负荷传感转向系统仿真及试验
- 格式:pdf
- 大小:3.05 MB
- 文档页数:7
Zhao Jun,Li XiaoWei,Yang Xuesong(Heilongjiang Bayi Agricultural University Engineering College,Daqing163319,Heilongjiang,China) Load sensing hydraulic system is not affected by load change,it can supply oil on demand,the system has no excess flow,and has the characteristics of high efficiency and energy saving.The hydraulic suspension,hydraulic output,trailer brake and hydraulic steering system of modern tractors are load sensing systems.The shuttle valve network in the system receives the sensing signal of the load,controls the load sensing hydraulic pump,and obtains three working modes of the pump.The pump-controlled load sensing multi-way valve system is equipped with pressure compensator to ensure good flow control performance.In this paper,the author analyzes and studies these issues,and provides a new generation and upgrade for the hydraulic system of large and medium-sized domestictractors.hydraulic pump,load sensing,tractor现代化拖拉机负荷传感液压系统赵军,李霄伟,杨雪松(黑龙江八一农垦大学工程学院,黑龙江大庆163319)摘要负荷传感液压系统不受负载变化的影响,可以实现按需供油,系统没有多余流量,具有高效、节能的特点。
基于AMESim的全液压转向系统的仿真分析贺海洋;李建朝【摘要】AMESim是法国EMAGINE公司开发的高级工程系统建模仿真软件,为机械液压控制等工程系统提供一个较为完善的时域仿真建模环境.通过在AMESim仿真软件中建立全液压转向系统中优先阀和转向油缸的仿真模型,得出系统的仿真结果曲线,并进行分析,这对进一步提高工程机械的转向性能有一定的指导意义.【期刊名称】《农业装备与车辆工程》【年(卷),期】2011(000)010【总页数】4页(P36-39)【关键词】AMESim;转向系统;优先阀;转向液压缸;仿真模型【作者】贺海洋;李建朝【作者单位】河南科技大学机电工程学院,河南洛阳471003;河南科技大学机电工程学院,河南洛阳471003【正文语种】中文【中图分类】TH137.3;TP391.9随着近年来我国铁路高速公路建设的高速发展,工程机械也朝着大型化趋势发展,工程机械转向阻力矩也随之提高,靠单级全液压转向器控制的液压动力转向系统已不能满足转向要求。
全液压转向系统具有转向灵活轻便、性能稳定、故障率低、布置方便等优点,广泛应用于装载机、挖掘机等各种工程机械的转向系统。
所以全液压转向系统的性能仿真分析和试验研究,对提高工程机械在工作中的可靠性和高效性有着非常重要的意义[5]。
由法国EMAGINEG公司开发的AMESim,作为一款优秀的的仿真软件,已成为流体、机械、热分析等复杂系统建模和仿真的优先选择平台[1]。
本论文首先分析了全液压转向系统的工作原理及各部件组成,在此基础上结合转向系统原理,在AMESim平台对系统关键元件建模仿真,研究分析了输入信号下全液压转向系统关键元件的工作特性。
全液压转向系统集转向器和流量放大器于一体,既具有转向器的负荷传感功能,又具有流量放大功能。
在转向油路与工作油路同时工作的情况下,液压转向泵供油优先满足转向油路使用,剩余部分供给工作油路使用。
因此,它既能保证转向油路可靠工作,又减小了液压泵排量,达到节能的目的。
第1篇一、实验目的本次实验旨在了解电动助力转向系统(EPS)的工作原理、性能特点以及与传统液压助力转向系统的差异。
通过实验,验证EPS在提高转向效率、降低能耗、提升驾驶舒适性和安全性等方面的优势。
二、实验原理电动助力转向系统(EPS)是一种利用电动机作为动力源的新型动力转向装置。
与传统液压助力转向系统相比,EPS省去了液压泵、油管等液压部件,采用电机直接驱动转向机构,从而实现转向助力。
EPS系统主要由以下几部分组成:1. 信号传感装置:包括扭矩传感器、转角传感器和车速传感器,用于检测驾驶员的转向意图、方向盘转角和车速等信息。
2. 转向助力机构:包括电机、减速器、离合器等,用于根据驾驶员的转向意图和车速,提供相应的转向助力。
3. 电子控制单元(ECU):根据扭矩传感器、转角传感器和车速传感器的信号,控制电机的旋转方向和助力电流的大小,实现实时助力转向。
三、实验内容1. EPS系统组成及工作原理讲解。
2. EPS系统与传统液压助力转向系统的对比实验。
3. EPS系统在不同车速下的转向助力性能测试。
4. EPS系统在转向过程中抗干扰性能测试。
四、实验步骤1. 准备实验设备:EPS系统实验平台、扭矩传感器、转角传感器、车速传感器、数据采集器等。
2. 搭建实验平台,连接实验设备。
3. 根据实验要求,设置实验参数。
4. 进行EPS系统与传统液压助力转向系统的对比实验,记录数据。
5. 在不同车速下进行EPS系统的转向助力性能测试,记录数据。
6. 在转向过程中进行EPS系统的抗干扰性能测试,记录数据。
7. 分析实验数据,得出结论。
五、实验结果与分析1. EPS系统与传统液压助力转向系统的对比实验结果显示,EPS系统在转向效率、能耗、驾驶舒适性和安全性等方面均优于传统液压助力转向系统。
2. EPS系统在不同车速下的转向助力性能测试结果显示,EPS系统在不同车速下均能提供稳定的转向助力,且转向助力大小与车速成正比。
乘用车转向系统功能安全要求和试验方法乘用车转向系统是一款关键的汽车安全功能,其作用是控制车辆转向。
为了确保乘用车转向系统的安全性能,有必要制定相应的功能安全要求和试验方法。
一、乘用车转向系统功能安全要求1. 系统可靠性乘用车转向系统应具有高度的可靠性,能够在各种工况下正常工作,避免突发故障造成的意外事故。
2. 系统稳定性乘用车转向系统应具备稳定的转向性能,保持良好的操控性和驾驶舒适性,避免转向过程中的剧烈抖动或偏离轨道。
3. 系统准确性乘用车转向系统应具备高准确性,能够精确控制车辆的转向角度,以实现准确的驾驶控制。
4. 系统响应速度乘用车转向系统应具有快速的响应速度,能够及时响应驾驶者的操控指令,确保车辆能够按照预期的方向进行转向。
5. 系统可控性乘用车转向系统应具备良好的可控性,能够调整转向力度和转向角度,以适应不同驾驶情况和道路条件。
二、乘用车转向系统功能安全试验方法1. 系统可靠性试验通过加速老化试验、低温试验、高温试验等方式,测试乘用车转向系统在各种严酷工况下的可靠性和耐久性。
2. 系统稳定性试验运用静态平衡试验和动态平衡试验,评估乘用车转向系统在不同车速和路面条件下的稳定性能。
3. 系统准确性试验采用角度测量设备,检测乘用车转向系统的转向角度的准确度,与实际角度进行比对,以判断系统的准确性。
4. 系统响应速度试验通过模拟器或专用仪器,测试乘用车转向系统对驾驶者转向指令的响应速度和灵敏度。
5. 系统可控性试验使用专用台架或实车,测试乘用车转向系统的可调性和可控性,调节转向助力或转向角度的力度和范围。
综上所述,乘用车转向系统功能安全要求和试验方法是确保乘用车转向系统安全性能的重要措施。
通过对系统的可靠性、稳定性、准确性、响应速度和可控性的评估和测试,可以确保乘用车转向系统能够全面、精确地保证车辆的转向控制,提高驾驶安全性。
这些要求和试验方法的制定能够帮助汽车制造企业提供更安全、可靠的乘用车产品。