎧⎨-≠⎩,解得112x <≤,∴p 成立的一个必要不充分条件,只需1(,1]2在某个范围内,但不相等即可.故选:ACD .11.(2022·江苏南京·高一阶段练习)定义区间(),m n 的长度为n m -,若满足()()2012x ax x -<--的x 构成的区间的长度之和为3,则实数a 的可能取值是()A .14B .13C .3D .4【答案】CD【解析】若14a =,()()()1111220,1,21222x x x x x ⎛⎫⎛⎫-+ ⎪⎪⎛⎫⎝⎭⎝⎭<⇒∈- ⎪--⎝⎭故区间长度之和为1+1=2,不符合题意;若13a =,()()()01,212x x x x x ⎛+ ⎛⎝⎭⎝⎭<⇒∈ --⎝⎭故区间长度之和为符合题意;若3a =,(()()())0212x x x x x +<⇒∈--故区间长度之和为123=,符合题意;若()()()()()224,02,112x x a x x x -+=<⇒∈---故区间长度为3,符合题意.故选:CD .12.(2022·全国·高一专题练习)下列条件中,为“关于x 的不等式210mx mx -+>对R x ∀∈恒成立”的充分不必要条件的有()A .04m ≤<B .02m <<C .14m <<D .16m -<<【答案】BC【解析】因为关于x 的不等式210mx mx -+>对R x ∀∈恒成立,当0m =时,原不等式即为10>恒成立;当0m >时,不等式210mx mx -+>对R x ∀∈恒成立,可得∆<0,即240m m -<,解得:04m <<.当0m <时,21y mx mx =-+的图象开口向下,原不等式不恒成立,综上:m 的取值范围为:[)0,4.所以“关于x 的不等式210mx mx -+>对R x ∀∈恒成立”的充分不必要条件的有02m <<或14m <<.故选:BC .三、填空题13.(2022·广东·梅州市梅江区梅州中学高一阶段练习)二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则不等式(ax +b )(cx -b )<0的解集是________.【答案】3,32⎛⎫- ⎪⎝⎭【解析】由图像知:1和2是关于x 的方程ax 2+bx +c =0(a ≠0)的两个根,所以0a >,12,12b c a a+=-⋅=,所以3,2b a c a =-=.不等式(ax +b )(cx -b )<0可化为()()3230ax a ax a -+<,即()()23230x x a-+<,解得:332x -<<.所以不等式(ax +b )(cx -b )<0的解集是3,32⎛⎫- ⎪⎝⎭.故答案为:3,32⎛⎫- ⎪⎝⎭14.(2022·江苏·南京市金陵中学河西分校高一阶段练习)若对任意R x ∈,2222224x ax bx c x x +≤++≤-+恒成立,则ab 的最大值为_________.【答案】12【解析】令1x =,则44a b c ≤++≤,故4a b c ++=,对任意R x ∈,222x ax bx c +≤++,则2(2)20ax b x c +-+-≥恒成立,∴222(2)4(2)(2)4(2)(2)0b ac a c a c a c ∆=---=+---=-+≤∴2c a =+,此时22b a =-,∴2111(22)2(1)2(222ab a a a a a =-=-=--+≤,当15,1,22a b c ===时取等号,此时()()2222333224310222x x ax bx c x x x -+-++=-+=-≥成立,∴ab 的最大值为12.故答案为:12.15.(2022·江苏·扬州大学附属中学高一期中)不等式20ax bx c ++≤的解集为R ,则2222b a c +的最大值为____________.【解析】当0a =时,即不等式0bx c +≤的解集为R ,则0b =,0c ≤,要使得2222b a c +有意义,此时0c <,则22202b a c =+;当0a ≠时,若不等式20ax bx c ++≤的解集为R ,则20Δ40a b ac <⎧⎨=-≤⎩,即204a b ac <⎧⎨≤⎩,所以,22222422b ac a c a c ≤++,因为24b ac ≤,则0ac ≥,当0c =时,则0b =,此时22202b a c =+;当0c <时,则0ac >,令0c t a =>,则22244412122ac t a c t t t ==≤+++当且仅当242b ac c a a c ⎧=⎪⎨=⎪⎩时,等号成立.综上所述,2222b a c +16.(2022·上海·格致中学高一期末)已知关于x 的不等式()226300x ax a a -+-≥>的解集为[]12,x x ,则12123a x x x x ++的最小值是___________.【答案】【解析】因为关于x 的不等式()226300x ax a a -+-≥>的解集为[]12,x x ,所以12,x x 是方程()226300x ax a a -+-=>的实数根,所以112226,3x x x x a a ==+,因为0a >,所以1212316a x x a x x a ++=+≥16a a =,即a =时等号成立,所以12123a x x x x ++的最小值是故答案为:。
高考数学考点知识专题讲解与练习 一元二次不等式在实际问题中的应用学习目标 1.经历从实际情境中抽象出一元二次不等式的过程.了解一元二次不等式的现实意义.2.能够构建一元二次函数模型,解决实际问题.知识点 用一元二次不等式解决实际问题的步骤 1.理解题意,搞清量与量之间的关系;2.建立相应的不等关系,把实际问题抽象为数学中的一元二次不等式问题. 3.解决这个一元二次不等式,得到实际问题的解. 预习小测 自我检验1.不等式1+x1-x ≥0的解集为________.答案 {x |-1≤x <1}解析 原不等式⇔⎩⎨⎧(x +1)(x -1)≤0,x -1≠0,∴-1≤x <1.2.不等式1x ≤1的解集为________. 答案 {x |x ≥1或x <0} 解析 ∵1x ≤1,∴x -1x ≥0,∴⎩⎨⎧x (x -1)≥0,x ≠0,∴x ≥1或x <0. 3.若产品的总成本y (万元)与产量x (台)之间的函数关系式是y =3 000+20x -0.1x 2(0<x <240),若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是________ 台. 答案 150解析 y -25x =-0.1x 2-5x +3 000≤0, 即x 2+50x -30 000≥0, 解得x ≥150或x ≤-200(舍去).4.某商品在最近30天内的价格y 1与时间t (单位:天)的函数关系是y 1=t +10(0<t ≤30,t ∈N );销售量y 2与时间t 的函数关系是y 2=-t +35(0<t ≤30,t ∈N ),使这种商品日销售金额不小于500元的t 的范围是________________. 答案 {t |10≤t ≤15,t ∈N }解析 日销售金额=(t +10)(-t +35), 依题意有(t +10)(-t +35)≥500, 解得解集为{t |10≤t ≤15,t ∈N }.一、分式不等式的解法 例1 解下列不等式: (1)2x -5x +4<0; (2)x +12x -3≤1. 解 (1)2x -5x +4<0⇔(2x -5)(x +4)<0⇔-4<x <52,∴原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-4<x <52. (2)∵x +12x -3≤1,∴x +12x -3-1≤0, ∴-x +42x -3≤0,即x -4x -32≥0. 此不等式等价于(x -4)⎝ ⎛⎭⎪⎫x -32≥0且x -32≠0,解得x <32或x ≥4,∴原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <32或x ≥4. 反思感悟 分式不等式的解法:先通过移项、通分整理,再化成整式不等式来解.如果能判断出分母的正负,直接去分母即可. 跟踪训练1 解下列不等式: (1)2x -13x +1≥0;(2)2-xx +3>1. 解 (1)原不等式可化为⎩⎨⎧(2x -1)(3x +1)≥0,3x +1≠0.解得⎩⎪⎨⎪⎧x ≤-13或x ≥12,x ≠-13,∴x <-13或x ≥12,∴原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-13或x ≥12. (2)方法一 原不等式可化为⎩⎨⎧ x +3>0,2-x >x +3或⎩⎨⎧x +3<0,2-x <x +3. 解得⎩⎪⎨⎪⎧x >-3,x <-12或⎩⎪⎨⎪⎧x <-3,x >-12,∴-3<x <-12,∴原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-3<x <-12. 方法二 原不等式可化为(2-x )-(x +3)x +3>0,化简得-2x -1x +3>0,即2x +1x +3<0,∴(2x +1)(x +3)<0,解得-3<x <-12.∴原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-3<x <-12. 二、一元二次不等式的实际应用例2 某农贸公司按每担200元的价格收购某农产品,并每100元纳税10元(又称征税率为10个百分点),计划可收购a 万担.政府为了鼓励收购公司多收购这种农产品,决定将征税率降低x (x >0)个百分点,预测收购量可增加2x 个百分点. (1)写出降税后税收y (万元)与x 的关系式;(2)要使此项税收在税率调节后,不少于原计划税收的83.2%,试确定x 的取值范围. 解 (1)降低税率后的税率为(10-x )%,农产品的收购量为a (1+2x %)万担,收购总金额为200a (1+2x %)万元.依题意得y =200a (1+2x %)(10-x )%=150a (100+2x )(10-x )(0<x <10).(2)原计划税收为200a ×10%=20a (万元). 依题意得150a (100+2x )(10-x )≥20a ×83.2%, 化简得x 2+40x -84≤0,解得-42≤x ≤2. 又因为0<x <10,所以0<x ≤2.即x 的取值范围为{x |0<x ≤2}. 反思感悟 解不等式应用题的步骤跟踪训练2 北京、张家口2022年冬奥会申办委员会在俄罗斯索契举办了发布会,某公司为了竞标配套活动的相关代言,决定对旗下的某商品进行一次评估.该商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了抓住申奥契机,扩大该商品的影响力,提高年销售量.公司决定立即对该商品进行全面技术革新和营销策略改革,并提高定价到x 元.公司拟投入16(x 2-600)万元作为技改费用,投入50万元作为固定宣传费用,投入x5万元作为浮动宣传费用.试问:当该商品改革后的销售量a 至少应达到多少万件时,才可能使改革后的销售收入不低于原收入与总投入之和?此时该商品每件定价多少元?解 (1)设每件定价为t 元,依题意得⎝ ⎛⎭⎪⎫8-t -251×0.2t ≥25×8, 整理得t 2-65t +1 000≤0,解得25≤t ≤40.所以要使销售的总收入不低于原收入,每件定价最多为40元. (2)依题意得当x >25时,不等式ax ≥25×8+50+16(x 2-600)+x5有解,等价于当x >25时,a ≥150x +x 6+15有解. 由于150x +x 6≥2150x ·x 6=10,当且仅当150x =x 6,即x =30时等号成立,所以a ≥10.2.故当该商品改革后的销售量a 至少达到10.2万件时,才可能使改革后的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.不等式恒成立问题典例 (1)若对∀x ∈R 不等式x 2+mx >4x +m -4恒成立,求实数m 的取值范围; (2)若x 2>4x +m -4在R 上恒成立,求m 的取值范围. 解 (1)原不等式可化为x 2+(m -4)x +4-m >0, ∴Δ=(m -4)2-4(4-m )=m 2-4m <0, ∴0<m <4,∴m 的取值范围为{m |0<m <4}.(2)原不等式可化为x 2-4x +4=(x -2)2>m 恒成立, ∴m <0,∴m 的取值范围为{m |m <0}.[素养提升]一元二次不等式恒成立的情况: ax 2+bx +c >0(a ≠0)恒成立⇔⎩⎨⎧a >0,Δ<0.ax 2+bx +c ≤0(a ≠0)恒成立⇔⎩⎨⎧a <0,Δ≤0.1.不等式x -1x -2≥0的解集为( )A .{x |1≤x ≤2}B .{x |x ≤1或x ≥2}C .{x |1≤x <2}D .{x |x >2或x ≤1} 答案 D解析 由题意可知,不等式等价于⎩⎨⎧(x -1)(x -2)≥0,x -2≠0,∴x >2或x ≤1.故选D.2.不等式3x +1≥1的解集是( )A .{x |x <-1或-1<x ≤2}B .{x |-1≤x ≤2}C .{x |x ≤2}D .{x |-1<x ≤2} 答案 D 解析 ∵3x +1≥1,∴3x +1-1≥0,∴3-x -1x +1≥0, 即x -2x +1≤0,等价于(x -2)(x +1)<0或x -2=0, 故-1<x ≤2.3.某商场若将进货单价为8元的商品按每件10元出售,每天可销售100件,现准备采用提高售价来增加利润.已知这种商品每件售价提高1元,销售量就会减少10件.那么要保证每天所赚的利润在320元以上,售价每件应定为( )A .12元B .16元C .12元到16元之间D .10元到14元之间 答案 C解析 设售价定为每件x 元,利润为y , 则y =(x -8)[100-10(x -10)], 依题意有(x -8)[100-10(x -10)]>320, 即x 2-28x +192<0,解得12<x <16, 所以每件售价应定为12元到16元之间.4.若实数a ,b 满足a +b <0,则不等式x +ab -x <0的解集为__________.答案 {x |x >-a 或x <b } 解析 原不等式等价于 (x +a )(b -x )<0⇔(x -b )(x +a )>0. 又a +b <0,所以b <-a .所以原不等式的解集为{x |x >-a 或x <b }.5.某地每年销售木材约20万m 3,每立方米的价格为2 400元.为了减少木材消耗,决定按销售收入的t %征收木材税,这样每年的木材销售量减少52t 万m 3,为了既减少了木材消耗又保证税金收入每年不少于900万元,则t 的取值范围是________. 答案 {t |3≤t ≤5}解析 设按销售收入的t %征收木材税时,税金收入为y 万元, 则y =2 400⎝ ⎛⎭⎪⎫20-52t ×t %=60(8t -t 2).令y ≥900,即60(8t -t 2)≥900,解得3≤t ≤5.1.知识清单:(1)简单的分式不等式的解法(2)利用不等式解决实际问题的一般步骤如下: ①选取合适的字母表示题目中的未知数;②由题目中给出的不等关系,列出关于未知数的不等式(组); ③求解所列出的不等式(组); ④结合题目的实际意义确定答案. 2.方法归纳:转化、恒等变形.3.常见误区:利用一元二次不等式解决实际问题时,应注意实际意义.1.不等式3x -12-x≥1的解集是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪34≤x ≤2 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪34≤x <2 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >2或x ≤34 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≥34答案 B 解析 不等式3x -12-x ≥1,移项得3x -12-x-1≥0, 即x -34x -2≤0,可化为⎩⎪⎨⎪⎧x -34≥0,x -2<0或⎩⎪⎨⎪⎧x -34≤0,x -2>0,解得34≤x <2,则原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪34≤x <2,故选B.2.与不等式x -32-x ≥0同解的不等式是( )A .(x -3)(2-x )≥0B .0<x -2≤1 C.2-x x -3≥0 D .(x -3)(2-x )>0 答案 B 解析 解不等式x -32-x≥0,得2<x ≤3, A .不等式(x -3)(2-x )≥0的解是2≤x ≤3,故不正确. B .不等式0<x -2≤1的解是2<x ≤3,故正确. C .不等式2-xx -3≥0的解是2≤x <3,故不正确.D .不等式(x -3)(2-x )>0的解是2<x <3,故不正确.故选B.3.若关于x 的不等式ax -b >0的解集为{x |x >1},则关于x 的不等式ax +bx -2>0的解集为( )A .{x |x >1或x <-2}B .{x |1<x <2}C .{x |x >2或x <-1}D .{x |-1<x <2}答案 C解析x=1为ax-b=0的根,∴a-b=0,即a=b,∵ax-b>0的解集为{x|x>1},∴a>0,故ax+bx-2=a(x+1)x-2>0,等价为(x+1)(x-2)>0.∴x>2或x<-1.4.已知不等式-x2+4x≥a2-3a在R上有解,则实数a的取值范围为()A.{a|-1≤a≤4} B.{a|-1<a<4}C.{a|a≥4或a≤-1} D.{a|-4≤a≤1}答案 A解析由题意知,原不等式可化为-(x-2)2+4≥a2-3a在R上有解,∴a2-3a≤4,即(a-4)(a+1)≤0,∴-1≤a≤4,故选A.5.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏,现决定提价销售,为了使这批台灯每天获得400元以上(不含400元)的销售收入.则这批台灯的销售单价x(单位:元)的取值范围是() A.{x|10≤x<16} B.{x|12≤x<18}C.{x|15<x<20} D.{x|10≤x<20}答案 C解析设这批台灯的销售单价为x元,则[30-(x-15)×2]x>400,即x 2-30x +200<0,∴10<x <20,又∵x >15,∴15<x <20.故选C.6.若不等式ax 2+bx +c >0的解集为{x |-1<x <2},则不等式2a +b x +c >bx 的解集为________.答案 {x |x <0}解析 由题意知,-1,2为ax 2+bx +c =0的两根,∴⎩⎨⎧b =-a ,c =-2a且a <0, ∴不等式2a +b x +c >bx 可化为a x -2a >-ax ,∵a <0,即1x -2<-x ,即(x -1)2x <0,∴x <0.7.现有含盐7%的食盐水200克,生产含盐5%以上、6%以下的食盐水,设需要加入含盐4%的食盐水为x 克,则x 的取值范围是________.答案 {x |100<x <400}解析 5%<x ·4%+200·7%x +200<6%, 解得x 的取值范围是{x |100<x <400}.8.某种汽车在水泥路面上的刹车距离(刹车距离是指汽车刹车后由于惯性往前滑行的距离)s m 和汽车车速x km/h 有如下关系:s =118x +1180x 2.在一次交通事故中,测得这种车的刹车距离不小于40 m ,那么这辆汽车刹车前的车速不低于________ km/h.答案 80解析 根据题意,得118x +1180x 2≥40.移项整理,得x 2+10x -7 200≥0.显然Δ>0,x 2+10x -7 200=0有两个实数根,即x 1=80,x 2=-90,然后,根据二次函数y =x 2+10x -7 200的图象(图略),得不等式的解集为{x |x ≤-90或x ≥80}.在这个实际问题中,x >0,所以这辆汽车刹车前的车速不低于80 km/h.9.解关于x 的不等式a -x x +1>0(a ∈R ). 解 原不等式可化为x -a x +1<0, 即(x +1)(x -a )<0,①当a =-1时,x ∈∅;②当a >-1时,{x |-1<x <a };③当a <-1时,{x |a <x <-1}.综上,a =-1时,不等式的解集为∅,a >-1时,不等式的解集为{x |-1<x <a },a <-1时,不等式的解集为{x |a <x <-1}.10.某汽车厂上年度生产汽车的投入成本为10万元/辆,出厂价为12万元/辆,年销售量为10 000辆.本年度为适应市场需求,计划提高产品质量,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应地提高比例为0.75x ,同时预计年销售量增加的比例为0.6x ,已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年度有所增加,则投入成本增加的比例x 应在什么范围内? 解 (1)由题意得y =[12(1+0.75x )-10(1+x )]×10 000×(1+0.6x )(0<x <1),整理得y =-6 000x 2+2 000x +20 000(0<x <1).(2)要保证本年度的年利润比上年度有所增加,必须有⎩⎨⎧ y -(12-10)×10 000>0,0<x <1,即⎩⎨⎧ -6 000x 2+2 000x >0,0<x <1,解得0<x <13,所以投入成本增加的比例x 应在0<x <13的范围内.11.不等式x 2-x -2x -2>0的解集为( )A .{x |x >-1且x ≠2}B .{x |x >-1}C .{x |-1<x <2}D .{x |x <-1或x >2}答案 A解析 原不等式可化为(x -2)(x +1)x -2>0⇒⎩⎨⎧x +1>0,x -2≠0,∴x >-1且x ≠2.故选A. 12.若a >0,b >0,则不等式-b <1x <a 的解集为() A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <-1b 或x >1aB.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -1a <x <1b C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <-1a 或x >1b D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -1b <x <0或0<x <1a 答案 A解析 原不等式可化为⎩⎪⎨⎪⎧1x >-b ,1x <a ,即⎩⎪⎨⎪⎧ bx +1x >0,ax -1x >0, 可得⎩⎪⎨⎪⎧ x <-1b 或x >0,x <0或x >1a , 故不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <-1b 或x >1a . 13.不等式x 2-2x -2x 2+x +1<2的解集为( ) A .{x |x ≠-2} B .RC .∅D .{x |x <-2或x >2}答案 A解析∵x 2+x +1>0恒成立,∴原不等式⇔x 2-2x -2<2x 2+2x +2⇔x 2+4x +4>0⇔(x +2)2>0,∴x ≠-2.∴不等式的解集为{x |x ≠-2}.14.在一个限速40 km /h 的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了.事发后现场测得甲车的刹车距离略超过12 m ,乙车的刹车距离略超过10 m.又知甲、乙两种车型的刹车距离s m与车速x km/h之间分别有如下关系:s甲=0.1x+0.01x2,s乙=0.05x+0.005x2.这次事故的主要责任方为________.答案乙车解析由题意列出不等式s甲=0.1x+0.01x2>12,s乙=0.05x+0.005x2>10.分别求解,得x甲<-40或x甲>30.x乙<-50或x乙>40.由于x>0,从而得x甲>30 km/h,x乙>40 km/h.经比较知乙车超过限速,应负主要责任.15.某商家一月份至五月份累计销售额达3 860万元,六月份的销售额为500万元,七月份的销售额比六月份增加x%,八月份的销售额比七月份增加x%,九、十月份的销售总额与七、八月份的销售总额相等,若一月份至十月份的销售总额至少为7 000万元,则x 的最小值为________.答案20解析由题意得七月份的销售额为500(1+x%)万元,八月份的销售额为500(1+x%)2万元,记一月份至十月份的销售总额为y万元,则y=3 860+500+2[500(1+x%)+500(1+x%)2]≥7 000,解得1+x%≤-115(舍去)或1+x%≥65,即x%≥20%,所以x min=20.16.某工厂生产商品M,若每件定价80元,则每年可销售80万件,税务部门对市场销售的商品要征收附加税.为了既增加国家收入,又有利于市场活跃,必须合理确定征收的税率.据市场调查,若政府对商品M 征收的税率为P %(即每百元征收P 元)时,每年的销售量减少10P 万件,据此,问:(1)若税务部门对商品M 每年所收税金不少于96万元,求P 的取值范围;(2)在所收税金不少于96万元的前提下,要让厂家获得最大的销售金额,应如何确定P 值;(3)若仅考虑每年税收金额最高,又应如何确定P 值.解 税率为P %时,销售量为(80-10P )万件,即销售额为y 1=80(80-10P ),税金为y 2=80(80-10P )·P %,其中0<P <8.(1)由⎩⎨⎧80(80-10P )·P %≥96,0<P <8,解得2≤P ≤6.(2)∵y 1=80(80-10P )(2≤P ≤6),∴当P =2时,y 1取最大值,为4 800万元.(3)∵0<P <8,y 2=80(80-10P )·P %=-8(P -4)2+128,∴当P =4时,国家所得税收金额最高为128万元.。
1.一元二次不等式的解集 判别式Δ=b 2-4ac Δ>0Δ=0Δ<0二次函数y =ax 2+bx +c (a >0)的图象一元二次方程ax 2+bx +c =0(a >0) 的根 有两个相异实数 根x 1,x 2(x 1<x 2) 有两个相等实数 根x 1=x 2=-b2a没有实数根ax 2+bx +c >0(a >0)的解集 {x |x >x 2或x <x 1}{x |}x ≠x 1Rax 2+bx +c <0(a >0)的解集{x |x 1<x <x 2} ∅∅不等式解集 a <ba =b a >b (x -a )·(x -b )>0 {x |x <a 或x >b } {x |x ≠a }{x |x >a 或x <b } (x -a )·(x -b )<0 {x |a <x <b }∅{x |b <x <a }1.两个恒成立的充要条件(1)一元二次不等式ax 2+bx +c >0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a >0, b 2-4ac <0.(2)一元二次不等式ax 2+bx +c <0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a <0, b 2-4ac <0.2.四类分式不等式 (1)f (x )g (x )>0⇔f (x )g (x )>0.(2)f (x )g (x )<0⇔f (x )g (x )<0.(3)f (x )g (x )≥0⇔⎩⎪⎨⎪⎧f (x )g (x )≥0,g (x )≠0. (4)f (x )g (x )≤0⇔⎩⎪⎨⎪⎧f (x )g (x )≤0,g (x )≠0.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)若不等式ax 2+bx +c <0(a ≠0)的解集为(x 1,x 2),则必有a >0.( ) (2)若不等式ax 2+bx +c >0的解集是(-∞,x 1)∪(x 2,+∞),则方程ax 2+bx +c =0的两个实数根是x 1和x 2.( )(3)若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为R .( )(4)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.( )(5)若二次函数y =ax 2+bx +c 的图象开口向下,则不等式ax 2+bx +c <0的解集一定不是空集.( )答案:(1)√ (2)√ (3)× (4)× (5)√ 二、易错纠偏常见误区| (1)解不等式时,变形必须等价; (2)忽视二次项系数的符号;(3)对系数的讨论,忽视二次项系数为0的情况; (4)解分式不等式时,忽视分母的符号. 1.不等式2x (x -7)>3(x -7)的解集为________.解析:2x (x -7)>3(x -7)⇔2x (x -7)-3(x -7)>0⇔(x -7)(2x -3)>0,解得x <32或x >7,所以,原不等式的解集为⎩⎨⎧⎭⎬⎫x⎪⎪⎪x <32或x >7. 答案:⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32或x >72.不等式-x 2-3x +4>0的解集为________.(用区间表示)解析:由-x 2-3x +4>0可知(x +4)(x -1)<0, 解得-4<x <1. 答案:(-4,1)3.对于任意实数x ,不等式mx 2+mx -1<0恒成立,则实数m 的取值范围是________.解析:当m =0时,mx 2+mx -1=-1<0,不等式恒成立;当m ≠0时,由⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,解得-4<m <0. 综上,m 的取值范围是(-4,0]. 答案:(-4,0] 4.不等式2x +1<1的解集是________. 解析:2x +1<1⇒2-(x +1)x +1<0⇒x -1x +1>0⇒x >1或x <-1.答案:{x |x >1或x <-1}一元二次不等式的解法(多维探究) 角度一 不含参数的一元二次不等式求不等式-x 2+8x -3>0的解集.【解】 因为Δ=82-4×(-1)×(-3)=52>0,所以方程-x 2+8x -3=0有两个不相等的实数根x 1=4-13,x 2=4+13.又二次函数y =-x 2+8x -3的图象开口向下,所以原不等式的解集为{x |4-13<x <4+13}.角度二 含参数的一元二次不等式解关于x 的不等式ax 2-(a +1)x +1<0.【解】 若a =0,原不等式等价于-x +1<0,解得x >1. 若a <0,原不等式等价于⎝ ⎛⎭⎪⎫x -1a (x -1)>0,解得x <1a 或x >1.若a >0,原不等式等价于⎝ ⎛⎭⎪⎫x -1a (x -1)<0.①当a =1时,1a =1,⎝ ⎛⎭⎪⎫x -1a (x -1)<0无解;②当a >1时,1a <1,解⎝ ⎛⎭⎪⎫x -1a (x -1)<0,得1a <x <1;③当0<a <1时,1a >1,解⎝ ⎛⎭⎪⎫x -1a (x -1)<0,得1<x <1a .综上所述,当a <0时,解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <1a 或x >1;当a =0时,解集为{x |x >1}; 当0<a <1时,解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫1<x <1a ; 当a =1时,解集为∅; 当a >1时,解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫1a <x <1.(1)解一元二次不等式的一般步骤 ①化为标准形式.②确定判别式Δ的符号,若Δ≥0,则求出该不等式对应的一元二次方程的根,若Δ<0,则对应的一元二次方程无实数根.③结合二次函数的图象得出不等式的解集,特别地,若一元二次不等式左边的二次三项式能分解因式,则可直接写出不等式的解集.(2)含有参数的不等式的求解,首先需要对二次项系数讨论,再比较(相应方程)根的大小,注意分类讨论思想的应用.1.不等式0<x 2-x -2≤4的解集为________. 解析:原不等式等价于⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -2≤4,即⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -6≤0,即⎩⎪⎨⎪⎧(x -2)(x +1)>0,(x -3)(x +2)≤0,解得⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3. 借助于数轴,如图所示,所以原不等式的解集为{x |-2≤x <-1或2<x ≤3}. 答案:[-2,-1)∪(2,3]2.求不等式12x 2-ax >a 2(a ∈R )的解集. 解:因为12x 2-ax >a 2,所以12x 2-ax -a 2>0, 即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 得x 1=-a 4,x 2=a 3. 当a >0时,-a 4<a3,不等式的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <-a 4或x >a 3; 当a =0时,原不等式变形为x 2>0,解集为{x |x ∈R 且x ≠0}; 当a <0时,-a 4>a3,解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <a 3或x >-a 4. 综上所述,当a >0时,不等式的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <-a 4或x >a 3;当a =0时,不等式的解集为{x |x ∈R 且x ≠0};当a <0时,不等式的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <a 3或x >-a 4.一元二次方程与一元二次不等式(师生共研)已知不等式ax 2-bx -1>0的解集是⎩⎨⎧x ⎪⎪⎪-12<x⎭⎪⎬⎪⎫<-13,则不等式x 2-bx -a ≥0的解集是________.【解析】 由题意,知-12,-13是方程ax 2-bx -1=0的两个根,且a <0,所以⎩⎪⎨⎪⎧-12+⎝⎛⎭⎪⎫-13=b a ,-12×⎝ ⎛⎭⎪⎫-13=-1a ,解得⎩⎪⎨⎪⎧a =-6,b =5.故不等式x 2-bx -a ≥0为x 2-5x +6≥0, 解得x ≥3或x ≤2.【答案】 {x |x ≥3或x ≤2}(1)一元二次方程的根就是相应一元二次函数的零点,也是相应一元二次不等式解集的端点值.(2)给出一元二次不等式的解集,相当于知道了相应一元二次函数的开口方向及与x 轴的交点,可以利用代入根或根与系数的关系求待定系数.关于x 的不等式ax -b <0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是( )A .(-∞,-1)∪(3,+∞)B .(1,3)C .(-1,3)D .(-∞,1)∪(3,+∞)解析:选C .关于x 的不等式ax -b <0即ax <b 的解集是(1,+∞),所以a =b <0,所以不等式(ax +b )(x -3)>0可化为(x +1)(x -3)<0,解得-1<x <3, 所以所求不等式的解集是(-1,3).一元二次不等式恒成立问题(多维探究) 角度一 在R 上的恒成立问题若不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为( )A .(-3,0)B .[-3,0)C .[-3,0]D .(-3,0]【解析】 当k =0时,显然成立;当k ≠0时,即一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则⎩⎪⎨⎪⎧k <0,k 2-4×2k ×⎝ ⎛⎭⎪⎫-38<0,解得-3<k <0. 综上,满足不等式2kx 2+kx -38<0对一切实数x 都成立的k 的取值范围是(-3,0].【答案】 D角度二 在给定区间上的恒成立问题(一题多解)设函数f (x )=mx 2-mx -1.若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围.【解】 要使f (x )<-m +5在x ∈[1,3]上恒成立, 即m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.有以下两种方法:方法一:令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)=7m -6<0, 所以m <67,所以0<m <67; 当m =0时,-6<0恒成立;当m <0时,g (x )在[1,3]上是减函数,所以g (x )max =g (1)=m -6<0,所以m <6,所以m <0. 综上所述,m的取值范围是⎩⎨⎧m ⎪⎪⎪⎭⎬⎫m <67. 方法二:因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,又因为m (x 2-x +1)-6<0, 所以m <6x 2-x +1. 因为函数y =6x 2-x +1=6⎝ ⎛⎭⎪⎫x -122+34在[1,3]上的最小值为67, 所以只需m <67即可.所以,m的取值范围是⎩⎨⎧m ⎪⎪⎪⎭⎬⎫m <67. 角度三 给定参数范围的恒成立问题函数f (x )=x 2+ax +3.(1)当x ∈R 时,f (x )≥a 恒成立,求实数a 的取值范围; (2)当x ∈[-2,2]时,f (x )≥a 恒成立,求实数a 的取值范围; (3)当a ∈[4,6]时,f (x )≥0恒成立,求实数x 的取值范围. 【解】 (1)因为当x ∈R 时,x 2+ax +3-a ≥0恒成立, 需Δ=a 2-4(3-a )≤0,即a 2+4a -12≤0, 所以实数a 的取值范围是[-6,2].(2)当x ∈[-2,2]时,设g (x )=x 2+ax +3-a ≥0恒成立,分如下三种情况讨论(如图所示):(i)如图①,当g (x )的图象恒在x 轴或x 轴上方且满足条件时,有Δ=a 2-4(3-a )≤0,即-6≤a ≤2.(ii)如图②,g (x )的图象与x 轴有交点,但当x ∈[-2,+∞)时,g (x )≥0,即⎩⎨⎧Δ≥0,x =-a 2≤-2,g (-2)≥0,即⎩⎪⎨⎪⎧a 2-4(3-a )≥0,-a2≤-2,4-2a +3-a ≥0,可得⎩⎨⎧a ≥2或a ≤-6,a ≥4,a ≤73,解得a ∈∅.(iii)如图③,g (x )的图象与x 轴有交点,但当x ∈(-∞,2]时,g (x )≥0.即⎩⎨⎧Δ≥0,x =-a 2≥2,g (2)≥0,即⎩⎪⎨⎪⎧a 2-4(3-a )≥0,-a2≥2,7+a ≥0,可得⎩⎪⎨⎪⎧a ≥2或a ≤-6,a ≤-4,a ≥-7.所以-7≤a ≤-6,综上,实数a 的取值范围是[-7,2]. (3)令h (a )=xa +x 2+3,当a ∈[4,6]时,h (a )≥0恒成立.只需⎩⎪⎨⎪⎧h (4)≥0,h (6)≥0,即⎩⎪⎨⎪⎧x 2+4x +3≥0,x 2+6x +3≥0,解得x ≤-3-6或x ≥-3+ 6. 所以实数x 的取值范围是(-∞,-3-6]∪[-3+6,+∞).形如f (x )≥0(f (x )≤0)恒成立问题的求解策略(1)对x ∈R 的不等式确定参数的范围时,结合二次函数的图象,利用判别式来求解.(2)对x ∈[a ,b ]的不等式确定参数的范围时,①根据函数的单调性,求其最值,让最值大于等于或小于等于0,从而求出参数的范围;②数形结合,利用二次函数在端点a ,b 处的取值特点确定不等式参数的取值范围.(3)已知参数m ∈[a ,b ]的不等式确定x 的范围,要注意变换主元,一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.[提醒] 解决恒成立问题一定要搞清楚谁是主元,谁是参数.1.若函数y =mx 2-(1-m )x +m 的定义域为R ,则m 的取值范围是________.解析:要使y =mx 2-(1-m )x +m 有意义,即mx 2-(1-m )x +m ≥0对∀x ∈R 恒成立,则⎩⎪⎨⎪⎧m >0,(1-m )2-4m 2≤0,解得m ≥13. 答案:⎣⎢⎡⎭⎪⎫13,+∞2.已知函数f (x )=-x 2+ax +b 2-b +1(a ∈R ,b ∈R ),对任意实数x 都有f (1-x )=f (1+x )成立,若当x ∈[-1,1]时,f (x )>0恒成立,求实数b 的取值范围.解:由f (1-x )=f (1+x )知f (x )的图象关于直线x =1对称,即a2=1,解得a =2.又因为f (x )的图象开口向下,所以当x ∈[-1,1]时,f (x )为增函数,所以当x ∈[-1,1]时,f (x )min =f (-1)=-1-2+b 2-b +1=b 2-b -2, 若当x ∈[-1,1]时,f (x )>0恒成立, 则b 2-b -2>0恒成立,解得b <-1或b >2. 所以实数b 的取值范围为(-∞,-1)∪(2,+∞).[A 级 基础练]1.不等式2x 2-x -3>0的解集为( )A .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-1<x <32B .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >32或x <-1C .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-32<x <1D .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >1或x <32解析:选B .由2x 2-x -3>0,得(x +1)(2x -3)>0,解得x >32或x <-1. 所以不等式2x 2-x -3>0的解集为⎩⎨⎧x⎪⎪⎪⎭⎬⎫x >32或x <-1. 2.不等式1-x2+x ≥1的解集为( )A .⎣⎢⎡⎦⎥⎤-2,-12B .⎝ ⎛⎦⎥⎤-2,-12C .(-∞,-2)∪⎝ ⎛⎭⎪⎫-12,+∞D .(-∞,-2]∪⎝ ⎛⎭⎪⎫-12,+∞解析:选B .1-x 2+x ≥1⇔1-x 2+x -1≥0⇔1-x -2-x2+x ≥0⇔-2x -12+x≥0⇔2x +1x +2≤0⇔⎩⎪⎨⎪⎧(2x +1)(x +2)≤0,x +2≠0⇔-2<x ≤-12.故选B . 3.若不等式ax 2+bx +2<0的解集为{x |x <-12或x >13},则a -b a 的值为( ) A .56B .16C .-16D .-56解析:选A .由题意得方程ax 2+bx +2=0的两根为-12与13,所以-b a =-12+13=-16,则a -b a =1-b a =1-16=56.4.若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是( )A .[-4,1]B .[-4,3]C .[1,3]D .[-1,3]解析:选B .原不等式为(x -a )(x -1)≤0,当a <1时,不等式的解集为[a ,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3.综上可得-4≤a ≤3.5.(2021·湖南益阳4月模拟)已知函数f (x )=ax 2+(a +2)x +a 2为偶函数,则不等式(x -2)f (x )<0的解集为( )A .(-2,2)∪(2,+∞)B .(-2,+∞)C .(2,+∞)D .(-2,2)解析:选A .因为函数f (x )=ax 2+(a +2)x +a 2为偶函数, 所以a +2=0,得a =-2,所以f (x )=-2x 2+4,所以不等式(x -2)f (x )<0可转化为⎩⎪⎨⎪⎧x -2<0,f (x )>0或⎩⎪⎨⎪⎧x -2>0,f (x )<0,即⎩⎪⎨⎪⎧x <2,-2x 2+4>0或⎩⎪⎨⎪⎧x >2,-2x 2+4<0,解得-2<x <2或x >2. 故原不等式的解集为(-2,2)∪(2,+∞).故选A . 6.不等式|x (x -2)|>x (x -2)的解集是________.解析:不等式|x (x -2)|>x (x -2)的解集即x (x -2)<0的解集,解得0<x <2.答案:{x |0<x <2}7.若0<a <1,则不等式(a -x )⎝ ⎛⎭⎪⎫x -1a >0的解集是________.解析:原不等式可化为(x -a )⎝ ⎛⎭⎪⎫x -1a <0,由0<a <1得a <1a ,所以a <x <1a .答案:⎝ ⎛⎭⎪⎫a ,1a8.规定符号“⊙”表示一种运算,定义a ⊙b =ab +a +b (a ,b 为非负实数),若1⊙k 2<3,则k 的取值范围是________.解析:因为定义a ⊙b =ab +a +b (a ,b 为非负实数),1⊙k 2<3,所以k 2+1+k 2<3,化为(|k |+2)(|k |-1)<0,所以|k |<1,所以-1<k <1. 答案:(-1,1)9.求使不等式x 2+(a -6)x +9-3a >0,|a |≤1恒成立的x 的取值范围. 解:将原不等式整理为形式上是关于a 的不等式(x -3)a +x 2-6x +9>0. 令f (a )=(x -3)a +x 2-6x +9, 因为f (a )>0在|a |≤1时恒成立,所以(1)若x =3,则f (a )=0,不符合题意,应舍去. (2)若x ≠3,则由一次函数的单调性,可得⎩⎪⎨⎪⎧f (-1)>0,f (1)>0,即⎩⎪⎨⎪⎧x 2-7x +12>0,x 2-5x +6>0,解得x <2或x >4.则实数x 的取值范围为(-∞,2)∪(4,+∞). 10.已知函数f (x )=ax 2+2ax +1的定义域为R . (1)求a 的取值范围;(2)若函数f (x )的最小值为22,解关于x 的不等式x 2-x -a 2-a <0. 解:(1)因为函数f (x )=ax 2+2ax +1的定义域为R ,所以ax 2+2ax +1≥0恒成立,当a =0时,1≥0恒成立.当a ≠0时,则有⎩⎪⎨⎪⎧a >0,Δ=(2a )2-4a ≤0, 解得0<a ≤1,综上可知,a 的取值范围是[0,1]. (2)因为f (x )=ax 2+2ax +1=a (x +1)2+1-a ,因为a >0,所以当x =-1时,f (x )min =1-a ,由题意得,1-a =22,所以a =12,所以不等式x 2-x -a 2-a <0可化为x 2-x -34<0. 解得-12<x <32,所以不等式的解集为⎝ ⎛⎭⎪⎫-12,32.[B 级 综合练]11.在关于x 的不等式x 2-(a +1)x +a <0的解集中至多包含2个整数,则实数a 的取值范围是( )A .(-3,5)B .(-2,4)C .[-3,5]D .[-2,4]解析:选D .因为关于x 的不等式x 2-(a +1)x +a <0可化为(x -1)(x -a )<0, 当a >1时,不等式的解集为{x |1<x <a }; 当a <1时,不等式的解集为{x |a <x <1},要使不等式的解集中至多包含2个整数,则a ≤4且a ≥-2,所以实数a 的取值范围是a ∈[-2,4],故选D .12.定义运算:x ⊗y =⎩⎨⎧x ,xy ≥0,y ,xy <0,例如:3⊗4=3,(-2)⊗4=4,则函数f (x )=x 2⊗(2x -x 2)的最大值为________.解析:由已知得f (x )=x 2⊗(2x -x 2)=⎩⎪⎨⎪⎧x 2,x 2(2x -x 2)≥0,2x -x 2,x 2(2x -x 2)<0=⎩⎪⎨⎪⎧x 2,0≤x ≤2,2x -x 2,x <0或x >2,易知函数f (x )的最大值为4. 答案:413.对于实数x ,当且仅当n ≤x <n +1(n ∈N *)时,[x ]=n ,则关于x 的不等式4[x ]2-36[x ]+45<0的解集为________.解析:由4[x ]2-36[x ]+45<0,得32<[x ]<152,又当且仅当n ≤x <n +1(n ∈N *)时,[x ]=n ,所以[x ]=2,3,4,5,6,7,所以所求不等式的解集为[2,8).答案:[2,8)14.设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ).(1)若m =-1,n =2,求不等式F (x )>0的解集; (2)若a >0,且0<x <m <n <1a ,比较f (x )与m 的大小. 解:(1)由题意知,F (x )=f (x )-x =a (x -m )·(x -n ), 当m =-1,n =2时,不等式F (x )>0, 即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为 {x |x <-1或x >2};当a <0时,不等式F (x )>0的解集为{x |-1<x <2}. (2)f (x )-m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1),因为a >0,且0<x <m <n <1a , 所以x -m <0,1-an +ax >0. 所以f (x )-m <0,即f (x )<m .[C 级 提升练]15.已知f (x )=x 2+2x +1+a ,∀x ∈R ,f (f (x ))≥0恒成立,则实数a 的取值范围为( )A .⎣⎢⎡⎭⎪⎫5-12,+∞B .⎣⎢⎡⎭⎪⎫5-32,+∞C .[-1,+∞)D .[0,+∞)解析:选B .设t =f (x )=(x +1)2+a ≥a ,则f (t )≥0对任意的t ≥a 恒成立,即(t +1)2+a ≥0对任意的t ∈[a ,+∞)恒成立.当a ≤-1时,f (t )min =f (-1)=a ≤-1,不符合题意;当a >-1时,f (t )min =f (a )=a 2+3a +1,由a 2+3a +1≥0,得a ≥5-32,故选B .16.(2020·湖北孝感3月模拟)设关于x 的一元二次方程ax 2+x +1=0(a >0)有两个实数根x 1,x 2.(1)求(1+x 1)(1+x 2)的值; (2)求证:x 1<-1且x 2<-1;(3)如果x 1x 2∈⎣⎢⎡⎦⎥⎤110,10,试求a 的取值范围.解:(1)因为关于x 的一元二次方程ax 2+x +1=0(a >0)有两个实数根x 1,x 2. 所以x 1+x 2=-1a ,x 1x 2=1a ,则(1+x 1)(1+x 2)=1+x 1+x 2+x 1·x 2=1-1a +1a =1. (2)证明:由Δ≥0,得0<a ≤14.设f (x )=ax 2+x +1,则f (x )的对称轴与x 轴交点横坐标x =-12a ≤-2,又由于f (-1)=a >0,所以f (x )的图象与x 轴的交点均位于点(-1,0)的左侧, 故x 1<-1且x 2<-1.(3)由⎩⎪⎨⎪⎧x 1+x 2=-1a ,x 1·x 2=1a⇒(x 1+x 2)2x 1·x 2=x 1x 2+x 2x 1+2=1a .因为x 1x 2∈⎣⎢⎡⎦⎥⎤110,10,所以1a =x 1x 2+x 2x 1+2∈⎣⎢⎡⎦⎥⎤4,12110⇒a ∈⎣⎢⎡⎦⎥⎤10121,14.又⎩⎪⎨⎪⎧a >0,Δ=1-4a ≥0⇒0<a ≤14, 所以a 的取值范围为⎣⎢⎡⎦⎥⎤10121,14.。