1.1.1算法的概念(练习)
- 格式:doc
- 大小:39.50 KB
- 文档页数:2
高中数学必修3知识点总结第一章算法初步1.1.1算法的概念1、算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2. 算法的特点:(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.1.1.2程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。
学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。
2、框图一般按从上到下、从左到右的方向画。
3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。
判断框具有超过一个退出点的唯一符号。
精品文档精品文档4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。
5、在图形符号内描述的语言要非常简练清楚。
(二)构成程序框的图形符号及其作用(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。
第一章 算法初步1.1 算法与程序框图1.1.1 算法的概念A 级 基础巩固一、选择题1.下列四种自然语言叙述中,能称作算法的是( )A .在家里一般是妈妈做饭B .做米饭需要刷锅、淘米、添水、加热这些步骤C .在野外做饭叫野炊D .做饭必须要有米解析:算法是做一件事情或解决一类问题的程序或步骤,故选B.答案:B2.以下对算法的描述正确的有( )①对一类问题都有效;②算法可执行的步骤必须是有限的;③算法可以一步一步地进行,每一步都有确切的含义;④是一种通法,只要按部就班地做,总能得到结果.A .1个B .2个C .3个D .4个答案:D3.给出下面一个算法:第一步,给出三个数x ,y ,z .第二步,计算M =x +y +z .第三步,计算N =13M .第四步,得出每次计算结果.则上述算法是( )A .求和B .求余数C .求平均数D .先求和再求平均数解析:由算法过程知,M 为三数之和,N 为这三数的平均数.答案:D4.一个算法步骤如下:S 1,S 取值0,i 取值1;S2,如果i≤10,则执行S3;否则,执行S6;S3,计算S+i并将结果代替S;S4,用i+2的值代替i;S5,转去执行S2;S6,输出S.运行以上步骤后输出的结果S=( )A.16 B.25C.36 D.以上均不对解析:由以上计算可知:S=1+3+5+7+9=25.答案:B5.对于算法:第一步,输入n.第二步,判断n是否等于2,若n=2,则n满足条件;若n>2,则执行第三步.第三步,依次从2到(n-1)检验能不能整除n,若不能整除n,则执行第四步;若能整除n,则执行第一步.第四步,输出n.满足条件的n是( )A.质数B.奇数C.偶数D.约数解析:此题首先要理解质数,只能被1和自身整除的大于1的整数叫质数.2是最小的质数,这个算法通过对2到(n-1)一一验证,看是否有其他约数,来判断其是否为质数.答案:A二、填空题6.给出下列算法:第一步,输入x的值.第二步,当x>4时,计算y=x+2;否则执行下一步.第三步,计算y=4-x.第四步,输出y.当输入x=0时,输出y=________.解析:因为0<4,执行第三步,所以y=4-0=2.答案:27.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:(1)计算c=a2+b2.(2)输入直角三角形两直角边长a,b的值.(3)输出斜边长c 的值.其中正确的顺序是________________.解析:算法的步骤是有先后顺序的,第一步是输入,最后一步是输出,中间的步骤是赋值、计算.答案:(2)(1)(3)8.如下算法:第一步,输入x 的值;第二步,若x ≥0,则y =x ;第三步,否则,y =x 2;第四步,输出y 的值.若输出的y 值为9,则x =________.解析:根据题意可知,此为求分段函数y =⎩⎪⎨⎪⎧x ,x ≥0,x 2,x <0的函数值的算法,当x ≥0时,x=9;当x <0时,x 2=9,所以x =-3.答案:9或-3三、解答题9.写出求1×2×3×4×5×6的算法.解:第一步,计算1×2得到2.第二步,将第一步的运算结果2乘3,得到6.第三步,将第二步的运算结果6乘4,得到24.第四步,将第三步的运算结果24乘5,得到120.第五步,将第四步的运算结果120乘6,得到720.10.某商场举办优惠促销活动.若购物金额在800 元以上(不含800 元),打7折;若购物金额在400 元以上(不含400 元),800 元以下(含800 元),打8折;否则,不打折.请为商场收银员设计一个算法,要求输入购物金额x ,输出实际交款额y .解:算法步骤如下:第一步,输入购物金额x (x >0).第二步,判断“x >800”是否成立,若是,则y =0.7x ,转第四步;否则,执行第三步. 第三步,判断“x >400”是否成立,若是,则y =0.8x ;否则,y =x .第四步,输出y ,结束算法.B 级 能力提升1.结合下面的算法:第一步,输入x .第二步,判断x 是否小于0,若是,则输出x +2;否则,执行第三步.第三步,输出x -1.当输入的x 的值为-1,0,1时,输出的结果分别为( )A .-1,0,1B .-1,1,0C .1,-1,0D .0,-1,1解析:根据x 值与0的关系选择执行不同的步骤.答案:C2.求过P (a 1,b 1),Q (a 2,b 2)两点的直线斜率有如下的算法,请将算法补充完整: S 1 取x 1=a 1,y 1=b 1,x 2=a 2,y 2=b 2.S 2 若x 1=x 2,则输出斜率不存在;否则,________.S 3 输出计算结果k 或者无法求解信息.解析:根据直线斜率公式可得此步骤.答案:k =y 2-y 1x 2-x 13.鸡兔同笼问题:鸡和兔各若干只,数腿共100条,数头共30只,试设计一个算法,求鸡和兔各有多少只.解:第一步,设有x 只鸡,y 只兔,列方程组⎩⎪⎨⎪⎧x +y =30,①2x +4y =100.② 第二步,②÷2-①,得y =20.第三步,把y =20代入①,得x =10.第四步,得到方程组的解⎩⎪⎨⎪⎧x =10,y =20. 第五步,输出结果,鸡10只,兔20只.。
1.1.1 算法的概念课时达标训练一、基础过关1.下面四种叙述能称为算法的是 ( )A .在家里一般是妈妈做饭B .做米饭需要刷锅、淘米、添水、加热这些步骤C .在野外做饭叫野炊D .做饭必须要有米答案 B解析 算法是解决一类问题的程序或步骤,A 、C 、D 均不符合.2.下列关于算法的描述正确的是 ( )A .算法与求解一个问题的方法相同B .算法只能解决一个问题,不能重复使用C .算法过程要一步一步执行,每步执行的操作必须确切D .有的算法执行完后,可能无结果答案 C解析 算法与求解一个问题的方法既有区别又有联系,故A 不对;算法能重复使用,故B 不对;每个算法执行后必须有结果,故D 不对;由算法的有序性和确定性可知C正确.3.下列可以看成算法的是 ( )A .学习数学时,课前预习,课上认真听讲并记好笔记,课下先复习再做作业,之后做适当的练习题B .今天餐厅的饭真好吃C .这道数学题难做D .方程2x 2-x +1=0无实数根答案 A解析 由于A 是学习数学的一个步骤,所以是算法.4.下列所给问题中,不可以设计一个算法求解的是 ( )A .二分法求方程x 2-3=0的近似解B .解方程组⎩⎪⎨⎪⎧x +y +5=0x -y +3=0C .求半径为3的圆的面积D .判断函数y =x 2在R 上的单调性答案 D解析 A 、B 、C 选项中的问题都可以设计算法解决,D 选项中的问题由于x 在R 上取值无穷尽,所以不能设计一个算法求解.5.计算下列各式中S 的值,能设计算法求解的是 ( )①S =12+14+18+…+12100 ②S =12+14+18+…+12100+… ③S =12+14+18+…+12n (n ≥1且n ∈N *) A .①② B .①③ C .②③ D .①②③答案 B解析 因为算法的步骤是有限的,所以②不能设计算法求解.6.下面给出了解决问题的算法:第一步:输入x .第二步:若x ≤1,则y =2x -1,否则y =x 2+3.第三步:输出y .(1)这个算法解决的问题是________;(2)当输入的x 值为________时,输入值与输出值相等.答案 (1)求分段函数y =⎩⎪⎨⎪⎧2x -1(x ≤1)x 2+3(x >1)的函数值 (2)1 7.已知某梯形的底边长AB =a ,CD =b ,高为h ,写出一个求这个梯形面积S 的算法.解 算法如下:第一步,输入梯形的底边长a 和b ,以及高h .第二步,计算a +b 的值.第三步,计算(a +b )×h 的值.第四步,计算S =(a +b )×h 2的值. 第五步,输出结果S .二、能力提升8.关于一元二次方程x 2-5x +6=0的求根问题,下列说法正确的是( )A .只能设计一种算法B .可以设计两种算法C .不能设计算法D .不能根据解题过程设计算法答案 B解析 算法具有不唯一性,对于一个问题,我们可以设计不同的算法.9.对于算法:第一步,输入n .第二步,判断n 是否等于2,若n =2,则n 满足条件;若n >2,则执行第三步.第三步,依次从2到(n -1)检验能不能整除n ,若不能整除n ,则执行第四步;若能整除n ,则执行第一步.第四步,输出n .满足条件的n 是 ( )A .质数B .奇数C .偶数D .约数答案 A解析 此题首先要理解质数,只能被1和自身整除的大于1的整数叫质数.2是最小的质数,这个算法通过对2到(n -1)一一验证,看是否有其他约数,来判断其是否为质数.10.请说出下面算法要解决的问题________.第一步,输入三个数,并分别用a 、b 、c 表示;第二步,比较a 与b 的大小,如果a <b ,则交换a 与b 的值;第三步,比较a 与c 的大小,如果a <c ,则交换a 与c 的值;第四步,比较b 与c 的大小,如果b <c ,则交换b 与c 的值;第五步,输出a 、b 、c .答案 输入三个数a ,b ,c ,并按从大到小顺序输出.解析 第一步是给a 、b 、c 赋值.第二步运行后a >b .第三步运行后a >c .第四步运行后b >c ,∴a >b >c .第五步运行后,显示a 、b 、c 的值,且从大到小排列.11.试设计一个求一般的一元二次方程ax 2+bx +c =0的根的算法.解 第一步,计算Δ=b 2-4ac .第二步,若Δ<0,则执行第三步,否则执行第四步.第三步,输出方程无实根.第四步,计算并输出方程根x 1,2=-b ±b 2-4ac 2a. 12.在某次田径比赛中,男子100米A 组有8位选手参加预赛,成绩(单位:秒)依次为9.88,10.57,10.63,9.90,9.85,9.98,10.21,10.86.请设计一个算法,在这些成绩中找出不超过9.90秒的成绩.解 算法如下:第一步,设计数变量n =1.第二步,输入一个成绩x ,判断x 与9.90的大小.若x >9.90,则执行第三步;若x ≤9.90,输出x ,并执行第三步.第三步,使计数变量n 的值增加1后仍记为n .第四步,判断计数变量n 与成绩个数8的大小.若n ≤8,则返回执行第二步;若n >8,则算法结束.三、探究与拓展13.写出求1+12+13+…+1100的一个算法. 解 第一步:使S =1;第二步:使I =2;第三步:使n =1I; 第四步:使S =S +n ;第五步:使I =I +1;第六步:如果I ≤100,则返回第三步,否则输出S .。
温馨提示:此套题为版,请按住,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭文档返回原板块。
课时提升作业(一)算法的概念(分钟分)一、选择题(每小题分,共分).(·长沙高一检测)下列关于算法的描述正确的是( ).算法与求解一个问题的方法相同.算法只能解决一个问题,不能重复使用.算法过程要一步一步执行,每步执行的操作必须确切.有的算法执行完后,可能无结果【解析】选.算法与求解一个问题的方法既有区别又有联系,故不对;算法能重复使用,故不对;每个算法执行后必须有结果,故不对;由算法的有序性和确定性可知正确..(·鹰潭高一检测)下列叙述能称为算法的个数为( )①植树需要运苗、挖坑、栽苗、浇水这些步骤;②顺序进行下列运算:,,,…,;③从枣庄乘火车到徐州,从徐州乘飞机到广州;④>;⑤求所有能被整除的正数,即,,,,….【解析】选.①②③是算法,④⑤均不存在确定的步骤,因此不是. .(·南昌高一检测)一个算法的步骤如下:如果输入的值为,则输出的值为( )第一步,输入的值;第二步,计算的绝对值;第三步,计算;第四步,输出的值.【解析】选.分析算法中各变量、各语句的作用,再根据算法的步骤可知:该算法的作用是计算并输出的函数值.第一步,输入.第二步,计算的绝对值.第三步,计算.第四步,输出的值为..早上从起床到出门需要洗脸刷牙()、刷水壶()、烧水()、泡面()、吃饭()、听广播()几个步骤,从下列选项中选最好的一种算法( ).洗脸刷牙、刷水壶、烧水、泡面、吃饭、听广播.刷水壶、烧水同时洗脸刷牙、泡面、吃饭、听广播.刷水壶、烧水同时洗脸刷牙、泡面、吃饭同时听广播.吃饭同时听广播、泡面、烧水同时洗脸刷牙、刷水壶【解析】选.因为选项共用时间,选项共用时间,选项共用时间,选。
第一章 算法初步1.1算法与程序框图1.1.1算法的概念1.已知直角三角形两直角边长为a ,b ,求斜边长c 的一个算法分下列三步:①计算22c a b =+a ,b 的值;③输出斜边长c 的值,其中正确的顺序是 【 】A.①②③B.②③①C.①③②D.②①③2.若()f x 在区间[],a b 内单调,且()()0f a f b <,则()f x 在区间[],a b 内 【 】A.至多有一个根B.至少有一个根C.恰好有一个根D.不确定3.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为: 第一步:取A =89 ,B =96 ,C =99;第二步:____①______;第三步:_____②_____;第四步:输出计算的结果.4.写出按从小到大的顺序重新排列,,x y z 三个数值的算法.1.1.2 程序框图1.在程序框图中,算法中间要处理数据或计算,可分别写在不同的 【 】A .处理框内B .判断框内C .终端框内D .输入输出框内2.将两个数a=10,b=18交换,使a=18,b=10,下面语句正确一组是 【 】A. B. C. D.3指出下列语句的错误,并改正:(1)A =B =50(2)x =1,y =2,z =3(3)INPUT “How o ld are y ou” x(4)INPUT ,x(5)PRINT A +B =;C(6)PRINT Good-b y e!4.2021年我国人口为13亿,如果人口每年的自然增长率为7‰,那么多少年后我国人口将达到15亿?设计一个算法的程序.5.儿童乘坐火车时,若身高不超过1.1 m ,则不需买票;若身高超过1.1 m 但不超过1.4 m ,则需买半票;若身高超过1.4 m ,则需买全票.试设计一个买票的算法,并画出相应的程序框图及程序。
1.2基本算法语句1.2.1输入语句、输出语句和赋值语句1 .在输入语句中,若同时输入多个变量,则变量之间的分隔符号是 【 】A.逗号B.空格C.分号D.顿号2 . 3a =4b =a=b b=a c=b b=a a=c b=a a=b a=cc=b b=aa b =b a =输出 ,a b以上程序输出的结果是 【 】A.3,4B. 4,4C.3,3D.4,33 请从下面具体的例子中说明几个基本的程序框和它们各自表示的功能,并把它填在相应的括号内.4. 设计一个算法,要求输入一个圆的半径,便能输出该圆的周长和面积(π 取3.14)。
1.1.1算法的概念1.应用举例例1《鸡兔同笼问题》一群小兔一群鸡,两群合到一群里,要数腿共48,要数脑袋整17,多少小兔多少鸡? (1)算术解法(2)代数解法小结:代数解法的本质是________________ 例2用消元法解二元一次方程组),,(212221*********2221211212111为常数,,,,,不同时为零b b a a a a a a b x a x a b x a x a ⎩⎨⎧=+=+ 2.5.算法步骤举例(1)我们在描述算法时,用英文_________ ,_________,┅来表示第一步,第二步,┅(2)写出例2中解二元一次方程组的算法步骤。
(1)用数学语言写出对任意3个整数a,b,c,求出最大值的算法。
(2)写出一个求有限整数序列中的最大植的算法。
6.巩固练习:(1)下列关于算法的说法正确的是()①求解某一类问题的算法是唯一的;②算法必须是有限步骤之后停止;③算法的每一步操作必须是明确的,不能有歧异和模糊;④算法执行后一定产生确定的结果;⑤一个程序框图的结构是可逆的;⑥设计算法要本着简单方便的原则;⑦算法是关于某个问题的解题过程;⑧算法要求按部就班地做,每一步可以有不同的结果。
(2)教材练习A1,2(3)练习B1,2,31.1.2程序框图[学习目标]掌握程序框图符号的含义和画程序框图的规则。
[课前自主预习]1.程序框图的概念通常用一些________________________来表示算法,这种图称做程序框图(简称框图)或流程图。
2.用框图表示算法步骤的一些常用的图形符号3.画流程图的规则(1)使用___________的框图的符号。
(2)框图一般按________________________的方向画。
(3)除判断框外,大多数流程图符号只有_____________进入点和_______________退出点。
判断框是具有超过一个退出点的唯一符号。
(4)一种判断框是“是”“不是”两分支的判断,有______________不同的结果。
第一章 算法初步 1.1.1算法的概念(练习)
科目 高一数学 班级 姓名 时间 2014-3-5
一、选择题:
1.下列关于算法的说法正确的有( )个.
①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止; ③算法的每一步必须是明确的,不能有歧义或模糊.
A .1
B .2
C .3
D .4
2.下列四种叙述能称为算法的是( )
A .在家里一般是妈妈做饭
B .做米饭要刷锅,淘米,添水,加热这些步骤
C .在野外做饭叫野炊
D .做饭必须要有米
3.指出下列哪个不是算法( )
A.从广州到北京旅游,先坐火车,再坐飞机抵达
B.解一元二次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1
C.方程x 2-1=0有两个实根
D.求1+2+3+4的值,先计算1+2=3,再由3+3=6,6+4=10得结果是10
4.对于算法的要求应不包括( )
A .写出的算法,必须能解决一类问题
B .需使算法尽量简单、步骤尽量少
C .所写的算法不能重复使用
D .要保证算法正确,且计算机能够执行
5.以下对算法的描述正确的有( )
①对一类问题都有效;②算法可执行的步骤必须是有限的;
③计算可以一步步地进行,每一步都有确切的含义;
④是一种通法,只要按部就班地做,总能得到结果.
A .1个
B . 2个
C .3个
D .4个
6.下列说法正确的是( )
A .算法是计算的方法
B .算法是与计算机有关的问题的解决方法
C .算法是计算机语言
D .算法通俗地讲是解决问题的程序与过程
7.对于一般的二元一次方程组⎩⎨⎧ a 1x +b 1y =c 1,a 2x +b 2y =c 2,
在写此方程组的算法时,需要我
们注意的是( )
A .a 1≠0
B .a 2≠0
C .a 1b 2-a 2b 1≠0
D .a 1b 1-a 2b 2≠0
8.在数学上,现代意义的算法通常指可以用计算机来解决一类问题的程序或步骤,这些步骤是( ) A .三步 B .四步 C .有限步 D .无限步
9.算法:
第一步,输入n.
第二步,判断n是否是2.若n=2,则n满足条件;若n>2,则执行第三步.第三步,依次从2到n-1检验能不能整除n,若不能整除n,则满足条件.满足上述条件的数是( )
A.质数 B.奇数 C.偶数 D.4的倍数
10.现用若干张扑克牌进行扑克牌游戏,小明背对小亮,让小亮按下列四个步骤操作:第一步,分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同.第二步,从左边一堆拿出两张,放入中间一堆.
第三步,从右边一堆拿出一张,放入中间一堆.
第四步,左边一堆有几张牌,就从中间一堆拿出几张牌放入左边一堆.
这时,小明准确地说出了中间一堆牌现有的张数,你认为中间一堆牌的张数是( )A.4 B.5 C.6 D.8
二、填空题:
11.以下有六个步骤:
①拨号;②等拨号音;③提起话筒(或免提功能);④开始通话或挂机(线路不通);
⑤等复话方信号;⑥结束通话.试写出打一个本地电话的算法__________.12.有人对哥德巴赫猜想:“任何大于4的偶数都能写成两个奇质数之和”设计了如下操作步骤:
第一步,检验6=3+3. 第二步,检验8=3+5. 第三步,检验10=5+5.
……
利用计算机无穷地进行下去!请问,利用这种步骤能够证明猜想的正确性吗?
原因是_____________________________________________.
三、解答题:每小题15分,共45分.
13.已知球的表面积为16π,写出求球的体积的一个算法.
14.鸡兔同笼问题:“一群小兔一群鸡,两群合到一群里,要数腿共48,要数脑袋整17,多少小兔多少鸡?”写出求解这个问题的算法.。