可抽式加热炉制造工艺1
- 格式:ppt
- 大小:20.67 MB
- 文档页数:43
化工生产车间加热炉技术问答1、引燃料气如何操作?引燃料气应按下面步骤进行:①检查燃料气管线,关闭有关放空阀、排凝阀,关闭各炉前手阀;②引氮气吹扫总燃料气管线;③采样分析总管的含氧气≯0.5%为合格;④联系有关单位,缓缓打开界区阀门,让集合管充满燃料气,然后引至加热炉高点放空处进行置换,合格后准备点炉。
2、加热炉内为什么要保持一定的负压?因为燃料燃烧时是需要一定的空气量的,炉子燃烧时,所需空气是靠膛内有一定的负压自然吸进去的,如果负压很小时,则吸入的空气就少,炉内燃料燃烧不完全,热效率低,冒黑烟,炉膛不明亮,甚至往外喷火,会打乱系统的操作。
所以加热炉内要保持一定的负压。
3、阻火器的作用和原理是什么?阻火器的作用是阻火,切断火进入燃料系统。
管子的直径对火焰的传播速度有明显的影响,一般随着管子直径的增加而增加,当达到某个极限值时,速度就不再增加。
同样,传播速度随着管子直径的减小而减小,在达到某种小的直径时,火焰就不能传播,阻火器就是根据这一原理制成的。
4、怎样从烟囱排烟情况来判断加热炉操作是否正常?一般情况下,可通过炉子烟囱排烟情况来判断加热炉操作是否正常,判断方法如下:(1)炉子烟囱排烟以无色或淡兰色为正常。
(2)间断冒小股黑烟,表明蒸汽量不足,雾化不好,燃烧不完全或个别火嘴油汽配比调节不当或加热炉负荷过大。
(3)冒大量黑烟是由于燃料突增,仪表失灵,蒸气压力突然下降或炉管严重烧穿。
(4)冒灰色烟表明瓦斯压力增大或带油。
白烟表明雾化蒸汽量过大、过热蒸汽管子破裂或过热蒸汽往烟道排空。
(5)冒黄烟说明操作忙乱,调节不当,造成时而熄火,燃烧不完全。
5、炉用瓦斯入炉前为什么要经分液罐切液?炼厂各装置的瓦斯排入瓦斯管网时往往含有少量的液态油滴,在寒冷季节,系统管网瓦斯温度降低,其中重组分会冷凝为凝缩油。
当瓦斯带着液态油进入火嘴燃烧时,由于液态油燃烧不完全,导致烟囱冒黑烟,或液态油从火嘴处滴落炉底以致燃烧起火,或液态油在炉膛内突然猛烧产生炉管局部过热或正压而损坏炉体,因此炉用瓦斯入炉前必须经过分液罐,充分切除凝缩油,确保人炉瓦斯不带油,为使瓦斯入炉不带油,不少炼厂还采取了在瓦斯分液罐安装蒸汽加热盘管的措施。
加热炉的典型配管设计摘要:结合相关规范要求及实际配管设计中的注意事项,本文对加氢装置中加热炉设备布置以及管道布置中应该关注的细节及难点进行了探讨。
关键词:加热炉;布置;配管;加热炉是石油化工装置的主要设备之一,作为一种供热设备,将炉管中通过的物料加热至所需温度,然后进入下一工艺设备进行分馏、裂解或反应等。
热源为燃料气或燃料油在炉膛内燃烧释放的热量。
加热炉由辐射段和对流段组成,在辐射段内,高温烟气主要以辐射的方式将热量传递给辐射段盘管,烟气上升进入对流段,以对流的方式将热量传递给对流段盘管。
加热炉按照燃料的种类分为燃油式加热炉、燃气式加热炉和油气混合式加热炉;如果按照结构式分类则分为圆筒式加热炉和箱式加热炉,箱式又分为横管式和立管式加热炉;如果按照燃烧器的设置位置分类,则分为顶烧式、低烧式和侧烧式。
1. 加热炉设备布置一般原则1.1 明火加热炉宜集中布置在装置的边缘并靠近消防通道,采用机动吊装机具吊装炉管时应有机动吊装机具通行的通道和检修场地;对于水平布置炉管的加热炉,加热炉的一侧应有炉管抽出的检修场地,检修场地的长度不应小于炉管长度加2m;1.2 加热炉位于可燃气体、液化烃、甲B、乙A类可燃液体设备的全年最小频率风向的下风侧,可与其他明火设备集中布置。
加热炉可按炉子中心线对齐,并排布置,与检修马路边缘净距不应小于 3 m。
两座加热炉之间的净距不宜小于3m条件允许可尽量合用一个烟囱。
1.3 明火加热炉附属的燃料气分液罐、燃料气加热器等与炉体的防火间距不应小于6m。
1.4 明火加热炉与露天布置的液化烃设备或甲类气体压缩机厂房的防火间距不应小于22.5m。
当在加热炉与设备之间设置不燃烧材料实体墙时,其防火间距可减小,但不得小于 15 m。
实体墙的高度不宜小于 3 m,距加热炉间距不宜大于 5 m,实体墙的长度应满足由露天布置的液化烃设备或甲类气体压缩机经实体墙至加热炉的折线距离不小于 22.5 m,防止可燃气体窜入炉体[1]。
管式加热炉工艺流程
管式加热炉是一种常见的工业加热设备,通常用于对金属材料进行加热处理。
下面是管式加热炉的工艺流程。
1. 原料准备:首先,需要准备要处理的金属材料。
根据不同的加热要求,可以选择不同的金属材料,例如钢、铝等。
2. 加料:金属材料经过热处理前,需要先玻璃老虎机入加热炉中。
加料的方式通常有两种,一种是手动加料,另一种是自动加料。
手动加料需要操作工人将金属材料一个个放入炉膛,而自动加料则可以通过输送带或者机械臂等装置将金属材料输送到加热炉中。
3. 加热:金属材料进入加热炉后,需要进行加热处理。
在加热炉内,金属材料会受到高温的炉气或者电阻炉盘的加热作用,温度会逐渐上升。
加热炉可以根据加热要求调节温度和加热时间,以达到预定的热处理效果。
4. 炉外冷却:金属材料加热处理完成后,需要进行炉外冷却。
冷却的方式可以根据加热要求和材料特性来选择,一般有水冷却、气体冷却和自然冷却等多种方式。
5. 产品收集:冷却完成后,金属材料成为最终产品。
产品可以通过输送带或者夹具等装置自动收集起来,方便后续的处理和使用。
6. 清洁维护:加热炉在使用过程中会积累一些灰尘和杂质,需
要进行定期的清洁和维护,以确保加热炉的正常运行和使用寿命。
以上就是管式加热炉的工艺流程。
管式加热炉通过控制温度和加热时间,可以实现对金属材料的精确加热,满足不同材料的加热要求。
在工业生产中,管式加热炉被广泛应用于金属材料的热处理和制造工艺中,提高了生产效率和产品质量。
火筒式加热炉简介火筒式加热炉(英文名:The Flame Tube Furnace)是一种常见的加热设备,其内部由燃烧室和热交换器组成。
它通过燃烧燃料产生高温炽热的气体,然后通过热交换器进行热传递,将热能传递给待加热的物体或工作介质。
火筒式加热炉广泛应用于工业生产中的加热、烧结、熔化、脱水等过程。
结构和工作原理结构火筒式加热炉主要由以下几个组成部分构成:1.炉体:炉体通常由耐高温、耐腐蚀的金属材料制成,如不锈钢、耐火砖等。
炉体内部分为燃烧室和热交换室。
2.燃烧室:燃烧室是炉体的一部分,用于燃烧燃料产生炽热的气体。
燃烧室通常配备有燃料喷嘴、点火装置和调节装置,以控制燃料的供给和燃烧过程。
3.热交换器:热交换器是将燃烧产生的高温气体和待加热物体或介质进行热交换的设备。
热交换器通常由金属管道或换热管、热交换表面和传热介质组成。
4.控制系统:控制系统用于监测和控制火筒式加热炉的燃烧、温度、压力等参数。
常见的控制系统包括传感器、控制器、执行器等。
工作原理火筒式加热炉的工作原理可以简单概括为以下几个步骤:1.燃料燃烧:燃料经过喷嘴喷入燃烧室,在点火装置的作用下,燃料与空气混合并燃烧产生高温炽热的气体。
2.热交换:高温气体进入热交换器,在换热表面的作用下,热能传递给待加热的物体或介质。
燃烧后的废气则被排出炉外。
3.温度控制:控制系统根据设定的加热需求和安全要求,实时监测炉内温度,通过调节燃料供给和风量等参数,实现温度的自动控制。
优势和应用优势火筒式加热炉相比其他加热设备具有以下优势:1.高效节能:火筒式加热炉通过燃烧产生高温气体,充分利用燃料的热能,具有较高的热效率。
2.灵活性强:火筒式加热炉可以使用多种燃料,如天然气、液化石油气等,灵活应对不同加热需求。
3.加热均匀:火筒式加热炉的热交换器设计合理,能够实现对待加热物体或介质的均匀加热。
应用火筒式加热炉广泛应用于以下领域:1.制造业:火筒式加热炉在金属加工、陶瓷制造、玻璃制造等行业中,常用于熔化金属、烧结陶瓷、玻璃烧结等工艺。
加热炉的工艺特点
加热炉是一种用于加热物体的设备,其工艺特点如下:
1. 高温加热:加热炉通常可以达到很高的温度,可以用于加热各种需要高温处理的材料,如金属、玻璃等。
2. 均匀加热:加热炉可以实现对物体的均匀加热,可以通过控制加热元件的位置和功率分布来实现温度的均匀分布。
3. 温度控制精度高:加热炉通常配备有温度控制系统,可以实现对加热过程中的温度进行精确控制和调节,以满足不同材料的加热要求。
4. 加热速度快:加热炉通常具有较高的加热速度,可以迅速将物体加热到所需的温度,提高生产效率。
5. 省能高效:加热炉通常采用高效的加热元件和热传输系统,具有较高的能源利用率和热效率,能够降低能源消耗。
6. 安全可靠:加热炉通常具有多重安全保护措施,如过温报警、过载保护等,能够确保加热过程的安全可靠性。
7. 灵活多样:加热炉可以根据不同的加热需求,设计制造成各种形式和规格的
加热炉,如箱式加热炉、管式加热炉、滚筒式加热炉等。
总而言之,加热炉具有高温加热、均匀加热、温度控制精度高、加热速度快、省能高效、安全可靠和灵活多样等工艺特点,广泛应用于各个领域的材料加热处理和热工实验中。
加热炉设备介绍加热炉是将物料或工件加热的设备。
按热源划分有燃料加热炉、电阻加热炉、感应加热炉、微波加热炉等。
应用遍及石油、化工、冶金、机械、热处理、表面处理、建材、电子、材料、轻工、日化、制药等诸多行业领域。
在冶金工业中,加热炉习惯上是指把金属加热到轧制成锻造温度的工业炉,包括有连续加热炉和室式加热炉等。
金属热处理用的加热炉另称为热处理炉。
初轧前加热钢锭或使钢锭内部温度均匀的炉子称为均热炉。
广义而言,加热炉也包括均热炉和热处理炉。
连续加热炉包括推钢式炉、步进式炉、转底式炉、分室式炉等连续加热炉,但习惯上常指推钢式炉。
连续加热炉多数用于轧制前加热金属料坯,少数用于锻造和热处理。
主要特点是:料坯在炉内依轧制的节奏连续运动,炉气在炉内也连续流动;一般情况,在炉料的断面尺寸、品种和产量不变的情况下,炉子各部分的温度和炉中金属料的温度基本上不随时间变化而仅沿炉子长度变化。
RJ2系列高温井式电阻炉结构简介:RJ2系列高温井式电阻炉结构,外壳由钢板和型钢制成圆柱形炉体,全部采用密封焊接。
炉衬采用超轻质0.6g/cm3节能真空球耐火保温砖砌筑。
炉衬与炉壳夹层置酸铝纤维毡保温,间隙填充膨胀保温粉。
电阻丝采用0Cr27Al7Mo2高电阻合金丝绕成螺旋状安装在炉膛的搁丝砖上。
炉盖采用手动或电动升降。
如用户提出需要气氛保护使工件减少氧化,可在炉盖上安装有不锈钢三头油注器,滴入甲醇或煤油,以产生简易保护气氛,在炉膛下部安装有氮气进气管道,可通入氮气保护或冲散可燃性气体,以防发生爆炸事故。
为保证操作安全在升降机构附近装有限位开关,此开关与高温井式电阻炉控制柜电源联锁,炉盖关闭时通电源。
当炉盖开启时限位开关即切断控制电源,因此加热元件的电源同时切断,以保证安全操作。
高温井式电阻炉出厂时配套自动控温柜,热电偶。
用途:RJ2系列高温井式电阻炉是国家标准节能型周期作业井式电阻炉,最高温度1200℃,工作温度1200℃,主要供合金钢、高速钢、高锰钢、高铬钢、轴类、管材等金属材料和机械零件在一般气氛或简易保护中进行正火、退火、淬火等热处理用。
1.传热的基本方式及内容传热的基本方式有三种,它们是:①热传导;②对流;③热辐射。
2.热传导及其基本原理热量从物体中温度较高的部分传递到温度较低的部分或者传递到与之接触的温度较低的另一物体的过程称为热传导,简称导热,在纯导热过程中,物体的各部分之间不发生相对位移。
基础原理:气体的导热是气体分子作不规则热运动时相互碰撞的结果。
气体分子的与其温度有关,即高温区的分子运动速度比低温区的大,能量水平较高的分子与能量水平较低的分子相互碰撞的结果,热量就由高温处传到低温处,良好的导电体中有相当多的自由电子在品格之间运动,它们也能将热能从高温处传递到低温处。
而在非导电的固体中,导热是通过晶格结构的振动来实现的。
3.对流及热辐射的含义对流是指流体各部分质点发生相对位移而引起的热量传递过程,因而对流只能发生在流体中,在化工生产中常遇到的是流体流过固体表面时.热能由流体传到固体里面,或者由固体里面传入周围流体,这一过程称为对流传热。
热辐射当物质受热而引起其内部原子的复杂激动后.就会对外发射出辐射能。
这种能量是以电磁波的形式发射出来,并进行传播,当射到另一物体被吸收时,则又转变成热能.这种只与物体本身改变有关而引起的热射线的传播过程,称热辐射。
4.加热炉的辐射源1)火焰:悬浮着的游离炭。
2)烟气;Co2、H20、S02,N2等。
3)炉墙;炉墙温度高于炉管。
5.温度场一物体的内部.只要各点间有温度差存在,热就可以从高温度向低温度传导,即产生热流.而热流的大小,取决于物体内部的温度分布,物体(或空间)各点温度在任一瞬间的分布情况,称为温度场。
6.等温面温度相同的点所组成的面积为等温面.因为空间任一点不能同时有两个不同的温度.所以温度不同的等温面彼此不会相交。
7.导热系数导热系数表示物质的导热能力,是物质的物理性质之一,其数值常和物质的组成、结构、密度、压力和温度等有关。
8.固体的导热系数金属是良导电体.因而也是良好的导热体。