TDI扩链端羟基聚乳酸的研究
- 格式:pdf
- 大小:255.20 KB
- 文档页数:4
收稿日期:2023-04-20基金项目:河北省大学生创新创业训练计划项目(课题号:S202210101005、S202210101008)作者简介:王培(1982-),女,毕业于山西师范大学,讲师,研究方向:可生物降解高分子材料的加工及应用,***************;通讯联系人:冯嘉玮(2002-),女,本科生在读,研究方向:高分子材料,*****************。
聚乳酸材料性能改进研究进展王 培,冯嘉玮,邓祎慧,刘雪微,张 帅(衡水学院 应用化学系,河北 衡水 053000)摘要:聚乳酸(polylacticacid ,PLA )是一种以植物资源为原料合成的聚酯,主要应用于医学、生物、环境保护等领域。
随着科学技术的进步,对聚乳酸材料的性能提出了新的要求和用途,必须通过改性提高其加工与应用性能。
从物理改性、化学改性方面综述了PLA 性能改进的研究进展。
旨在保留PLA 性能的优势,为拓宽PLA 应用市场提供一定参考价值。
关键词:聚乳酸;物理改性;化学改性doi :10.3969/j.issn.1008-553X.2024.02.003中图分类号:O648.17 文献标识码:A 文章编号:1008-553X (2024)02-0009-05安 徽 化 工ANHUI CHEMICAL INDUSTRYVol.50,No.2Apr.2024第50卷,第2期2024年4月聚乳酸(PLA ),又称聚丙交酯或聚羟基丙酸,一种重要的乳酸衍生物,是由乳酸单体缩聚而成的可生物降解的高分子材料[1]。
因其具有可降解性、良好的生物相容性和力学性能及易于加工等特性被认为是最具发展前景的生物可降解材料之一,是唯一具有优良抑菌及抗霉特性的生物可降解塑料。
PLA 广泛应用于医疗卫生、包装材料、纤维、非织造物、建筑、农业等领域。
在医疗卫生方面,PLA 已应用于可降解手术缝合线、缓释药物载体[2]、医用伤口敷料[3]、3D 多孔聚乳酸支架[4]、人工皮肤[5]口腔固定材料、眼科材料等方面。
扩链改性聚乳酸嵌段共聚物的研究扩链改性聚乳酸嵌段共聚物的研究引言:聚乳酸是一种生物可降解的聚合物材料,在医疗领域具有广泛的应用前景。
然而,由于其降解速度慢和机械性能欠佳等缺点,限制了其在一些领域的应用。
为了克服这些问题,科学家通过扩链改性的方法,引入其他功能单体,以调控聚乳酸材料的性能。
本文将对扩链改性聚乳酸嵌段共聚物的研究进行探讨。
一、扩链改性的概念扩链改性是指在聚合物链上引入其他单体,通过在聚乳酸分子链中插入不同的功能单元,改变聚乳酸材料的性能。
通过扩链改性,可以调节聚乳酸材料的热稳定性、降解速度、力学性能等,并赋予其更多的功能,如生物相容性、药物缓释等。
二、扩链改性聚乳酸的方法和机制1. 聚合法通过聚合法,将其他单体与乳酸单体一起聚合,从而得到具有不同功能的共聚物材料。
例如,将乙醇酸、己内酯等引入聚合反应中,使聚乳酸的降解速度得到控制,延长其使用寿命。
2. 交联法利用交联剂将聚乳酸分子链交联在一起,形成三维网络结构,提高聚乳酸材料的力学性能和热稳定性。
同时,也可以通过交联改善聚乳酸材料的降解行为,使其适用于特定的应用领域。
3. 共聚反应通过共聚反应,在聚乳酸分子链中引入其他功能单体,形成嵌段共聚物。
例如,在聚乳酸链中引入甲基丙烯酸甲酯单体,增加聚乳酸材料的亲水性,提高其生物相容性和药物缓释性能。
三、扩链改性聚乳酸应用领域1. 医疗领域扩链改性聚乳酸嵌段共聚物在医疗领域具有广泛的应用前景。
例如,扩链改性聚乳酸可用于制备可降解的骨修复材料,通过调控其力学性能和降解速度,实现骨组织的修复和再生。
2. 药物缓释扩链改性聚乳酸嵌段共聚物还可用于制备具有缓释功能的药物载体。
通过调节聚乳酸材料的降解速度和释放速度,实现药物的缓慢释放,提高治疗效果。
3. 环境保护扩链改性聚乳酸嵌段共聚物在环境保护领域也有应用潜力。
例如,利用其降解速度可控的特性,制备可降解的一次性塑料制品,减少塑料污染对环境造成的损害。
万方数据
万方数据
万方数据
两种新型扩链剂对聚乳酸性能影响的研究
作者:朱延谭, 张鹏, 朱从山, 田冶, ZHU Yan-tan, ZHANG Peng, ZHU Cong-shan, TIAN Ye
作者单位:南通日之升高分子新材料科技有限公司,上海,200241
刊名:
塑料工业
英文刊名:China Plastics Industry
年,卷(期):2013,41(11)
被引用次数:2次
1.吴景梅,邰燕芳可降解材料聚乳酸水解降解的影响因素[期刊论文]-宜春学院学报 2010(12)
2.谢台,喻芬,陈海聚乳酸的研究进展及其应用[期刊论文]-塑料助剂 2011(4)
3.刘勇,王庆海,李静聚乳酸在挤出过程中的降解[期刊论文]-塑料 2011(3)
4.方星,陈松林,吴自强聚乳酸的改性研究及其应用进展[期刊论文]-精细石油化工 2011(4)
5.葛铁军,秦林林PBS基降解塑料的共混与就地增容扩链改性研究[期刊论文]-塑料科技 2011(5)
引用本文格式:朱延谭.张鹏.朱从山.田冶.ZHU Yan-tan.ZHANG Peng.ZHU Cong-shan.TIAN Ye两种新型扩链剂对聚乳酸性能影响的研究[期刊论文]-塑料工业 2013(11)。
2016年第35卷第2期CHEMICAL INDUSTRY AND ENGINEERING PROGRESS ·539·化工进展端羧基聚乳酸的扩链、改性及其性能刘钰维,樊国栋,管园园,王丽娜(陕西科技大学化学与化工学院,陕西西安 710021)摘要:以丙交酯为原料、辛酸亚锡为催化剂、丁二酸酐为改性剂,采用梯度升温法,在150℃、0.098MPa条件下采用直接熔融缩聚法合成端羧基聚乳酸共聚物P(LA/SA),接着用2,2-(1,3-亚苯基)-二唑啉(1,3-PBO)对其进行扩链,按n(丙交酯)/n(1,3-PBO)= 1/2.4加入1,3-PBO,反应1h制得聚酰胺酯(PEA),最后将高岭土与PEA 在150℃、减压条件下熔融复合改性。
采用GPC、FTIR、1H NMR、DSC、SEM等手段对聚合物的结构进行表征和性能测试,结果表明,与P(LA/SA) 相比,扩链产物PEA相对分子质量大幅度提高,重均相对分子质量高达24万,玻璃化转变温度T g高于PLA和P(LA/SA),改性后复合材料的热稳定性能提高,结晶度降低。
关键词:聚乳酸;二唑啉;扩链法;高岭土;复合材料中图分类号:TQ 326.9 文献标志码:A 文章编号:1000–6613(2016)02–0539–05DOI:10.16085/j.issn.1000-6613.2016.02.030Chain expansion,modification and properties of the carboxyl terminatedpoly-lactideLIU Yuwei,F AN Guodong,GUAN Yuanyuan,WANG Lina(College of Chemistry & Chemical Engineering,Shaanxi University of Science & Technology,Xi’an 710021,Shaanxi,China)Abstract:The terminal carboxyl group of polylactic acid copolymer P (LA/SA) was synthesized with lactide as raw material,stannous caprylate as the catalyst and succinic anhydride as modifier by direct melt polycondensation,and under the condition of 150℃and 0.098MPa (LA/SA). The polyesteramide (PEA) was synthesized using 2,2-(1,3-phenylene)-bis(2-oxazoline) (1,3-PBO) chain the terminal carboxyl group of polylactic acid copolymer with the n(lactide)/n(1,3-PBO) is 1/2.4 and the reaction time of 12h. Finally,Kaolin and PEA melting compound was modified under stress conditions at 150℃. The structure were characterized by FTIR and the properties were investigated by GPC,FTIR,1H NMR,DSC,SEM. The result showed that the relative molecular weight of the chain extender product PEA increased significantly compared with P (LA/SA),and the heavy molecular weight was up to 240000. Its glass transition temperature is also higher than that of PLA and P (LA/SA). The thermal stability of the composite material is improved and the crystallinity is reduced after being modified.Key words:poly(D,L-lactide); 2,2'-bis( 2-oxazoline) ; chain extending; Kaolin; composites聚乳酸又名聚丙交酯,是目前应用较为广泛的聚合物材料之一,属于聚酯家族。
聚乳酸研究现状及消费市场分析李宪进;张伟【摘要】Polylactic acid is a polymer by polymerization of lactic acid as the main raw materials.Polylactic acid is an ideal green polymer materials,its raw materials are abundant and renewable;no pollution in the produc-tion process,the product is biodegradable.The research status of polylactic acid at home and abroad was mainly in-troduced,the market consumption scale,distribution and development prospect of polylactic acid industry was ana-lyzed.With the people environmental protection consciousness increasing gradually,polylactic acid as biodegrada-ble materials in various fields will be more and more widely.%聚乳酸是以乳酸为主要原料经聚合而成的聚合物,乳酸等原料来源充分且可再生,生产过程无污染,产品可生物降解,是一种理想的绿色高分子材料。
主要介绍了聚乳酸国内外研究现状,分析了聚乳酸工业的市场规模、消费分布和发展前景。
认为随着人们环保意识逐渐增加,聚乳酸作为生物可降解材料在各领域的应用将越来越广泛。
【期刊名称】《合成技术及应用》【年(卷),期】2014(000)002【总页数】4页(P24-27)【关键词】聚乳酸;聚合;研究;市场分析【作者】李宪进;张伟【作者单位】扬子石化 -巴斯夫有限公司,江苏南京 210048;南化集团研究院,江苏南京 210048【正文语种】中文【中图分类】TQ320.1聚乳酸(PLA)为透明的结晶聚合物,在常温下具有较好的物理力学性能,介于聚酯和聚酰胺之间,但其耐热性能差。
生物降解聚合物论文:聚乳酸的扩链与支化反应【中文摘要】聚(L-乳酸)是一种以可再生植物资源为原料的生物降解高分子材料,具有良好的生物降解性、生物相容性、生物吸收性及力学性能,在生物医用材料、纤维、包装材料等领域有着良好的应用前景。
因此,聚乳酸的研究与开发已成为可生物降解高分子材料领域的热点。
而高效、低成本地获得高分子量的聚乳酸、并使其发生部分支化以改善力学性能,是聚乳酸材料研究开发中的重要方向之一为此,本文提出一种新的熔融缩聚/扩链方法,即用熔融缩聚得到的端羧基聚乳酸预聚物与二缩水甘油酯进行扩链反应制备高分子量的具有支化结构的聚乳酸。
首先,通过在SnCl2·2H2O/TSA双组分催化剂催化乳酸熔融缩聚的过程中添加一定量的丁二酸酐,制备得数均分子量(Mn)为1000-20000,端羧基含量高于98%的结晶性聚乳酸预聚物。
当Mn≤2000时,聚乳酸预聚物结晶速度慢,难以结晶;当Mn>4000时,则很容易结晶,随着分子量从4000增大到10000,其结晶度由27%上升至40%。
其次,采用二缩水甘油酯与端羧基聚乳酸预聚物进行扩链反应,并用三检测器凝胶渗透色谱技术对聚乳酸扩链产物的链结构(分子量及其分布、特性粘数、支化因子)进行表征,考察了预聚物分子量、扩链反应温度、环氧/羧基摩尔比、真空度等因素对扩链反应及扩链产物链结构的影响。
在扩链过程中,聚乳酸预聚物的端羧基与二缩水甘油酯的环氧基反应迅速,因而可在很短的时间内提高聚乳酸重均分子量;但由于存在羧基和环氧基与生成的侧羟基的副反应,在扩链的同时也产生支化结构,分子量分布明显变宽,甚至产生凝胶。
预聚物分子量、反应温度、环氧基/羧基摩尔比显著影响扩链反应和扩链产物链结构。
采用合适分子量(Mn 6000)的预聚物、提高反应温度、提高环氧/羧基摩尔比,有利于提高扩链产物分子量;随着预聚物分子量减小、反应温度升高或环氧/羧基摩尔比偏离1/1,扩链产物分子量支化程度增大、分子量分布变宽,乃至产生凝胶。
高岭土杂化改性端羟基聚乳酸复合材料的制备与性能的研究高岭土杂化改性端羟基聚乳酸复合材料的制备与性能的研究摘要:本文利用高岭土(Kaolin)作为填料,采用界面改性技术将其与端羟基聚乳酸(PLA)进行杂化改性,制备了高岭土杂化改性端羟基聚乳酸复合材料。
通过扫描电镜(SEM)、X射线衍射(XRD)、动态热机械分析(DMA)和拉伸性能测试等手段对复合材料进行了表征和性能测试。
研究结果表明,高岭土的加入不仅有效提高了复合材料的力学性能,而且还改善了热性能和热稳定性。
关键词:高岭土;端羟基聚乳酸;杂化改性;复合材料;性能1. 引言端羟基聚乳酸是一种生物可降解的聚合物材料,在医药、食品包装等领域具有广泛的应用前景。
然而,纯PLA材料在力学性能和热稳定性方面存在一定的局限性。
因此,通过引入填料杂化改性的方法,可以有效改善PLA的性能。
高岭土是一种常见的天然矿石,主要成分为硅酸盐矿物,具有优异的物理和化学性质。
因此,将高岭土与PLA进行杂化改性,可以利用其独特的结构和特性,进一步提升复合材料的性能。
本研究旨在通过调控高岭土的含量以及界面改性技术的应用,制备高性能的高岭土杂化改性端羟基聚乳酸复合材料。
2. 实验部分2.1 材料端羟基聚乳酸(PLA)与高岭土(Kaolin)分别作为基体材料和填料。
2.2 制备方法将确定比例的高岭土与PLA进行混合,并在一定温度下进行熔融混合,制备出复合材料。
为了改善高岭土与PLA之间的相容性,采用界面改性技术,对高岭土进行表面改性处理。
2.3 表征与性能测试方法使用扫描电镜(SEM)观察复合材料的形貌;利用X射线衍射(XRD)分析复合材料的晶体结构特征;采用动态热机械分析(DMA)测试复合材料的热性能;通过拉伸性能测试评估复合材料的力学性能。
3. 结果与讨论3.1 表征结果SEM观察结果显示,高岭土与PLA之间形成了良好的相容性,表面没有明显的分散现象。
XRD结果显示,复合材料中的高岭土颗粒与PLA呈现出混合结构,部分高岭土颗粒的结晶度有所降低。
生物降解聚合物优秀论文:聚乳酸的扩链与支化反应————————————————————————————————作者:————————————————————————————————日期:生物降解聚合物论文:聚乳酸的扩链与支化反应【中文摘要】聚(L-乳酸)是一种以可再生植物资源为原料的生物降解高分子材料,具有良好的生物降解性、生物相容性、生物吸收性及力学性能,在生物医用材料、纤维、包装材料等领域有着良好的应用前景。
因此,聚乳酸的研究与开发已成为可生物降解高分子材料领域的热点。
而高效、低成本地获得高分子量的聚乳酸、并使其发生部分支化以改善力学性能,是聚乳酸材料研究开发中的重要方向之一为此,本文提出一种新的熔融缩聚/扩链方法,即用熔融缩聚得到的端羧基聚乳酸预聚物与二缩水甘油酯进行扩链反应制备高分子量的具有支化结构的聚乳酸。
首先,通过在SnCl2·2H2O/TSA双组分催化剂催化乳酸熔融缩聚的过程中添加一定量的丁二酸酐,制备得数均分子量(Mn)为1000-20000,端羧基含量高于98%的结晶性聚乳酸预聚物。
当Mn≤2000时,聚乳酸预聚物结晶速度慢,难以结晶;当Mn>4000时,则很容易结晶,随着分子量从4000增大到10000,其结晶度由27%上升至40%。
其次,采用二缩水甘油酯与端羧基聚乳酸预聚物进行扩链反应,并用三检测器凝胶渗透色谱技术对聚乳酸扩链产物的链结构(分子量及其分布、特性粘数、支化因子)进行表征,考察了预聚物分子量、扩链反应温度、环氧/羧基摩尔比、真空度等因素对扩链反应及扩链产物链结构的影响。
在扩链过程中,聚乳酸预聚物的端羧基与二缩水甘油酯的环氧基反应迅速,因而可在很短的时间内提高聚乳酸重均分子量;但由于存在羧基和环氧基与生成的侧羟基的副反应,在扩链的同时也产生支化结构,分子量分布明显变宽,甚至产生凝胶。
预聚物分子量、反应温度、环氧基/羧基摩尔比显著影响扩链反应和扩链产物链结构。